تعداد نشریات | 27 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,276 |
تعداد مشاهده مقاله | 4,853,058 |
تعداد دریافت فایل اصل مقاله | 3,322,169 |
Lagrange spaces with changed (α, β)− metric with Shen’s square Randers metric | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 22 دی 1403 اصل مقاله (285.96 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2024.16307.1142 | ||
نویسندگان | ||
Shiv Kumar Tiwari1؛ Swati Srivastava* 1؛ Chandra Prakash Maurya2 | ||
1Department of Mathematics K.S.Saket P.G. College, Ayodhya, India | ||
2Adarsh inter college Saltauwa, India | ||
چکیده | ||
The aim of the present paper is to study the Lagrange spaces due to changed (α,β)-metric with Z. Shen square- Randers metric L ̅= 〖(α+β)〗^2/α+ β and obtained fundamental tensor fields for these space. Further, we studied about the variational problem with fixed endpoints for the Lagrange spaces due to above change. | ||
کلیدواژهها | ||
Lagrange space؛ Z. Shen square metric؛ Randers metric؛ Euler - Lagrange equation؛ metric tensor | ||
مراجع | ||
1. B. Nicolaescu, Lagrange spaces with (α; β) - metric, A ppl. Sci.,3 :1 , 3(2001). 2. B. Nicolaescu, The variational problem in Lagrange spaces endowed with (α; β)- metric,in Balan, Vladimir (ed.),Proceedings of the 3rd international colloquium of Mathematics in engineering and numericalphysics (MENP -3) Bucharest, Romania, (2004), Mathematics sections, BSG proceedings, 12, Geometry Balken Press, Bucharest, (2005), 202 - 207. 3. C. Shibata, On invariant tensors of β- changes of Finsler metrics, J. Math. kyoto Univ.,24(1984), 163-188. 4. J. Kern, Lagrange geometry, Arch Math., 25(1974), 438-443. 5. I.M.Gelfand, S.V. Fomin, Calculus of variations, Dover publications, Mineola,(2000). 6. M. Matsumoto , On some transformations of locally Minkowskian space, Tensor. N. S.22(1971), 103-111. 7. M. Matsumoto , Theory of Finsler spaces with (α; β)- metric, Rep. Math. Phys.,31:1(1992). 8. R. Miron, A Lagrangian theory of relativity, I,II, An. stiint . Univ. AI.I. cuza Iasi, N. S.,sect. Ia,32 : 2,3, 37-62, 7 -16 (1986). 9. R. Miron, Lagrange geometry, Math. Comput. Modelling, 20(1994), 4-5, 25-40. 10. R. Miron, M. Anastasiei, The geometry of Lagrange spaces : theory and applications,Kluwer Acad. Publ., Dordrecht, (1994). 11. S.S.Chern, Z. Shen, Riemann - Finsler geometry, Nankai Tracts in Mathematics, World Scientific, Hackensack, 06(2005). 12. T. N. Pandey, V. K. Chaubey, Lagrange spaces with β- change, Int. J. Contemp.Math.sci. 07(2012), 45-48, 2363-2371. 13. T. N. Pandey, V. K. Chaubey, The variational problem in Lagrange spaces endowed with (γ; β) metric, Int. J. Pure.Appl. Math., 71:4(2011), 633-638. 14. V.K.Chaubey, B.K. Tripathi, S.B.Chandak, Lagrange spaces with change Z.shen square metric, Siberian electronic Mathematical reports, 20:1(2023), 17-24. 15. Z. Shen, G. C. Yildirim, On a class of projectively flat metrics with constant flag curvature, can. J. Math., 60:2(2008), 443-456. | ||
آمار تعداد مشاهده مقاله: 16 تعداد دریافت فایل اصل مقاله: 27 |