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manifold with respect to Zamkovoy connection. Fur-
ther, we study n-Einstein soliton on this submanifold
with respect to Zamkovoy connection under different
curvature conditions. Finally, we give an example of
anti-invariant submanifold of 5-dimensional
LP-Kenmotsu manifold admitting 7n-Einstein soliton
with respect to V* and verify a relation on the manifold

under consideration.

1. INTRODUCTION

In 2008, the notion of Zamkovoy canonical connection (briefly, Zamkovoy connection) was
introduced by Zamkovoy [30] for a para-contact manifold. And this connection was defined as
a canonical para-contact connection whose torsion is the obstruction of para-contact manifold
to be a para-Sasakian manifold. Later, Biswas and Baishya [1, 2] studied this connection
on generalized pseudo Ricci symmetric Sasakian manifolds and on almost pseudo symmetric

Sasakian manifolds. This connection was further studied by Blaga [3] on para-Kenmotsu
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manifolds. In 2020, Mandal and Das [7, 13, 14, 15] studied in detail on various curvature
tensors of Sasakian and LP-Sasakian manifolds admitting Zamkovoy connection. In 2021,
they discussed LP-Sasakian manifolds equipped with Zamkovoy connection and conharmonic
curvature tensor [16]. Recently, they introduced Zamkovoy connection on Lorentzian para-
Kenmotsu manifold [17] and studied Ricci soliton on it with respect to this connection.
Zamkovoy connection for an m-dimensional almost contact metric manifold M equipped
with an almost contact metric structure (¢,&,7,g) consisting of a (1,1) tensor field ¢, a

vector field £, a 1-form n and a Riemannian metric g, is defined by
(1.1) VY =VxY + (Vxn) (Y)§=n(Y) VxE+n(X) ¢Y,

for all X, Y € x (M), where x (M) is the set of all vector fields on M.

In 2018, the notion of Lorentzian para-Kenmotsu manifold (LP- Kenmotsu manifold for
short) has been introduced by Haseeb and Prasad [9]. Later, Shukla and Dixit [25] studied
¢-recurrent Lorentzian para-Kenmotsu manifolds and find that such type of manifolds are
n-Einstein. Further, Chandra and Lal [6] studied some special results on 3-dimensional
Lorentzian para-Kenmotsu manifolds. This manifold is also studied by Sai Prasad, Sunitha
Devi [22].

In 1977, anti-invariant submanifolds of Sasakian space forms were introduced by Yano
and Kon [28]. Later in 1985, Pandey and Kumar investigated properties of anti-invariant
submanifolds of almost para-contact manifolds [20]. Recently, Karmakar and Bhattyacharyya
[11] studied anti-invariant submanifolds of some indefinite almost contact and para-contact
manifolds. Most recently, Karmakar [10] studied n-Ricci-Yamabe soliton on anti-invariant
submanifolds of trans-Sasakian manifold admitting Zamkovoy connection.

Let ¢ be a differential map from a manifold N into another manifold M and let the
dimensions of N, M be n, m (n < m), respectively. If rank¢ = n, then ¢ is called an
immersion of N into M. If o(p) # ¢(q) for p # q, then ¢ is called an imbedding of N into M.
If the manifolds N and M satisfy the following two conditions, then N is called submanifold
of M - (i) N c M, (11) the inclusion map from N into M is an imbedding of N into M.

A submanifold N is called anti-invariant if X € T, (N ) = 0X € TL(N ) for all X € N,
where T, (N ) and T;H(N ) are respectively tangent space and normal space at z € N. Thus

in an anti-invariant submanifold N , we have for all X, Y € N
9(X,9Y) =0.

The concept of Ricci flow was first introduced by R. S. Hamilton in the early 1980s.
Hamilton [8] observed that the Ricci flow is an excellent tool for simplifying the structure
of a manifold. It is the process which deforms the metric of a Riemannian manifold by
smoothing out the irregularities. The Ricci flow equation is given by
9y
ot

where ¢ is a Riemannian metric, .S is Ricci tensor and ¢ is time. The solitons for the Ricci

(1.2) = 28,

flow is the solutions of the above equation, where the metrices at different times differ by a
diffeomorphism of the manifold. A Ricci soliton is represented by a triple (g, V, A), where V'

is a vector field and A is a scalar, which satisfies the equation

(1.3) L,g+25+2\g =0,
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where S is Ricci curvature tensor and L, g denotes the Lie derivative of g along the vector field
V. A Ricci soliton is said to be shrinking, steady, expanding according as A < 0, A\ = 0, A > 0,
respectively. The vector field V is called potential vector field and if it is a gradient of a
smooth function, then the Ricci soliton (g, V, \) is called a gradient Ricci soliton and the
associated function is called potential function. Ricci soliton was further studied by many
researchers. For instance, we see [19, 21, 24, 26] and their references.

Catino and Mazzieri [5] in 2016 first introduced the notion of Einstein soliton as a gener-
alization of Ricci soliton. An almost contact manifold M with structure (¢, &, n, g) is said to

have an Einstein soliton (g, V, A) if
(1.4) L,g+25+2X—1r)g=0,

holds, where r being the scalar curvature. The Einstein soliton (g, V,\) is said to be
shrinking, steady or expanding according as A < 0,A = 0 or A > 0, respectively. Einstein

soliton creates some self-similar solutions of the Einstein flow equation

dg

Again as a generalization of Einstein soliton the 7-Einstein soliton on manifold M (¢, &, 7, g)
is introduced by A. M. Blaga [4] and it is given by

(1.5) L,g+25+ 2\ —7r)g+28n®n=0,

where, 8 is some constant. When 8 = 0 the notion of n-Einstein soliton simply reduces
to the notion of Einstein soliton. And when 5 # 0, the data (g,V,\,3) is called proper
n-Einstein soliton on M. The n-Einstein soliton is called shrinking if A < 0, steady if A =0,
and expanding if A > 0.

A transformation of an n-dimensional Riemannian manifold M, which transforms every
geodesic circle of M into a geodesic circle, is called a concircular transformation [12, 29]. A
concircular transformation is always a conformal transformation. Here geodesic circle means
a curve in M whose first curvature is constant and second curvature is identically zero. An
interesting invariant of a concircular transformation is the concircular curvature tensor (W),
which was defined in [27, 29] as

r
=)
for all X, Y, Z € x(M), set of all vector fields of the manifold M, where R is the Riemannian

curvature tensor and r is the scalar curvature.

(1.6) W(X,Y)Z=R(X,Y)Z - g(Y,2)X — g(X,2)Y],

Definition 1.1. A Riemannian manifold M is called an n-Einstein manifold if its Ricci

curvature tensor is of the form
SY,Z)=kig(Y,Z) + kan (Y)n (2),
for all Y, Z € x (M), where ki, ko are scalars.

This paper is structured as follows:

First two sections of the paper have been kept for introduction and preliminaries. In
Section-3, we give expression for Zamkovoy connection on anti-invariant submanifold of
LP-Kenmotsu manifold. In Section-4, we study Einstein soliton with respect to Zamkovoy

connection on anti-invariant submanifold of LP-Kenmotsu manifold. Section-5 concerns
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with n-Einstein soliton with respect to Zamkovoy connection on anti-invariant submanifold
of LP-Kenmotsu manifold. Section-6 contains 7-Einstein soliton on anti-invariant subman-
ifold of LP-Kenmotsu manifold satisfying (£.)z. .S = 0. Section-7 deals with 7-Einstein
soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying (£.),. .S* = 0.
In Section-8, we discuss n-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu
manifold satisfying (§.)g. WW* = 0. Finally Section-9, contains an example of anti-invariant
submanifold of 5-dimensional LP-Kenmotsu manifold admitting n-Einstein soliton with re-

spect to Zamkovoy connection.

2. PRELIMINARIES

Let M be an n-dimensional Lorentzian almost para-contact manifold with structure
(6,¢,m,9), where n is a 1-form, £ is the structure vector field, ¢ is a (1,1)-tensor field

and ¢ is a Lorentzian metric satisfying

(2.1) ¢ (X) = X+n(X)&nE) =-1,
(2.2) 9(X,¢8) = n(X),
(2.3) 9(9X,0Y) = g(X,Y)+n(X)n(Y),

for all vector fields X, Y on M. A Lorentzian almost para-contact manifold is said to be
Lorentzian para-contact manifold if n becomes a contact form. In a Lorentzian para-contact
manifold the following relations also hold [18, 23]:

(2.4) ¢(&) = 0,mop=0,
(2.5) g(X,0Y) = g(¢X,Y).

The manifold M is called a Lorentzian para-Kenmotsu manifold if
(2.6) (Vxp)Y =—g(¢X,Y){—n(Y) X,

for all smooth vector fields X, Y on M.

In a Lorentzian para-Kenmotsu manifold the following relations also hold [9, 17]:

(2.7) Vx§ = =X —nX)¢,

(2.8) (Vxn)Y = —g(X,Y)—n(X)n(),
(2.9) n(R(X,Y)Z) = g(¥,2)n(X)—-g(X,Z)n(Y),
(2.10) RX,Y)E = n(Y)X —n(X)Y,

(2.11) R(EX)Y = g(X,YV)§—n(Y)X,

(2.12) R X)E = X+n(X)E,

(2.13) S(X,8) = (n—-1n(X),

(2.14) 5E¢ = —(n-1),

(2.15) Q¢ = (n—1)¢,

(2.16) S(@X,0Y) = SXY)+n-1)nX)n),

for all smooth vector fields X, Y, Z on M.



Some solitons on anti-invariant submanifold of LP-Kenmotsu manofold 5

3. ZAMKOVOY CONNECTION ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU
MANIFOLD

Expression of Zamkovoy connection on an n-dimensional LP-Kenmotsu manifold M [17]

is
(3.1) VY =VxY —g(X, )+ n (V)X +n(X) ¢Y.

Setting Y = ¢ in (3.1) we obtain

(3.2) V&= =2[X +n(X)¢].
The Riemannian curvature tensor R* with respect to Zamkovoy connection [17] on M is
given by
R (X,)Y)Z = R(X,)Y)Z+39(Y,Z)X -39(X,2)Y
+29 (Y, Z)n(X) € =29(X, Z)n (V)¢
+29(Y, 0Z)n (X) € —29(X,9Z)n(Y)¢
+20(Y)n(2) X =29 (X)n(2)Y
(3-3) =20 (Y)n(2) ¢X +2n(X)n(Z) ¢Y.

For an anti-invariant submanifold M of M the Riemannian curvature tensor with respect

to Zamkovoy connection is given by
R*(X,)Y)Z = R(X,)Y)Z+39(Y,Z2)X -3g(X,2)Y
+29 (Y, Z)n(X)§ =29 (X, Z)n (V)¢
+2n (Y)n(2) X =29 (X)n(2)Y
(34) =20 (Y)n(Z) X +2n(X)n(Z) ¢Y.
Writing the equation (3.4) by the cyclic permutations of X, Y and Z and using the fact that
R(X,)Y)Z+R(Y,Z)X+R(Z,X)Y =0, we have
(3.5) R (X, Y)Z+ R (Y, Z)X+R (Z,X)Y =0.
Therefore, the Riemannian curvature tensor with respect to Zamkovoy connection on M

satisfies the 1st Bianchi identity.
Taking inner product of (3.4) with a vector field U, we get

R*(X,Y,Z,U) = R(X,Y,Z,U)+3¢g(Y,2Z)g(X,U)—3g(X,Z)g(Y,U)
+29 (Y, Z)n(X)n(U) =29 (X, Z)n(Y)n (U)
(3.6) +29 (X, U)n(Y)n(Z) =2n(X)n(Z)g(Y,U),

where R* (X, Y, Z,U) = g(R* (X,Y) Z,U) and X, Y, Z, U € x (M).
Contracting (3.6) over X and U, we get

(3.7) S, 2) = 5(Y, Z) + (3n=5)g(Y, Z) +2(n = 2)n (Y)n (2)

where S* is the Ricci curvature tensor with respect to Zamkovoy connection.

Proposition 3.1. The Riemannian curvature tensor with respect to Zamkovoy connection

on an anti-invariant submanifold of LP-Kenmotsu manifold satisfies the 1st Bianchi identity.
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Proposition 3.2. Ricci tensor with respect to Zamkovoy connection of an anti-invariant

submanifold of LP-Kenmotsu manifold is symmetric and it is given by (3.7).

Lemma 3.3. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu man-

ifold admitting Zamkovoy connetion, then

(3.8) RY(X,)Y)E = 2[n(Y) X =0 (X)Y +1(Y) ¢X —n(X) ¢Y],
(3.9) RY(&Y)Z = 2[g(Y,2)§=n(2)Y —n(Z)¢Y],

(3.10) R*(&Y)E = 2[n(Y)E+Y + oY,

(3.11) 5% 2) = S5YZ,§=2(n—-1)n(2),

(3.12) QY = QY +Bn—-5Y +2(n—-2)n(Y)¢,

(3.13) Q¢ = 2(n—-1)¢,

(3.14) r = r+(n—-1)3n-4),

forall X, Y, Z € x (M), where R*, Q* and r* denote Riemannian curvature tensor, Ricci

operator and scalar curvature of M with respect to V*, respectively.

Theorem 3.4. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu man-

ifold is Ricci flat with respect to Zamkovoy connection, then M is n-Finstein manifold.

Proof. Let M be an n-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold,
which is Ricci flat with respect to Zamkovoy connection i.e., S*(Y,Z) = 0, for all Y, Z €
X (M) . Then from (3.7), we have

SY,Z)=—-@Bn-5)g9(Y,Z) = 2(n—2)n(Y)n(Z),
which implies that M is an n-Einstein manifold. (]
Concircular curvature tensor of M with respect to Zamkovoy connection is given by

W (X,Y)Z = R*(X,Y)Z

,r*

(3.15) D

forall X, Y, Z € x (M), where R*, W* and r* are Riemannian curvature tensor, concircular
curvature tensor and scalar curvature tensor of M with respect to V*, respectively.

Lemma 3.5. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu man-

ifold admitting Zamkovoy connetion, then

nW*(X,Y) Z) =

(3.10 DO (20 () - g (0 20 (0],
wne = [P DEEY oy - x
(3.8 F2[0(Y)6X ~ 5 (X) 67,

r+(n—1)(n—4)
n(n—1)

(3.19) W EX)Y = [ } (X, V)€~ (V) X],
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forall X, Y, Z € x (M).

4. EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU MANIFOLD
WITH RESPECT TO ZAMKOVOY CONNECTION

Theorem 4.1. An Einstein soliton (g, V, \) on an anti-invariant submanifold of LP-Kenmotsu

manifold is invariant under Zamkovoy connection if relation holds
0 = 29(X,Y)n(V) —g(X,V)n(Y) —g(Y,V)n (X)
(4.1) —(n=2)(Bn = 7)g(X,Y) +4(n - 2)n (X)n(Y).

Proof. The equation (1.4) with respect to Zamkovoy connection on an anti-invariant sub-

manifold M of LP-Kenmotsu manifold may be written as
(4.2) (L g)(X.Y) + 25" (X, Y) + (2 — r)g(X,Y) = 0,

where L g denote Lie derivative of g with respect to V* along the vector field V' and S*
is the Ricci curvature tensor of M with respect to V*.
After expanding (4.2) and using (3.1) and (3.7) we have

(LEg)(X,Y) +25*(X,Y) + (2A — 7")g(X,Y)
= g(VXxV.Y)+g(X,VyV)+25%(X,Y) + (2A —7")g(X,Y)
= (L,g)(X,)Y)+25(X,Y)+ 2\ —1r)g9(X,Y)
+29(X,Y)n (V) —g(X,V)n(Y) — g(Y,V)n (X)
(4.3) —(n=2)Bn = T)g(X,Y) +4(n - 2)n(X)n(Y),

which shows that the Einstein soliton (g, V, A) is invariant on M under Zamkovoy connec-
tion, if (4.1) holds. O

Theorem 4.2. Let M be an anti-invariant submanifold of LP-Kenmotsu manifold admitting
an FEinstein soliton (g, V, ) with respect to V*. If the non-zero potential vector field V' be
collinear with the structure vector field of M, then the soliton is

1. expanding if r > —(3n — 8)(n — 1),

2. steady if r = —(3n — 8)(n — 1),

3. shrinking if r < —(3n — 8)(n — 1).

Proof. Setting V = ¢ in (4.2) and using (3.2) we get
0 = (LZg)(X, Y)+25*(X,Y)+ (2A—r")g(X,Y)
= g(Vx&Y)+g(X,V3€) +25(X,Y) + (2A —r¥)g(X,Y)
= [4—(n—=2)Bn—=T)+2Xx—r]g(X,Y)
(4.4) +25(X,Y)+4(n =3 (X)n(Y).
Putting X =Y = ¢ and using (2.1), (2.14) in (4.4) we get

A= I+ (Bn-8)(n 1),

which proves the theorem. O
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5. n-EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU MANIFOLD
WITH RESPECT TO ZAMKOVOY CONNECTION

Theorem 5.1. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu man-
ifold admits n-Einstein soliton (g,&, N, 8) with respect to Zamkovoy connection, then the

soliton scalars are given by the following equations

A= ;[Z:ﬂ—i—;(iinQ—lOn—{—lQ),
1
B = —m[r—(n—l)(n+4)].

Proof. The equation (1.5) with respect to Zamkovoy connection on an anti-invariant sub-

manifold M of LP-Kenmotsu manifold may be written as
(5.1) (L59)(X,Y) + 25°(X,Y) + (2) — r*)g(X. Y) + 289(X)n(Y) = 0.

Applying V = ¢ in (5.1) we get

0 = g(Vx&Y)+g(X, Vi) +257(X,Y)
(5.2) +(2A = 1")g(X,Y) +26n (X)n (V).
Using (3.2) in (5.2) we obtain
(5.3) 0=25"(X,Y)+ (2A —1* — 4)g(X,Y) +2(8 = 2)n (X)n (V).
Using (3.7) in (5.3) we get
0 = 29X, Y)+[2A— (r+4) — (n—2)3n—7)] g(X,Y)
(5.4) +2(8 4 2n — 6)n (X)n (V).

Setting X =Y = ¢ in (5.4) we have

1
(5.5) )\:5+§[r+(3n—8)(n—1)].
Taking an orthonormal frame field and contracting (5.4) over X and Y we obtain
1
(5.6) B:An—g(n—2)—§(n—1)(3n2—10n—|—12).
Comparing the value of # from (5.5) and (5.6) we get
r|n—2 1
: A=< ~(3n® — 10n + 12).
(5.7) 2[n_1]+2(3n On + 12)
Putting the value of A from (5.7) in (5.5) we get
1
- r—(n-1 4)].
B =gy I~ (0= D+

Corollary 5.2. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu man-

ifold contains n-FEinstein soliton (g,&, \, B) with respect to V* then M is n-Einstein manifold
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Proof. From equation (5.4) we have

2\ — 4) —(n—2 -
S(XY) = - A—(r+4) 2(n )(3n —17) (X, Y)
—(B+2n—=6)n(X)n(Y),
which shows that M is n-Einstein manifold. (|

Theorem 5.3. Let M be an anti-invariant submanifold of an LP-Kenmotsu manifold ad-
mitting n-Finstein soliton (g,&, A, B) with respect to V*. If the structure vector field & of M
be parallel i.e., Vx& =0, then M is an n-Einstein manifold.
Proof. 1f £ is parallel, then from (3.1) we have
(5-8) Vi§=-X-n(X)¢

After expanding the Lie derivative and setting V' = ¢ in (5.1) we get

0 = g(Vx&Y) +9(X, Vi) +257(X,Y)

(5.9) F2A — )g(X,Y) + 280 (X) 1 (V).

Using (3.7), (3.14) and (5.8) in (5.9) we get

S(X,Y) = 3 22—+ (30— D)o~ 9] g(X,¥) — (8+ 21— ) (X) (V).

which shows that M is n-Einstein. O
Theorem 5.4. If M be an anti-invariant submanifold of an LP-Kenmotsu manifold admit-
ting n-Einstein soliton (g, V, \, B) with respect to V* such that V' € D, then scalar curvature
of M s given by

r=2(—B8)—(n—1)(3n—8),

where D is a distribution on M defined by D = kern.
Proof. Here V € D and hence
(5.10) n(V)=0.

Taking covariant derivative of (5.10) with respect to £ and using (Ven) V = 0, we get
(5.11) n(VeV) = 0.

In view of (3.1) and (5.11) we have
(5.12) n(ViV) =o.

After expanding the Lie derivative of (5.1) we get

0 = g(VXV,Y)+g(X,ViyV)+25"(X,Y)

(5.13) +2A —r)g(X,Y) + 260 (X)n (Y).

Setting X =Y = ¢ in (5.13) and using (3.11), (5.12), we obtain

0=2A—r—(n—1)(3n—8) — 24.

This gives the theorem. O
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6. 7-EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU MANIFOLD
SATISFYING (§.)p+ .S* =0

Theorem 6.1. Let M (¢,&,1m,9) be an n-dimensional anti-invariant submanifold of an LP-
Kenmotsu manifold admitting n-Einstein soliton (g,§, \, B) with respect to V*. If M satisfies
(&) g+ -S* =0, then the soliton constants are given by

,6’:2,)\:%[r+(3n—8)(n—1)+4].

Proof. If M contains an 7-Einstein soliton (g, &, A, 8) with respect to V*, then (5.2) gives

*

(6.) S106Y) = |24+ |l r) - (- 2m () ().

The condition that must be satisfied by S* is
(6.2) SH(RY(&, X)Y, Z) + S*(Y, R* (£, X)Z) = 0,
forall X, Y, Z € x (M).
Using (3.9) and replacing the expression of S* from (6.1) in (6.2) we get
0 = (B-2)[gX,Y)n(Z)+nY)n()n(Z)]
(6.3) +(B=2)[9(X, Z)n(Y)+n(Y)n(Y)n(Z)].
For Z = &, we have
for all X, Y € x (M), which gives
B8 =2.
From (5.5) and (6.3) it follows that
1
B=2)\= §[r+(3n—8)(n—1)+4].
O
Corollary 6.2. The n-Einstein soliton (g,&, A\, ) on an n-dimensional anti-invariant sub-

manifold M of an LP-Kenmotsu manifold satisfying (£.)p. .S* = 0 is shrinking, steady or

expanding according as
r < —[Bn—-8)(n—1)+4],
r = —[Bn—-8)(n—1)+4],
r > —[(Bn—8)(n—1)+14].

Corollary 6.3. There is no Einstein soliton on M satisfying (£.) g« .S* = 0 with potential
vector field &.

7. n-EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU MANIFOLD
SATISFYING (§.)y« .S =0

Theorem 7.1. Let M (¢,£,m,9g) be an n-dimensional anti-invariant submanifold of an LP-
Kenmotsu manifold admitting n-Einstein soliton (g,&, \, B) with respect to V*. If M satisfies
(&)= -S* =0, then the scalar curvature of M is given by

r=-2(n-1)(n-2),
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provided 5 # 2.

Proof. The condition that must be satisfied by S™* is
(7.1) 0=5"W(X)Y,Z) + 57 (Y, W (£, X)Z),

forall X, Y, Z € x (M).
Replacing the expression of S* from (6.1) in (7.1) we obtain

0 = (-2 |1 XY@ ) 0 (2)
(7.2) H(5-2) [1 - n<n_1>] 90X, 200 (V) + 0 (V)0 (V)0 (2)].
Setting Z = ¢ in (7.2) we get
& 0=(8-2) |1 ] glox. o).

Using (3.14) in (7.3) we get
r=-2(n-1)(n-2),
if
B #2,
which gives the theorem. O

8. n-EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU MANIFOLD
SATISFYING (§.)g« W* =0

Theorem 8.1. Let M (¢,£,n,9g) be an n-dimensional anti-invariant submanifold of an LP-
Kenmotsu manifold admitting n-Einstein soliton (g,&, A, 8) with respect to V*. If M satisfies
(&.)g« - W* =0, then the soliton constants are given by
r+(n—1)(3n—4)+4 N 2(n—=1)[r+(n—1)(3n —4)]

2 r+(n—1)(n—4) ’
2(n—=1)[r+ (n—1)(3n — 4)]

r+(n—1)(n—4) ’

A =

B = 2n+

Proof. The condition that must be satisfied by S* is
0 = S X W (Y, 2)V)E—-S"(EW (Y, Z2)V)X
+S(X, Y)W (£, Z2)V — S*(E, Y)W (X, Z)V
+S*(X, Z2)WH(Y, )V = S*(&, Z2)W (Y, X))V
(8.1) +SH(X, V)WY, Z2)§ — 57§, VIWH(Y, Z) X,
for all X, Y, Z, V € x (M) . Taking inner product with £ the relation (8.1) becomes
0 = =SYX, WY, Z2)V)—-S"(EW*(Y,Z2)V)n
+5H(X,Y)n(W* (€, 2)V) = S(&, Y )n(W* (X, Z)V)
+5*( ZmWH(Y,§)V) = §*(&, Z)n(W*(Y, X)V)
(8.2) +S5H(X, V)nW(Y, 2)€) — S7(§, V)n(W* (Y, 2) X).

(X)
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Setting V' = £ and using (3.16), (3.17), (3.18), (3.19) we get
0 = SY X, WY, 2)¢) + 57(&, W (Y, Z2)¢)n(X)
(8.3) +57(, W (Y, 2) X).

Replacing the expression of S* from (6.1) in (8.3) we obtain

0 = [t G| oo | b @ - sz
(84) 2 g (XY )0 (2) — g (X, Z)n (V).

Setting Z = £ in (8.4) we get
*

2 (60X, 6Y),
n

2 n—1)
Using (3.14) in (8.5) we obtain

r+(n—1)Bn—-4)+4 2n—1)[r+ (n—1)(3n—4)]
2 r+(n—1)(n—4) '

(8.5) 0— [2—“’“*] [2—f]g(¢x,w>+

A:

Putting the value of A in (5.5) we get
2(n—=1)[r+ (n—1)(3n —4)]
r+(n—1)(n—4) ’

8 =2n+

This gives the theorem.

9. EXAMPLE OF ANTI-INVARIANT SUBMANIFOLD OF 5-DIMENSIONAL LP-KENMOTSU
MANIFOLD ADMITTING 7-EINSTEIN SOLITON WITH RESPECT TO ZAMKOVOY
CONNECTION

We consider a 5-dimensional manifold
M= {(xvyazauav) € R5} )

where (z,y, z, u,v) are the standard co-ordinates in R®.

We choose the linearly independent vector fields

E1 = l’%,EQ = l‘aay,Eg = :L‘%,E4 = :E%,Eg, = 1‘%

Let g be the Riemannian metric defined by ¢ (E;, Ej) =0, if i # j for i,j =1,2,3,4,5,
and g(El,El) = —1, g(EQ,EQ) = 1, g(Eg,Eg) = 1, g(E4,E4) = 1, g(E5,E5) =1.
Let 7 be the 1-form defined by 1 (X) = g (X, E1), for any X € x (M?) . Let ¢ be the (1,1)
tensor field defined by

(9.1) ¢Er = 0,9FEy = —E3,0F3 = —FEy,¢oEy = —E5,0F5; = —Ejy.
Let X, Y, Z € x (M5) be given by
= x1FEy +29Fs + 2383 + 4By + w5 E5,

y1E1 +yo B + ysE3 + ys By + ys Es,
= 2B + 2By + 23E3 + 24 By + 25 Es.

N
I
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Then, we have

g(X,Y)+n(X)n
We have

[En, Eo]

(B2, E1]

[Eiv Ej]

g(X,Y)
n(X)

9(0X,¢Y)
Using the linearity of g and ¢, 7n(

= Ey, [Ey, B3]
== _EQ) [E37E1] =

= x1Y1 + X2y2 + x3Yy3 + T4ys + T5Ys5,

= —I,

= TaYy2 + T3Y3 + T4Y4 + T5Ys.

- E3a [ElaE4]
_E37 [E47E1] -

= 0 for all others ¢ and j.

- E4a [E17E5] -
_E47 [EE))El] =

13

Ey) = -1, ¢°X = X +n(X) Ey and g(¢X,¢Y) =
(Y) for all X,Y € x (M).

_E57

Let the Levi-Civita connection with respect to g be V, then using Koszul formula we get

the following

VBl =
V., Bl =
Vo B =
V., B =
V,. B =

From the above results we see that the structure (¢,&, 7, g) satisfies

0,V, By =0,V, B3=0,V, E;=0,V, B =
~E3,V, By=—E1,V, F3=0, V, E4=0,V, E5=0,
~B3, V, By =0,V, By=—-FE ,V, E;=0,V, Fs5 =0,
~Ey,V, By =0,V, E3=0,V, Ey=—F,V, B =0,
~B5,V, By =0,V, F3=0,V, B;=0, V, Bs=—Ey.

(Vxo)Y

= —9(0X,Y)§ = n(Y)oX,

for all X, Y € x (M®), where n(£) =n(E;) = —1. Hence M® (¢,&,n,g) is a LP-Kenmotsu

manifold.

Let M* (¢,&,n,g) be an anti-invariant submanifold of M? (¢,&,7,g). Then the non-zero
components of Riemannian curvature of M* with respect to Levi-Civita connection V are

given by
R(Ey,E9) Ey = Ey,R(E1, Ey) Es = —E1,R(E1, E3) Ey = Es,
R(Er, E3) E3 = —F1, R(E, Ey) By = By, R(E4, Ey) By = — By,
R(E:\,E5)Ey = E5,R(E©, E5) Es = —E1, R (E2, Er) B2 = Fy,
R (E3, E1) E1 = —FEy, R(Es, E3) E5 = E3, R (Fs, E3) E5 = —F»,
R (Es, Ey) Ey = Ey, R (Eo, Ey) Ey = —E, R(Es, Es) Ey = Es,
R(Ey, E5) Es = —FEy, R(Es, Ey) Es = E1,R(FEs, Ey) Ey = —Es3,
R (Es,Es) Es = E9, R(Es, E2) By = —FEs3, R (E3, Ey) Es = Ey,
R(Es3,Ey) Ey = —FE3,R(Es, E5) Es = E5, R (E3, E5) Es = —Fs,
R(E4,E1) Ey = E1,R(Ey, E1) E1 = —E4, R(Ey4, E9) Ey = E»,
R (E4, E9) Ey = —Ey, R(Ey, E3) Eqy = E3, R (Ey4, E3) E5 = —Fy,
R(E4, Es) Ex = Es, R(Ey, Es) Es = —Ey, R (Es, Ey) Es = Ei,
R(Es, E) E1 = —Es, R (Es, Es) Es = Es, R (Es, Es) Es = —FEs,
R(Es, E3) Es — By, R (Es, E3) By — —Es, R (Es, E4) Es = E4.
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By the help of (3.1), we obtain

Vi B
Vi B
Vi B
Vi B
Vi B

0, Vi By = E3,V}, By = B,V By = B5, Vi Fs = Eu,

—2E,,V} Ey = —2E\,V}, E3 =0, Vi E4=0,V} E; =0,
~2B3, Vi, By =0,V By = —2F,V}, By =0,V Bs =0,
—2E4, V} B> =0,V} E3 =0,V Ey=—2E1,V} s =0,
—2E5,V} B> =0,V B3y =0,V; E =0, Vi E5 = —2F).

Some of the non-zero components of Riemannian curvature tensor of M* with respect to

Zamkovoy connection are given by

= 2(BEy— E3),R* (Ey, E3) By = —4Fs3,
— —A4FBs, R*(Es, E3) E5 = —4E;,

= 2(BEy— F3),R* (E3, By) By = 4E;,
= 4Fs3, R* (B3, E5) E5 = AE,.

Using the above curvature tensors the Ricci curvature tensors of M* with respect to V

and V* are

= —4,5 (B, Ey) = S (Fs3, E3) = —2,
= S(Bs, E5) = -2,

= —8,8%(Ey, Ey) = S* (Ey, Ey) = 14,
= S*(Es, E3) = 14.

Therefore, the scalar curvature tensor of M™* with respect to Levi-Civita connection is r =

—12 and scalar curvature tensor with respect to Zamkovoy connection is r* = 32.
Setting V=X =Y = E; in (5.1) we have

0 = (Lzlg) (E1, Er) + 25" (B, E1) + (20 — %) g (Ev, 1) + 28n (En) n (Er)

= (VBB +g (B B

+257 (Ev, Ev) + (2X —r")g (Ev, Ev) + 280 (E1) 1 (Eq),
= 040+2(=8)+ (21 — 32)(~1) + 28,
= B-A+8,

which gives

B+38,
1
/\+§[—12+28],

)\+%[_12—|—(3><5—8)(5—1)]7

)\+%[r+(3n—8)(n—1)],

which shows that A and f satisfies relation (5.5).
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