تعداد نشریات | 27 |
تعداد شمارهها | 368 |
تعداد مقالات | 3,269 |
تعداد مشاهده مقاله | 4,835,059 |
تعداد دریافت فایل اصل مقاله | 3,310,218 |
Sacks-Uhlenbeck α−harmonic maps from Finsler manifolds | ||
Journal of Finsler Geometry and its Applications | ||
دوره 5، شماره 2، 2024، صفحه 70-86 اصل مقاله (364.94 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2024.15587.1134 | ||
نویسندگان | ||
Amir Shahnavaz1؛ Seyed Mehdi kazemi Torbaghan* 2؛ Nader kouhestani1 | ||
1Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran | ||
2Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran | ||
چکیده | ||
In this paper, we study the stability of Sacks-Uhlenbeck α−harmonic maps from a Finsler manifold to a Riemannian manifold and its applications. Then we find conditions under which any non-constant α−harmonic maps from a compact Finsler manifold to a standard unit sphere Sn(n > 2) is unstable. | ||
کلیدواژهها | ||
harmonic maps؛ Riemannian geometry؛ Finsler Geometry؛ α−harmonic maps | ||
مراجع | ||
1. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,Springer, New york, 2000. 2. D. Bao and Z. Shen, On the Volume of Unit Tangent Spheres in a Finsler Manifold,Results in Mathematics, 26 (1994) 1-17. 3. B. Bidabad, Complete Finsler manifolds and adapted coordinates. Balkan Journal of Geometry and Its Applications (BJGA), 14 (1)(2009), 21-29. 4. Q. Chen, K. Li and H. Qiu, f-Harmonic Maps Within Bounded Distance from Quasiisometric Maps., Commun. Math.Stat. (2023), 1-11. 5. R. C. Davidson, Kinetic description of harmonic instabilities in a planar wiggler freeelectron laser, The Physics of fluids, 29(1) (1986), 267-274. 6. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, American. J of Math. (1) (1964), 109-160. 7. V. Ghizdovat, O. Rusu, M.Frasila, C. M. Rusu, M. Agop and D. Vasincu, Towards Multifractality through an Ernst-Type Potential in Complex Systems Dynamics, Entropy , 25(8) (2023), 1149. 8. Q. He and Y. B. Shen, Some results on harmonic maps for Finsler manifolds, Int. J. Math. 16(9) (2005) 1017-1031. 9. S. M. Kazemi Torbaghan, K. Salehi and S. Babaie, Existence and Stability of α− Harmonic Maps, J of Math.2022.1(2022): 1906905. 10. T. Lamm, A. Malchiodi andd M. Micallef, A gap theorem for α-harmonic maps between two-spheres, Analysis and PDE, 14(3)(2021), 881-889. 11. Y. Li and Y. Wang, A counterexample to the energy identity for sequences of α-harmonic maps, . Pacific Journal of Mathematics, 274(1) (2015), 107-123. 12. J. Li and X. Zhu, Energy identity and recklessness for a sequence of Sacks-Uhlenbeck ¨maps to a sphere, Annales de l’Institut Henri Poincar´e C, Analyse non lin´eaire, 36(1)(2019), 103-118. 13. Y. Li and Y. Wang, A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck α-harmonic maps, Adv. Math. 225(3) (2010), 1134-1184. 14. X. Mo, Harmonic maps from Finsler manifolds, Illinois. J of Math. 45(4) (2001), 1331-1345. 15. X. Mo and Y. Yang, The existence of harmonic maps from Finsler manifolds to Riemannian manifolds, Sci. China. Ser. A: Math. 48(1) (2005) 115-130. 16. B. Najafi, A characterization of Finsler metrics of constant flag curvature, Indian J.Pure Appl. Math. 43(5), 559-567. 17. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain threemanifolds, arXiv preprint math/0307245,2003. 18. I. A. Rosu, et al. , Turbulence Removal in Atmospheric Dynamics through Laminar Channels, Fractal and Fractional, 7(8)(2023), 576. 19. J. Sacks, and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Annals of mathematics, (1981), 1-24. 20. A. Shahnavaz, N. Kouhestani, and S. M. Kazemi Torbaghan, The Morse Index of Sacks-Uhlenbeck ¨ α-Harmonic Maps for Riemannian Manifolds. Journal of Mathematics, 2024.1, (2024), 2692876. 21. Y.-B Shen, and Z. Shen, Introduction to modern Finsler geometry, WorldScientific, 2006. 22. Y. Shen and Y. Zhang, Second variation of harmonic maps between Finsler manifolds, Sci. China. Ser. A: Math. 47(1) (2004), 39-51. 23. Z. Shen, Lectures on Finsler Geometry, World Scientific, 2001. 24. S. Tanveer, Singularities in the classical Rayleigh-Taylor flow: formation and subsequent motion, Proc. Royal. Soc. London. Series A: Math. Phys. Sci. 441(1913), 501-525. 25. S. M. K. Torbaghan and M. M. Rezaii, f-Harmonic maps from Finsler manifolds, Bull. Math. Analysis. Appl. 9(1)(2017), 19-30. 26. S. W. Wei, An average process in the calculus of variations and the stability of harmonic maps, Bull. Inst. Math. Acad. Sinica, 11(3) (1983), 469-474. 27. S.W. Wei, An extrinsic average variational method, Recent developments in geometry (Los Angeles, CA, 1987), Contemp. Math. Amer. Math. Soc., Providence, RI, 101(1998), 55-78 | ||
آمار تعداد مشاهده مقاله: 50 تعداد دریافت فایل اصل مقاله: 89 |