
تعداد نشریات | 26 |
تعداد شمارهها | 404 |
تعداد مقالات | 3,543 |
تعداد مشاهده مقاله | 5,492,321 |
تعداد دریافت فایل اصل مقاله | 3,757,060 |
برآورد شار خالص آب سطحی و ارتباط آن با پارامتر های هیدرولوژیکی و اکولوژیکی در حوضه دریاچه ارومیه | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 2، دوره 5، شماره 2، 1404، صفحه 16-33 اصل مقاله (1.59 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2024.14929.1450 | ||
نویسندگان | ||
محمد صادق طهمورسی1؛ محمد حسین نیک سخن* 2؛ امیرهوشنگ احسانی3 | ||
1کارشناسی ارشد، گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران | ||
2استاد، گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران | ||
3دانشیار، گروه مهندسی طراحی محیط، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
12شار آب خالص (NWF) به عنوان یک عامل مهم در حفظ تعادل هیدرولوژیکی در اکوسیستمهای خشکی و تعیین نرخ تجدید مخازن آب زیرزمینی نقش دارد. در این تحقیق، از مدل تحلیلی و دادههای رطوبت خاک سطحی ماهواره SMAP در بازه زمانی 2015 تا 2020 برای تخمین NWF در حوضه آبریز دریاچه ارومیه استفاده شده است. مدل تحلیلی مورد استفاده براساس معادله خطی شده ریچاردز تنظیم شده که دینامیک رطوبت خاک را تحت تأثیر جریانهای آب نفوذی و گرانشی توضیح میدهد. این مدل امکان محاسبه شار آب خالص سطحی را از دادههای رطوبت خاک فراهم میکند. نتایج به دست آمده حاکی از آن است که میانه NWF در حدود 0.5 سانتیمتر در روز است و دامنه بین چارکی (IQR) معمولاً بین 0.5 تا 1.5 سانتیمتر در روز قرار دارد. تحلیل همبستگی رابطه قابل توجهی بین NWF و متغیرهای محیطی مانند رطوبت خاک (همبستگی 0.57)، شاخص پوشش گیاهی (NDVI) (همبستگی 0.33-) و دمای سطح زمین (LST) (همبستگی 0.57-) را نشان میدهد. این تحقیق بر اهمیت مدیریت دقیق منابع آب در حوضه دریاچه ارومیه و استفاده از دادههای ماهوارهای و ابزارهای مدلسازی برای تحلیل و مدیریت منابع آب تأکید دارد. این مطالعه نشان میدهد که درک دقیق از تعاملات بین پارامترهای هیدرولوژیکی و اکولوژیکی میتواند به تصمیمگیریهای مدیریتی مؤثر برای حفاظت از منابع آب و اکوسیستمهای مرتبط کمک کند. | ||
کلیدواژهها | ||
شار خالص آب سطحی؛ حوضه دریاچه ارومیه؛ رطوبت خاک؛ SMAP؛ دریاچه ارومیه | ||
مراجع | ||
References
Allen, R.G., Pereira, L.S., Howell, T.A., & Jensen, M.E. (2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98(6), 899–920. doi:10.1016/j.agwat.2010.12.015 Awe, G.O., Reichert, J.M., Timm, L.C., & Wendroth, O.O. (2015). Temporal processes of soil water status in a sugarcane field under residue management. Plant and Soil, 387(1-2), 395–411. doi:10.1007/s11104-014-2304-5 Baethgen, W.E., & Goddard, L. (2013). Latin American Perspectives on Adaptation of Agricultural Systems to Climate Variability and Change. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 57–72. doi:10.1142/9781848169845_0004 Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., & U, K. T. P. (2001). Fluxnet: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11), 2415–2434. doi:10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2 Brocca, L., Camici, S., Melone, F., Moramarco, T., Martínez-Fernández, J., Didon-Lescot, J.F., & Morbidelli, R. (2013). Improving the representation of soil moisture by using a semi-analytical infiltration model. Hydrological Processes, 28(4), 2103–2115. doi:10.1002/hyp.9766 Brocca, L., Ciabatta, L., Massari, C., Camici, S., & Tarpanelli, A. (2017). Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water, 9(2), 140. doi:10.3390/w9020140 Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A., & Fernández-Prieto, D. (2018). How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. International Journal of Applied Earth Observation and Geoinformation, 73, 752–766. doi:10.1016/j.jag.2018.08.023 Chen, F., Crow, W.T., Starks, P.J., & Moriasi, D.N. (2011). Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources, 34(4), 526–536. doi:10.1016/j.advwatres.2011.01.011 Decker, M., & Zeng, X. (2009). Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3. 5). Journal of Advances in Modeling Earth Systems, 1(3). doi: 10.3894/JAMES.2009.1.5 Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., & Jackson, T. (2011). The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences, 15(5), 1675–1698. doi:10.5194/hess-15-1675-2011 Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, S., Baldocchi, D., Townsend, P.A., Kilic, A., Tu, K., Miralles, D.D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A.J., French, A., Schimel, D., & Famiglietti, J.S. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4), 2618–2626. doi:10.1002/2016wr020175 Gurdak, J.J. (2017). Climate-induced pumping. Nature Geoscience, 10(2), 71–71. doi:10.1038/ngeo2885 Hong, Y., Adler, R.F., Negri, A., & Huffman, G.J. (2007). Flood and landslide applications of near real-time satellite rainfall products. Natural Hazards, 43(2), 285–294. doi:10.1007/s11069-006-9106-x Hughes, D.A. (2009). Modelling semi-arid and arid hydrology and water resources: The southern Africa experience. Cambridge University Press EBooks, 29–40. doi:10.1017/cbo9780511535734.004 Jalilvand, E., Tajrishy, M., Ghazi Zadeh Hashemi, S. A., & Brocca, L. (2019). Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sensing of Environment, 231, 111226. doi:10.1016/j.rse.2019.111226 Kogan, F.N. (1998). Global drought and flood-watch from NOAA polar-orbitting satellites. Advances in Space Research, 21(3), 477–480. doi:10.1016/s0273-1177(97)00883-1 Lawston, P.M., Santanello, J.A., & Kumar, S.V. (2017). Irrigation Signals Detected From SMAP Soil Moisture Retrievals. Geophysical Research Letters, 44(23), 11, 860–811, 867. doi:10.1002/2017gl075733 Liu, Y., Lu, Y., Sadeghi, M., Horton, R., & Ren, T. (2024). Measurement and estimation of evapotranspiration in a maize field: A new method based on an analytical water flux model. Agricultural Water Management, 295, 108764–108764. doi:10.1016/j.agwat.2024.108764 Moore, S., & Fisher, J.B. (2012). Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen. Water Resources Management, 26(6), 1425–1453. doi:10.1007/s11269-011-9966-z Richards, L.A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318–333. doi: 10.1063/1.1745010 Richey, A.S., Thomas, B.F., Lo, M.H., Reager, J.T., Famiglietti, J.S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. doi:10.1002/2015wr017349 Rodell, M., Beaudoing, H.K., L’Ecuyer, T.S., Olson, W.S., Famiglietti, J.S., Houser, P.R., Adler, R., Bosilovich, M.G., Clayson, C.A., Chambers, D., Clark, E., Fetzer, E.J., Gao, X., Gu, G., Hilburn, K., Huffman, G.J., Lettenmaier, D.P., Liu, W.T., Robertson, F.R., & Schlosser, C.A. (2015). The Observed State of the Water Cycle in the Early Twenty-First Century. Journal of Climate, 28(21), 8289–8318. doi:10.1175/jcli-d-14-00555.1 Sadeghi, M., Gao, L., Ebtehaj, A., Wigneron, J.P., Crow, W.T., Reager, J.T., & Warrick, A.W. (2020). Retrieving global surface soil moisture from GRACE satellite gravity data. Journal of Hydrology, 584, 124717. doi.:10.1016/j.jhydrol.2020.124717 Sadeghi, M., Hatch, T., Huang, G., Bandara, U., Ghorbani, A., & Dogrul, E. C. (2022). Estimating soil water flux from single-depth soil moisture data. Journal of Hydrology, 610, 127999. doi:10.1016/j.jhydrol.2022.127999 Sadeghi, M., Tuller, M., Warrick, A.W., Babaeian, E., Parajuli, K., Gohardoust, M.R., & Jones, S.B. (2019). An analytical model for estimation of land surface net water flux from near-surface soil moisture observations. Journal of Hydrology, 570, 26–37. doi:10.1016/j.jhydrol.2018.12.038 Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., & Teuling, A.J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4), 125–161. doi:10.1016/j.earscirev.2010.02.004 Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J.F., Todorovik, D., & Domergue, J.M. (2010). Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. Journal of Hydrology, 387(3-4), 176–187. doi:10.1016/j.jhydrol.2010.04.006 Trenberth, K.E., Fasullo, J.T., & Kiehl, J. (2009). Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 90(3), 311–324. doi:10.1175/2008bams2634.1 Wanders, N., Karssenberg, D., Ad de Roo, S.M. de Jong, & Marc. (2014). The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrology and Earth System Sciences, 18(6), 2343–2357. doi:10.5194/hess-18-2343-2014 Warrick, A.W. (1975). Analytical solutions to the one-dimensional linearized moisture flow equation for arbitrary input. Soil Science, 120(2), 79–84. doi:10.1097/00010694-197508000-00001 Xie, P., & Arkin, P. A. (1997). Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bulletin of the American Meteorological Society, 78(11), 2539–2558. doi:10.1175/1520-0477(1997)078%3C2539:gpayma%3E2.0.co;2 Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., & Brocca, L. (2019). Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrology and Earth System Sciences, 23(2), 897–923. doi:10.5194/hess-23-897-2019 Zhang, F., Pu, Z., & Wang, C. (2019). Impacts of Soil Moisture on the Numerical Simulation of a Post-Landfall Storm. Journal of Meteorological Research, 33(2), 206–218. doi:10.1007/s13351-019-8002-8 | ||
آمار تعداد مشاهده مقاله: 785 تعداد دریافت فایل اصل مقاله: 53 |