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ABSTRACT  
In distribution systems, network reconfiguration and capacitor placement are commonly used to diminish power losses 
and keep voltage profiles within acceptable limits. In this paper, the Hybrid Shuffled Frog Leaping Algorithm 
(HSFLA) has been used to optimize the balanced and unbalanced radial distribution systems using a network 
reconfiguration and capacitor placement. High accuracy and fast convergence are the major advantages of the 
proposed approach regarding the result of solving the multi-objective reconfiguration and capacitor placement in a 
fuzzy framework. These objectives are minimizing the total network real power losses and buses voltage violation, and 
balancing the load in the feeders. Each objective is transferred into fuzzy domain using its membership function and 
fuzzified separately. Then, the overall fuzzy satisfaction function is formed and considered as a fitness function. The 
value of this function has to be maximized to gain the optimal solution. In the literature review, several reconfiguration 
and capacitor placement methods which had already been implemented separately have been investigated, but there 
are few studies which simultaneously apply these two methods. The proposed algorithm has been implemented in three 
IEEE test systems (two balanced and one unbalanced systems).The numerical results obtained by the simulation 
carried out in this study show that the HSFLA algorithm improves the performance much more than other meta-
heuristic algorithms. 
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1. INTRODUCTION 
 It is a common application to use capacitors in 
power systems in order to compensate for reactive 
power losses as well as to provide a good voltage 
profile by preventing occurrence of under- or over-
voltages. An issue of exploiting maximum 
advantage of compensation effect of capacitors is the 
size and location of these components. On the basis 
of switches used in power systems there are two 
types of these devices called normally closed 
switches (sectionalizing switches) and normally 
open switches (tie switches), which by applying 
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either, topology of system may be changed. The 
change happens when altering the status of these 
switches from open or closed, and by this way, 
feeder is reconfigured due to the change in topology 
and configuration of distribution systems. Regarding 
this, the need to optimally reconfigure network and 
find the optimum placement of capacitors have 
raised and separately been investigated in many 
papers. For solving the aforementioned problem 
associated with reconfiguration of feeder and finding 
the optimum placement for capacitors, many 
different methods have been used with various 
objective functions and optimization theories. 

Recently there have been so many algorithms 
developed for different goals including power loss 
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reduction and major utilization factors using 
reconfiguration of distribution systems, most of 
which based on artificial intelligence methods and 
heuristic techniques. Examples of studies focused on 
reconfiguration of network can be mentioned as 
following: in [1], a new meta-heuristics fireworks 
algorithm was proposed to optimize the radial 
distribution network while satisfying the operating 
constraints. Ref. [2] presents a step-by-step heuristic 
algorithm for the reconfiguration of radial electrical 
distribution systems, aiming at power loss 
minimization, based on a dynamic switches set 
approach, which is updated due to topological 
changes in the electrical network and to avoid the 
premature convergence of the algorithm in 
suboptimal solutions.   A method to improve the 
power quality and reliability of distribution systems 
by employing optimal network reconfiguration was 
presented in [3], which was applied independently to 
a system in a specified period to minimize the 
number of propagated voltage sags and other 
reliability indexes. The quantum-inspired binary 
firefly algorithm is used to find the optimal NR.   

In [4] a modified Tabu Search (MTS) algorithm is 
used to reconfigure distribution systems so that 
active power losses are globally minimized with 
turning on/off sectionalizing switches. TS algorithm 
is introduced with some modifications such as using 
a tabu list with variable size according to the system 
size. A salient feature of the MTS method is that it 
can quickly provide a global optimal or near-optimal 
solution to the network reconfiguration problem. A 
methodology for the reconfiguration of radial 
electrical distribution systems based on the bio-
inspired meta-heuristic artificial immune system to 
minimize energy losses was presented in [5], in 
which radiality and connectivity constraints were 
considered as well as different load levels for 
planning the system operation. In [6] an efficient 
hybrid big bang–big crunch optimization algorithm 
to solve the multi-objective reconfiguration of 
balanced and unbalanced distribution systems in a 
fuzzy framework was rpresented. The objectives 
considered were the minimization of total real power 
losses, the minimization of buses voltage deviation, 
and load balancing in the feeders. In [7] allocation of 
power losses to consumers connected to radial 

distribution networks before and after network 
reconfiguration in a deregulated environment was 
reported. The network reconfiguration algorithm is 
based on the fuzzy multi-objective approach and the 
max-min principle was adopted for the multi-
objective optimization in a fuzzy framework. 
Multiple objectives were considered for real-power 
loss reduction in which nodes voltage deviation is 
kept within a range, and an absolute value of branch 
currents is not allowed to exceed their rated 
capacities. An adapted ant colony optimization for 
the reconfiguration of radial distribution systems 
with minimizing real power loss was used in [8] that 
conventional ant colony optimization was adapted 
by the graph theory to always create feasible radial 
topologies during the whole evolutionary process 
which avoids tedious mesh check and hence reduces 
the computational burden. In [9] size and location of 
FACTs devices in a power system are calculated and 
a Dedicated Improved Particle Swarm Optimization 
(DIPSO) algorithm was developed for decreasing 
the overall costs of power generation and 
maximizing of profit. 
There are many articles that have presented wide 
researches on the capacitor placement problem for 
reduction of losses in power distribution systems. 
For instance, an approach based on fuzzy method 
was proposed in [10]. For determining the location, 
size and number of capacitor banks in distribution 
systems a mixed integer LP model was reported in 
[11]. For loss reduction in [12] a two stage method 
was used for formulation and the optimal operation 
status of the devices by applying a genetic 
algorithm. To solve the problem of capacitor 
placement, Ref. [13] was applied a single objective 
probabilistic optimal allocation, and in [14] for 
optimal placement of capacitors in order to reduce 
harmonic distortion, a honey bee foraging approach 
was used. In [15] a hybrid optimization algorithm 
for the optimal placement of shunt capacitor banks 
in radial distribution networks was used in the 
presence of different voltage-dependent load 
models, which the algorithm was based on the 
combination of genetic algorithm and binary particle 
swarm optimization algorithm. Optimal capacitor 
allocation and sizing using big bang big crunch 
optimization algorithm is represented in [16]. 
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Papers, which work with both capacitor 
placement and network reconfiguration at the same 
time, are reviewed now. Zhang et al. in [17] treated 
capacitor placement and reconfiguration by using 
Improved Adaptive Genetic Algorithm (IAGA) and 
a simplified branch exchange algorithm, 
respectively. Farahani et al. in [18] solved the 
reconfiguration problem by using simple branch 
exchange method and the outcome was that loops 
selection sequence is an affecting factor which has 
effects on network loss as well as optimal 
configuration and also proposed a new algorithm for 
combining improved method of reconfiguration and 
capacitor placement, in which for optimizing the 
location and size of capacitors and sequence of loops 
selection, discrete genetic algorithm (GA) was used. 
Chung-Fu Chang in [19] worked on ant colony 
search algorithm and used it as a solver for the 
problems of feeder reconfiguration optimization and 
capacitor placement simultaneo-usly. Montoya et al. 
in [20] by using a minimum spanning tree algorithm 
determined the minimum losses optimum 
configuration in reconfiguration problem and 
utilized GA to obtain the greatest savings through 
the problem of optimal capacitor problem. 
Guimara˜es et al. in [21] used a modified dedicated 
approach based on GA. Development and 
implementation of this algorithm was successful, as 
well, it has low computations and was capable of 
obtaining appropriate configurations. In [22] based 
on a new Improved Binary PSO (IBPSO) algorithm, 
some suggestions for planning priority associated 
with problems of capacitor placement and 
reconfiguration in distribution systems are being 
investigated. This suggested method applies a new 
structure in order to obtain an optimization for the 
aforementioned problem. 

The proposed method is to use an efficient Hybrid 
Shuffled Frog Leaping Algorithm (SFLA) [23] 
associated with fuzzy objective function to get a 
proper solution for the problems of feeder 
reconfiguration and capacitor placements at the 
same time. The objective functions which have been 
considered in this paper are the minimization of total 
real power losses and bus’s voltage violation as well 
as load balancing in the feeders. One of the 
commonly used methods to increase loading 

capability of system, dwindling real power losses 
and reducing voltage drops is load balancing. The 
main objectives considered in this paper are to 
obtain maximum reduction of loss, present an in-
limits-maintained voltage profile, and have the 
current in each branch maintained within the 
capacity limits of the branch. The first step, is to use 
trapezoidal fuzzy membership function in order to 
transfer the objectives to fuzzy domain and fuzzify 
them separately. The second step is to develop the 
overall fuzzy satisfaction function. We will see in the 
next step that this function is considered as an 
overall fitness function and the value of it will 
increase until it reaches to maximum value. The test 
system for the suggested method is a balanced 33 
and 94-bus and an unbalanced 25-bus distribution 
system. In comparison with PSO and IPSO and 
other various algorithms, the suggested HSFLA has 
a better efficiency which is verified by numerical 
results. 
 

2. FUZZY MULTI-OBJECTIVE 
FORMULATION 

Since the objective functions have different 
dimensions, for easier comparison a fuzzy multi-
objective approach is used. In fuzzy domain, a 
membership function is defined for each objective 
which represents the degree of fuzzy satisfaction of 
the objective. The membership value of each 
objective is a real number between 0 and 1 and in 
this section is determined by using the trapezoidal 
fuzzy membership function.  In this paper, power 
losses minimization, minimizing the buses voltage 
deviation and load balancing in the feeders are 
considered as the objectives and fuzzified as 
explained below.   
  
2.1 Membership function for the real power loss 
( iPλ ) 

Mathematically, the real power loss in the network 
can be formulated as follows: 

2 2

2
1

brN
i i

loss i
i m

P QP R
U=

+
= ∑  (1) 

The voltage magnitude at each bus must remain 
within its permissible intervals. On the other hand, 
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the current of each branch must satisfy the branch 
current limitations. Therefore: 
 min m maxU U U≤ ≤  (2) 

,i i maxI I≤  (3) 

Where Ri, Pi and Qi are, the  branch resistance, 
real and reactive power flows through branch i 
respectively, and Um is the voltage at bus m and Nbr 
is the total number of branches in the system. Umin 
and Umax are minimum and maximum allowable 
voltages, respectively, which are considered as 
Umin = 0.95 and Umax = 1.05. The following index 
`for the power loss minimization is defined as 
follows [6]: 

0

 lossi
i

loss

PXP
P

=
 

(4) 

where, Ploss0 represents the initial real power loss 
before reconfiguration and capacitor placement of 
the network and Plossi represents the real power loss 
after reconfiguration and capacitor placement in ith 
radial system.  

The degree of fuzzy satisfaction of power loss 
objective function can be determined using the 
membership function as defined in fuzzy domain. 
The membership function is expressed as follows: 

1                 

      

0                    

i min

max i
i min i max

max min

i max
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λ

⎧ <
⎪
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 (5) 

where, XPmin and XPmax are the lower and upper 
limits of XPi index, respectively. To determine the 
XPmin and XPmax, the best and the worst system 
configuration for real power losses is considered. 
Plossi for the best system configuration is minimum 
value of the power loss and for the worst system 
configuration is assumed to be equal with the power 
loss of the initial configuration. 
 
2.2 Membership function for maximum bus 
voltage violation ( iUλ ) 

For the purpose of minimizing the bus voltage 
deviation, the index of XUi is defined as follows: 

( )1   1i min maxXU max U and U= − −  (6) 

where, Umin and Umax are the minimum and maxi-
mum values of bus voltage respectively. 
Membership function of maximum bus voltage 
deviation index is formulated as follows[6]:  

min
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min max

max min
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(7) 

where, XUmin and XUmax are the lower and upper 
limits of XUi index, respectively. To determine the 
XUmin and XUmax, the best and the worst system 
configuration is considered for minimum and maxi-
mum bus voltage deviation, respectively. 
 
2.3 Membership function for load balancing 
index (LBI) ( iIλ ) 

For the purpose of load balancing, first an appro-
priate parameter is defined, indicating what portion 
of the branches has been loaded. This portion is 
defined as the line usage index for the ith branch, 
calculated as follows [24]: 

  i
max
i

ILineUsage Index
I

=  (8) 

where, max
iI  is the maximum current capacity of the 

ith branch of the system. For all the branches of the 
system  index is calculated as follows: 

31 2

1 2 3

  .     
br

N
max max max max

N

I II IY
I I I I

⎡ ⎤
= ……⎢ ⎥
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 (9) 

( )LBI Var Y=  (10) 

where, Var represents the variance operation. 
However, the smaller value of the LBI index 
indicates that the load balancing has been conducted 
more efficiently. In the next stage, the index of XBi 
for load balancing is defined as: 

0

i
i

LBIXB
LBI

=  (11) 

where, LBI0 is the load balancing before network 
reconfiguration and capacitor placement, calculated 
in initial power flow for each case study, and LBIi is 
the load balancing of the ith radial system after 
reconfiguration and capacitor placement. 
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Membership function of feeder load balancing index 
is formulated as follows: 

min

max
min max

max min

max

1               XB
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(12) 

where, XBmin and XBmax are the lower and upper 
limits of XBi, respectively. To determine the XBmin 
and XBmax, the best and the worst system 
configuration is considered for feeder load balan-
cing. 

In the proposed algorithm, the worst system 
configuration is considered to be the initial 
configuration of system before reconfiguration and 
capacitor placement, and the best system 
configuration after reconfiguration and capacitor 
placement is obtained by optimizing each objective 
separately. 
 
2.4 Degree of overall fuzzy satisfaction ( iOλ ) 

The idea of multi objective function is proposed for 
the following purposes: 
• Finding the best and most compatible system 

configuration satisfying every objectives. 
• Satisfying operational limits such as voltage and 

current constraints and also preventing load 
islanding. 

In this paper, a new operator named “max-geometric 
mean” is utilized to determine the degree of overall 
fuzzy satisfaction in the proposed method. This 
operator is expressed as follows [25]: 

( )
1
3

i i i iO P U Iλ λ λ λ= × ×  (13) 

where, λOi in the HSFLA is considered as the fitness 
function, maximized during the optimization process 
to obtain the best compatible configuration. This 
operator has several advantages. For instance, if any 
membership function of each objective reaches the 
value of zero, λOi is assigned a value of zero. 
Furthermore, this function provides correct 
information as about how to make this algorithm 
achieving an ideal state, namely a value of 1. 

3. SHUFFLED FROG LEAPING 
ALGORITHM 

3.1. Original algorithm 
The first thing to do in SFLA is to randomly create 
initial population of F frogs. Then it is necessary to 

sort the population of F frogs in increasing 
performance level and separate them into m 
memeplexes each of which containing n frogs (i.e. 
F=m×n); in this sorting the first frog goes to the first 
memeplex, the second frog goes to the second 
memeplex, the mth frog goes to the mth memeplex, 
and the (m+1)th frog goes back to the first [8]. After 
the previous is done it is time to evaluate each 
memeplex. In this step, the best frog is a sample 
from which each frog in the memeplex by learning 
from it, leaps toward the location which is the 
optimum. The new position, the worst frog has in 
the memeplex, is calculated as represented below: 

1_ _
( _ _ )

k k

k k

x worst x worst
r x sbest x worst

+ = +

−
 (14) 

where, x_worst is the position of the worst frog in 
the memeplex, x_sbest is the position of the best frog 
in the memeplex, r is a random number between 0 
and 1, and k is the iteration number of the memeplex 
[26]. 

In case that, this process introduces a better 
answer (frog), the older frog is being replaced. 
Otherwise, x_sbest is replaced by x_gbest in Eq. 
(14), and the way we calculate the new position is as 
below: 

1_ _
( _ _ )

k k

k k

x worst x worst
r x gbest x worst

+ = +

−
 (15) 

In a case that, there is no improvement observed, 
the old frog is replaced by random frog [27]. 
 
3.2. Proposed SFLA based hybrid algorithm 
The basis of this new method is identification of 
drawbacks of the basic SFLA, which was initially 
used on various functions and to mention a critical 
ones of them can be explained in this way that 
because some memeplexes have been wasted in 
local minima, the effective frogs eliminated from the 
solving procedure. To prevent this as much as 
possible, enhancement of the guiding particle in 
each memeplex is necessary; in the SFLA this 
guiding article in each memeplex is x_sbest. So in 
the suggested method the movement of the frog 
which has the best position is determined through 
the search space toward the position which the 
global best frog has, is given by Eq. (16) 
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1_ _
( _ _ )

k k

k k

x best x best
r x gbest x best

+ =

+ −
 (16) 

 
4. IMPLEMENTATION OF THE HSFLA 

In the proposed algorithm, the number of switch’s 
which should be opened to maintain a feasible radial 
configuration and the capacitors that should be 
placed in candidate buses are considered as control 
variables. So control variables are integer numbers, 
and the number of those is the sum of the number of 
tie switches and the number of buses that candidate 
for capacitor placement, is expressed as follows: 

cv L busN N N= +  (17) 
where, Ncv is the number of control variables, NL is 
the number of tie switches and Nbus is the number of 
network buses that candidate for capacitor 
placement. The number of tie switches is obtained as 
follows: 

1L br busN N N= − +  (18) 
where, Nbr is the total number of network branches. 

For example, in 33-bus system shown in Fig. 2 
the number of tie switches is 5 and the number of 
buses for capacitor placement is 32 (the bus zero is 
slack bus and is ignored for capacitor placement). So 
the total number of control variables is 37. Each 
candidate solution or individual has 37 sections. 

In the first step, loop and capacitor vectors should 
be defined. In the proposed algorithm each loop 
vector consists of switches that form a loop in 
network. In other words, the number of loop vectors 
is equal to the number of fundamental loops or tie 
switches. In 33-bus system the number of funda-
mental loop is five, and so the number of loop 
vectors is five too. 
Loop vectors1 = [ 2 3 4 5 6 7 33 20 18 19 s s s s s s s s s s ] 

Loop vectors2 = [ 8 9 10 11 35 21 33 s s s s s s s ] 

Loop vectors3 = [ 9 10 11 12 13 14 34s s s s s s s ] 

Loop vectors4 = [ 22 23 24 37 28 27 26 25 5 4 3s s s s s s s s s s s ] 

Loop vectors5 = [ 

25 26 27 28 29 30 31 32 36 17 16 15 34 8 7 6 s s s s s s s s s s s s s s s s ] 
To define the capacitor vectors for one bus, six 

types of capacitors 300, 600, 900, 1200, 1500 and 
1800 kVar are used. In this paper is assumed that for 

each bus of system a capacitor is selected and placed 
from capacitor vectors as follows: 
Capacitor vector = [0300600900120015001800] 

This capacitor vector is repeated for all buses that 
should be candidate for capacitor placement.  

For the initialization of each individual, one 
switch is randomly chosen from each loop vector to 
be opened and one capacitor is also chosen from 
each capacitor vector to be allocated. The HSFLA is 
applied to the problem of the multi-objective 
network reconfiguration and capacitor placement as 
follows: 
Step 1: Defining the input data. In this step, the input 
data are defined including the initial network 
configuration, line impedance, the total number of 
fundamental loops and capacitor vectors for each 
bus, the number of switches in each loop, the 
number of population (P = n×m), the number of 
memeplexes (m), number of frogs in each 
memeplex (n), and the number of iterations (G). 
Step 2: Generating the initial population. For the 
initialization of each individual (frog), one switch 
from each fundamental loop or loop vector to be 
opened and one capacitor from capacitor vector to 
be placed is randomly chosen. 
Step 3: Checking the radiality of the network and all 
loads being in service for each individual. To check 
whether radiality is maintained as well as to make 
sure that all loads are in serviceso as to prevent load 
islanding, the graph theory can be used. If in a tree 
the vertices those degree is equal to 1 along all edges 
connected to them are removed and this procedure is 
repeated, finally, all vertices will be deleted. If the 
network graph is not the tree, it means that the 
network is not radial or that at least one load has 
been isolated. In this state, the value of fitness 
function is considered to be zero. 
Step 4: Performing the load flow. By allocating 
capacitors that are determined by each individual in 
candidate buses a direct approach proposed in [28] is 
used for load flow solution. The value of the fitness 
function (λOi) is calculated using the results of 
distribution load flow for each radial structure (for 
each individual or frog). 
Step 5: Sort the population P in descending order of 
their fitness and then divide P into m memeplexes; 
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for each memeplex, determine the best and worst 
frogs; 
Step 6: Improve the worst frog position using Eqs. 
(14) and (15). 
Step 7: Improve the best frog in each memeplex 
toward the global best using Eq. (16)  
Step 8: Combine the evolved memeplexes;   
Step 9: Repeating steps 3-8 until a termination 
criterion is satisfied. In this paper, the termination 
criterion is considered to be the number of iterations. 
Furthermore, if the maximal iteration number is 
satisfied, the algorithm is terminated. 
Fig. 1. shows the flowchart of the proposed 
algorithm. 
 

5. SIMULATION RESULTS 
To demonstrate the performance of the proposed 
algorithm, three case study systems consisting of 
two balanced distribution systems (33-bus system 
and 94-bus system) and one unbalanced distribution 
systems (25-bus system) are investigated and 
numerical results are compared with another 
algorithm such as PSO and IPSO. These methods 
have been implemented using MATLAB software. 

5.1. Case study 1 
 Baran and Wu [29] distribution test system is used 
as first example with 3 feeders which is shown in 
Fig. 2. The system consists 32 sectionalizing 
switches (normally closed switches), and 5 tie 
switches (normally open switches) and 37 branches. 
The total real and reactive power loads on the 
system are 3715 kW and 2300 kVra, respectively. 
The initial power loss is 202.677 kW and minimum 
bus voltage is 0.913 p.u. To optimize the multi 
objective fitness function, in this simulation, number 
of frogs in each memeplex is 5 and number of 
memeplexes is 6, so the number of population is set 
P=m×n=30. Maximum iteration to achieve the 
convergence was set G=50. In the first step, the 
objective functions, including loss reduction, 
minimization of voltage violation and load 
balancing, are separately optimized. The results for 
these three objectives are respectively shown in 
Tables. 1, 2 and 3. Results obtained by optimizing 
the multi-objective fitness function for case study 1 
are shown in Table. 4. The results indicated for all 

three objectives and also multi objectives are the best 
results obtained after 50 instances of running the 
proposed method and other algorithms. 
 

 
Fig. 1. Flowchart of the proposed HSFLA 

 
As demonstrated in Table.  1, it is observed that 

the loss reduction ratio obtained by the HSFLA is 
more than the PSO, IPSO, IBPSO and ACO 
algorithms. Thus, the proposed method has a higher 
performance compared to the other methods. It can 
be seen from Table.  2 that when the only 
optimization objective is improving the voltage 
profile, the proposed algorithm by minimum voltage 
drop of 0.98441544 is not as appropriate as PSO and 
IPSO algorithms. On the other hand the total used 
capacitance is equal by the ones used in IPSO 
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method but their arrangement became more 
distributed.  
 

 Fig. 2. Baran and Wu distribution test system (33-bus) 
 
 By considering Table.  3 which shows 
simulations for a load balancing of a single objective 
case, it is shown that LBI index is 0.039968 for 
proposed algorithm does not provide the best result, 
but is close to PSO and IPSO results. But the 
weakness of this method is its capacitance (3300 
KVAR) versus 2700 KVAR of IPSO algorithm. 
Table.  4 shows result of multi-objective 
simulations, it can be seen that for all three 
objectives, the proposed algorithm has better results 
than PSO algorithm and very close to IPSO results, 
but it used less capacitors than IPSO. Figures 3 and 
4 show the voltage and branches current profiles 
before and after optimal reconfiguration and 
capacitor placement, respectively. As shown in these 
figures, the voltage and current branches profile is 
obviously improved by using the HSFLA algorithm. 

Fig. 5 indicates the convergence characteristic of the 
HSFLA for the multi-objective function for case 
study 1.It is shown that after 19 iterations HSLFA 
algorithm reaches to full convergence and fitness 
function value at approximately 0.83 remains 
constant. 

5.2. Case study 2  
The second example is a practical distribution 
network of the Taiwan Power Company [31]. It is a 
three-phase, 11.4-kV system which consists of 94-
bus, 96 branches, 11 feeders, 83 sectionalizing 
switches (normally close switches), and 13 tie 
switches (normally open switches).Fig. 6 shows a 
diagram of this system which has a total load of 
28,350 kW and 20,700 kVAr. Details of the data of 
this example can be found in [31]. The initial power 
loss is 531.99 kW and minimum bus voltage is 
0.9285 p.u. In this simulation to optimize the multi 
objective fitness function, number of each cycle 
frogs and number of memeplexes are considered 
as 5 and 5, respectively. So, the number of 
population was P = m×n  = 25. By considering the 
statistical nature of this algorithm, the results 
indicated for all the three objectives and also the 
multi objective function are the best results obtained 
after 50 times running the proposed method (G=50). 
The optimal solutions for minimization of total real 
power losses, the minimization of buses voltage 
violation, and load balancing and optimal solution 
for the multi-objective function are illustrated in 
Table.  5 and 6. The optimal solution for the 
minimization of total real power losses using the 
HSFLA and SA, GA and ACSA is shown in Table.  
7. 

 

Table 1. Results obtained by optimizing the real power losses for case study 1 
Capacitor located at 

(buses) 
Open 

switches 
 

LBI 
Minimum voltage 
(p.u.) at bus#17 

Loss reduction 
(%) 

Power losses 
(kW) Methods 

--------------------- 33-34-35-36-37 0.1575671 0.9130905  ------------------ 202.677 Initial state 
300(2-4-10-11-18-

24-28-29-30) 7-11-14-37-32 0.0448181 0.95858645 54.32 92.5768 HSFLA 

300(9-10-31) 
600(6-29) 7-10-14-37-36 0.046994 0.9635100 52.93 95.38 PSO 

300(5-13-32) 
1200(28) 11-28-33-34-36 0.0400872 0.965607 51.23 98.834 IPSO 

300 (11-24-32) 
600 (6-29)7-9-14-32-37 0.0433806 0.9585 54.08 93.061 IBPSO[22] 

450(28) 
600 (20-29) 7-9-14-32-37 0.0469611 0.9656 52.73 95.79 ACO[30] 

 



M. Sedighizadeh, M. M. Mahmoodi: Optimal Reconfiguration and Capacitor Allocation in Radial  

64 
 

Table 2. Results obtained by optimizing the voltage violation of the buses for case study 1 
 

Capacitor located 
at  (buses) 

Open 
switches LBI 

Minimum 
voltage(p.u.) 

at bus#17 

Loss 
reduction 

(%) 

Power losses 
(kW) Methods 

 ------------------------ 33-34-35-36-37 0.1575671 0.9130905  ------------------ 202.677 Initial 
state 

300 (1-2-12-16-17-
18-19) 

600(13-24) 
900 (24) 
1200 (30) 

6-35-13-37-17 0.0946267 0.98441544 7.55 187.3621 HSFLA 

300(9-14-19-25) 
600 (28) 
900 (31) 

7-11-34-28-36 0.0432883 0.96942101 49.105 103.1509 PSO 

300 (1-9-14 -15-
20-22-32) 
1200 (23) 
1500 (28) 
600 (29) 

7-9-34-37-36 0.10167143 0.98617336 9.67 183.073 IPSO 

 
Table 3. Results obtained by optimizing the load balancing for case study 1 

Capacitor 
located at 
(buses) 

Open 
switches LBI Minimum voltage 

(p.u.) at bus#17 
Loss reduction 

(%) 
Power losses 

(kW) Methods 

 --------------
------------ 33-34-35-36-37 0.1575671 

 0.9130905  ------------------ 202.677 Initial 
state 

300 (5-19-
23) 

600 (16-
18) 

1200 (31) 

 
7-35-34-37-32 

 
0.039968 

 
0.96323607 

 
37.10 

 
127.472 

 

 
HSFLA 

300 (7) 
600 (29-

31) 
900 (32) 

 
7-35-34-37-32 

 
0.0282468 

 
0.9703912 

 
26.22 

 
149.534 

 
PSO 

300 (25-
26-27) 

900 (16-
32) 

 
33-11-34-28-36 

 
0.030369 

 
0.9601967 

 
33.12 

 

 
135.541 

 
IPSO 

 
Table 4. Results obtained by optimizing the multi-objective fitness function for case study 1 

Capacitor 
located at     
(buses) 

Open 
switches LBI Minimum voltage 

(p.u.) at bus#17 
Loss reduction 

(%) 
Power losses 

(kW) Methods 

 ------------------ 33-34-35-36-37 0.1575671 0.9130905  ------------------ 202.677 Initial 
state 

300 (10-12-
26) 

600(3) 
900 (29) 

7-10-14-37-32 0.0464747 0.95418297 51.45 98.44 HSFLA 

300 (16-25-
30-32) 

600(1-5) 
7-11-34-37-36 0.046695 0.9616666 50.63 100.05 PSO 

300 (11-17-
25) 

600(28-32) 
900 (2) 

7-10-14-37-36 0.04698 0.9706953 50.11 101.11 IPSO 
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 Fig. 3. Voltage profiles before and after optimal reconfiguration 
and capacitor placement in 33-bus system 

 
Fig. 4. Branches current profiles before and after optimal 
reconfiguration and capacitor placement in 33-bus system 

 Fig. 5. Convergence characteristic of HSFLA for the multi-
objective function for case study 1 

As can be seen from Table.  6,the proposed 
method have better performance compared to the 
SA algorithm, but GA and ACSA have better 
perform-ance compared to the HSFLA algorithm. 
Figures 7 and 8 show the voltage and branches 
current profiles before and after optimal 
reconfiguration and capac-itor placement and 
convergence characteristic of the HSFLA for Case 
study 2, respectively. As shown in these figures, the 
voltage and current branches profile are obviously 
improved by using the HSFLA algorithm. 

 
5.3. Case study 3 

The third case study is a 25-bus unbalanced 
distribution 4.16-kV system consisting of 24 sectio-
nalizing switches (normally close switches) and 3 tie  
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 Fig. 6. 94-bus system 
 

 
Fig. 7. Voltage profiles before and after optimal reconfiguration 

and capacitor placement in 94-bus system 

 
Fig. 8. Branches current profiles before and after optimal 
reconfiguration and capacitor placement in 94-bus system 

switches (normally open switches). Details for the 
line and load data of the system can be found in [32]. 
This system is shown in Fig. 9. The initial power 
loss is 150.13 kW and minimum bus voltage in 
phase 
a, b and c is 0.9284, 0.9284 and 0.9366 p.u 
respectively. In this simulation to optimize the multi 
objective fitness function, number of each cycle 
frogs and number of memeplexes are considered as 
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Table 6. Results obtained for optimal size and location of capacitors by the HSFLA algorithm for case study 2 

Capacitor (KVAr) Capacitor 
(KVAr) 

Capacitor 
(KVAr) Capacitor (KVAr) Bus 

0 0 600 0 0 0 0 0 43 Slack(0) 
300 300 600 600 0 300 300 300 44 1 
300 900 0 0 300 300 600 0 45 2 
0 0 0 0 900 0 0 0 46 3 

300 300 600 300 900 600 0 300 47 4 
300 300 300 900 300 0 300 300 48 5 
300 300 0 300 300 1200 300 600 49 6 
0 0 300 300 300 600 0 0 50 7 
0 600 300 900 300 300 300 300 51 8 

300 300 0 600 0 300 600 300 52 9 
600 0 300 900 0 300 300 300 53 10 
0 0 900 900 300 1800 300 0 54 11 

300 600 300 300 0 900 300 300 55 12 
0 900 900 1500 0 600 0 600 56 13 

300 0 0 1500 600 300 0 900 57 14 
0 300 0 600 0 300 900 300 58 15 

600 600 300 300 0 300 0 300 59 16 
0 300 0 0 300 1500 0 300 60 17 

300 0 600 0 0 300 0 600 61 18 
300 300 600 0 0 0 0 300 62 19 
0 300 600 600 600 600 0 900 63 20 

600 0 300 300 1200 300 300 600 64 21 
1200 900 1500 300 300 600 0 0 65 22 
300 300 600 300 300 0 300 0 66 23 
600 0 300 1500 300 300 0 0 67 24 
300 0 300 300 900 300 0 0 68 25 
600 300 1200 300 300 600 600 300 69 26 
600 300 300 600 900 300 300 600 70 27 
300 0 300 900 300 1800 900 600 71 28 
900 300 1200 1200 600 600 300 300 72 29 
0 0 900 1800 900 600 0 600 73 30 
0 900 300 300 300 300 300 900 74 31 

600 900 300 900 300 600 600 0 75 32 
300 300 600 1500 600 0 300 600 76 33 
300 600 600 300 300 600 0 600 77 34 
300 0 0 0 600 600 1200 0 78 35 
600 300 600 0 300 0 300 0 79 36 
300 0 600 300 1200 0 300 0 80 37 
900 300 0 300 900 0 300 300 81 38 
600 0 300 300 300 300 300 0 82 39 
0 300 1200 1500 0 300 0 0 83 40 
 300  0  0  300  41 
 600  300  300  0  42 

 
Table 7. Results obtained by optimizing real power losses with HSFLA algorithm along in comparison with SA, GA and ACO 

Item Power losses (KW) Minimum voltage (p.u) 
at bus#72 LBI 

Original configuration 531.99 0.9285191 0.0329944 

HSFLA 

Best 296.47 0.9850667 0.0180701 
Worst 303.7 0.98378407 0.01724226 

Average 300.08 0.9844253 0.01765618 
Average Loss reduction 43.6 ------------------ --------------- 

SA [19] 

Best 309.12 ---------------------- ------------ 
Worst 315.86 ---------------------- ------------ 

Average 312.30 ---------------------- ------------ 
Average Loss reduction 41.3 ---------------------- ------------ 

GA [19] 
Best 295.39 ---------------------- ------------ 

Worst 299.13 ---------------------- ------------ 
Average 297.75 ---------------------- ------------ 
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Average Loss reduction 44.03 ---------------------- ------------ 

ACO [19] 

Best 295.12 --------------------- ------------- 
Worst 299.46 --------------------- ------------- 

Average 296.89 --------------------- ------------- 
Average Loss reduction 44.19 ---------------------- ------------- 

 
Table 8. Results obtained by the HSFLA algorithm for case study 3 

Item Initial state Only optimizing  real 
power losses 

Only optimizing 
voltage violation 

Only optimizing load 
balancing 

fitness 
function 

Power losses 
(kW) 

150.13 
 91.28 146.377 149.973 94.179 

Loss reduction (%) -------------------- 39.2 2.5 0.104 37.29 
Minimum voltage 

Phase a 
(p.u.) at bus #12 

0.9284107 0.9640415 0.9877222 0.9740478 0.964586 

Minimum voltage 
Phase b 

(p.u.)at bus #12 
0.9283703 0.9626266 0.985857 0.9694966 0.963076 

Minimum voltage 
Phase c 

(p.u.)at bus #12 
0.9365706 0.9695176 0.9932599 0.9804585 0.9725021

LBI 0.1009584 0.0454020 0.0735533 0.0328862 0.0455454
Open 

switches 25-26-27 22- 17-15 20-17-15 5-11-13 25-17-15 

Capacitor (KVAr) 
(Bus) ------------- 300(3-4-7) 300 (5-8-11-12-14) 300 (10-16-17-19) 300 (2-3-

9) 
 

6. CONCLUSIONS 
An HSFLA optimization algorithm as an efficient 
algorithm for multi-objective reconfiguration and 
capacitor placement of balanced and unbalanced 
distribution systems in a fuzzy framework has been 
introduced in this paper. An important property of 
the proposed approach is introduced for solving the 
problem of multi-objective reconfiguration and 
capacitor placement problem in the fuzzy 
framework. The minimization of total network real 
power losses and buses voltage violation as well as 
balancing the load in the feeders, are the major 
objectives of this approach. To obtain the optimal 
solution for the multi-objective fitness function; first, 
each objective is transferred into the fuzzy domain 
using the membership function and then the 
resulting overall fuzzy satisfaction function is 
considered as a fitness function, which is maximized 
during the optimization process. The proposed 
method has been successfully tested in three case 
studies (consisting of two balanced and one 
unbalanced system). In case study 1, the HSFLA has 
achieved better performance compared to other 
algorithms. In case study 2, the HSFLA has obtained 
a better performance compared to the SA, and 
shown a performance almost similar to that of the 
GA and ACO. As it can be seen from simulation 

results, the proposed algorithm is an effective 
method for finding the optimal solution. It is also a 
powerful method for solving optimization problems 
in the fuzzy framework for balanced and unbalanced 
distribution networks. 
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