
Journal of Finsler Geometry and its Applications

Vol. 5, No. 1 (2024), pp 52-69

https://doi.org/10.22098/jfga.2024.14740.1119

On Quintic (α, β)-Metrics in Finsler Geometry

Jila Majidia∗ and Ali Haji-Badalib

aDepartment of Mathematics, Basic Sciences Faculty, University of Bonab,

Bonab, Iran.
bDepartment of Mathematics, Basic Sciences Faculty, University of Bonab,

Bonab, Iran.

E-mail: majidi.majidi.2020@gmail.com

E-mail: haji.badali@ubonab.ac.ir

Abstract. In this paper, we study the class of quintic (α, β)-metrics. We

show that every weakly Landsberg 5-th root (α, β)-metrics has vanishing S-

curvature. Using it, we prove that a quintic (α, β)-metric is a weakly Lands-

berg metric if and only if it is a Berwald metric. Then, we show that a quintic

(α, β)-metric satisfies Ξ = 0 if and only if S = 0.
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1. Introduction

Let F = F (x, y) be a Finsler metric on tangent bundle TM defined as

F = m
√
A, where A := ai1...im(x)yi1yi2 ...yim and ai1...im are symmetric in all

its indices. Then, F is called an m-th root Finsler metric on the manifold M .

The class of m-th root Finsler metrics has been developed by Shimada in [10],

and applied to biology as an ecological metric by Antonelli in [1]. The fifth

root metrics F = 5
√
aijklp(x)yiyjykylyp are called the quintic metrics.

In order to understand the structure of quintic root metrics, one can study

the non-Riemannian curvatures of these metrics [11][12][13]. Among these

quantities, the mean Landsberg curvature J and the S-curvature S have im-

portant and deep relation with each other. Let us give a brief explanation of
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their relations. The distortion τ = τ(x, y) is a non-Riemannian quantity that

is determined by the Busemann-Hausdorff volume form. The vertical and hor-

izontal derivations of distortion τ on each tangent space give rise to the mean

Cartan torsion I := τysdx
s and S-curvature S = τ|ty

t. The horizontal derivative

of I along geodesics is called the mean Landsberg curvature J := I|sy
s. Finsler

metrics with J = 0 are called weakly Landsberg metrics. The mean Landsberg

curvature Jy is the rate of change of Iy along geodesics for any y ∈ TeM0.

It has been shown that on a weakly Landsberg manifold, the volume function

V = V ol(x) is a constant [3]. The constancy of the volume function is re-

quired to establish a Gauss-Bonnet theorem for Finsler manifolds [2]. In [7],

Shen showed that if J = 0, then all the slit tangent spaces TeM0 are mini-

mal in TM0. Some rigidity problems also lead to weakly Landsberg manifolds.

For example, for a closed Finsler manifold with non-positive flag curvature, if

the S-curvature is a constant, then it is weakly Landsbergian [8]. We remark

that, S-curvature is constructed by Shen for the given comparison theorems on

Finsler manifolds. Apparently, the S-curvature and mean Landsberg curvature

deserve further investigation.

There is a relation between an m-th root metric and an (α, β)-metric. In

[4], Matsumoto-Numata studied the class of cubic (α, β)-metrics and found a

complete form of these Finsler metrics on a manifold of dimension n ≥ 3. In-

spired by their results, we characterize 5-th root (α, β)-metrics and investigate

the explicit form of these metrics (Lemma 3.1). Then, we show that every

weakly Landsberg 5-th root (α, β)-metric has vanishing S-curvature (Theorem

3.3). Using it, we prove that weakly Landsberg 5-th root (α, β)-metrics are

Berwaldian.

Theorem 1.1. Let F = 5
√
c1α4β + c2α2β3 + c3β5 be a 5-th root (α, β)-metric

on a manifold M . Then, F is a weakly Landsberg metric if and only if it is a

Berwald metric.

A Finsler metric F on a manifold M is called relatively isotropic mean

Landsberg metric if J = cF I, where c = c(x) is a scalar function on M . From

Theorem 1.1, we obtain the following.

Corollary 1.2. Every 5-th root (α, β)-metric has relatively isotropic mean

Landsberg curvature if and only if it is a Berwald metric.

The Ξ-curvature Ξ = Ξjdx
j on the tangent bundle TM is defined by Ξj :=

S.j|my
m − S|j , where “.” and “|” denote the vertical and horizontal covariant

derivatives with respect to the Berwald connection of F , respectively [9]. It is

obvious that S = 0 implies Ξ = 0. We show that for quintic (α, β)-metrics, the

converse is true.

Theorem 1.3. Let F = 5
√
c1α4β + c2α2β3 + c3β5 be a 5-th root (α, β)-metric

on a manifold M . Then Ξ = 0 if and only if S = 0.
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2. Preliminaries

Let M be a n-dimensional C∞ manifold and TM =
⋃
e∈M TeM be the

tangent bundle. Let (M,F ) be a Finsler manifold. The following quadratic

form gy on TeM is called the fundamental tensor

gy(v, u) =
1

2

∂2

∂t∂s

[
F 2(y + tv + su)

]
|t=s=0, u, v ∈ TeM.

Let e ∈M and F := F |TeM . To measure the non-Euclidean feature of Fe, one

can define Cy : TeM × TeM × TeM −→ R by

Cy(w, v, u) :=
1

2

d

ds
[gy+su(w, v)]s=0 =

1

4

∂3

∂r∂t∂s
[F 2(y + rw + tv + su)]r=t=s=0,

where w, v, u ∈ TeM . By definition, Cy is a symmetric trilinear form on TeM .

The family C := {Cy}y∈TM0
is called the Cartan torsion.

For y ∈ TM0, define Iy : TeM −→ R by

Iy(w) =

n∑
i=1

gmt(y)Cy(w, ∂m, ∂t),

where gmt = (gmt)
−1. The family I := {Iy}y∈TeM0

is called the mean Cartan

torsion.

For a Finsler manifold (M,F ) of dimension n, F induced spray G on

TM0 := TM − {0}, in local coordinates in TM0,it is given by

G = yt
∂

∂xt
− 2Gt

∂

∂yt
,

where Gi = Gi(x, y) are local functions on TM0 expressed by

Gi :=
1

4
gis
{ ∂2[F 2]

∂xt∂ys
yt − ∂[F 2]

∂xs

}
, y ∈ TeM.

G is called the associated spray to (M,F ).

For a Finsler manifold (M,F ), the Busemann-Hausdorf volume form

dVF = σF (x)dx1...dxn is defined as follows:

σF (x) :=
V ol(Bn(1))

V ol
{

(yt) ∈ Rn|F (yt ∂
∂xt |x) < 1

} .
Then, for y = ym∂/∂xm|e ∈ TeM , the S-curvature is defined by

S(y) :=
∂Gm

∂ym
− ym ∂

∂xm

[
lnσF (x)

]
. (2.1)

The S-curvature has been introduced by Shen for the formulation of a compar-

ison theorem on Finsler manifolds .
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Let (M,F ) be an n-dimensional Finsler manifold. The non-Riemannian

quantity Ξ-curvature Ξ = Ξjdx
j on the tangent bundle TM is defined by

Ξj := S.j|my
m − S|j ,

where “.” and “|” denote the vertical and horizontal covariant derivatives with

respect to the Berwald connection of F , respectively. F is said to be of almost

vanishing Ξ-curvature if

Ξj = −(n+ 1)F 2

(
θ

F

)
yj
,

where θ := ts(x)ys is a 1-form on M

For a non-zero vector y ∈ TeM , define By : TeM × TeM × TeM → TeM by

By(v, u, w) = Bmijlv
iujwl ∂

∂xm |l, where

Bmijl :=
∂3Gm

∂yi∂yj∂yl
.

B is called the Berwald curvature, and F represents a Berwald metric if B = 0.

The mean of Berwald curvature is defined by Ey : TeM × TeM → R, were

Ey(v, w) =

n∑
i=1

gij(y)gyBy(v, w, ei, ej).

The family E = {Ey}y∈TeM0
is called the mean Berwald curvature or

E-curvature. In local coordinates, Ey(u, v) := Esl(x, y)vsul, were

Esl =
1

2
Sysyl(x, y) =

1

2
Bmijm,

If E = 0, then F is a weakly Berwald metric. By (??), one can get the following

equation

Sysyl = [Gm]ysylym = Esl.

Thus S = 0 implies that E = 0.

To measure the changes of the Cartan torsion C along geodesics, we define

Ly : TeM ⊗ TeM ⊗ TeM → R by

Ly(u, v, w) :=
d

ds

[
Cċ(s)(U(s), V (s),W (s))

]∣∣
s=0

,

where c(s) is a geodesic and U(s), V (s),W (s) are parallel vector fields along c(s)

with ċ(0) = y, U(0) = u, V (0) = v,W (0) = w. The family L := {Ly}y∈TM\{0}
is called the Landsberg curvature. A Finsler metric is called a Landsberg metric

if L = 0.

For y ∈ TeM define Jy : TeM −→ R by Jy(u) := Jt(y)ut, where Jt := It|sy
s.

J is called the mean Landsberg curvature or J-curvature. A Finsler metric F

is called a weakly Landsberg metric if Jy = 0.
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3. Proof of the Theorem 1.1

In this section, we are going to prove the Theorem 1.1. In order to prove

it, we need to note some necessary facts. In [5], Matsumoto-Numata studied

the class of cubic metrics and found the explicit form of a cubic (α, β)-metric.

Here, we prove the following results.

Lemma 3.1. Let F = 5
√
A be a 5-th Finsler metric on a manifold M . Then,

we have:

(1): Let dim(M) = 2. In this case, by choosing a suitable quadratic form

α =
√
ajt(x)yjyt and one form β = bj(x)yj, F is always written in

the form

F = 5
√
c1α4β + c2α2β3,

where c1 and c2 are real constants and α2 may be degenerate.

(2): If dim(M) ≥ 3 and F is a function of a non-degenerate quadratic

form α =
√
αjt(x)yjyt and a 1-form β = βj(x)yj, then it is written in

the following form

F = 5
√
c1α4β + c2α2β3 + c3β5,

where c1, c2 and c3 are real constants.

Proof. By the same argument used by Matsumoto-Numata to obtain the ex-

plicit form of a cubic (α, β)-metric in [5], we get the proof. �

Let F = αφ(s), s = β/α, be an (α, β)-metric, where φ = φ(s) is a C∞

on (−b0, b0) with certain regularity, α =
√
ajt(x)yjyt is a Riemannian metric

and β = bj(x)yj is a 1-form over the manifold M . For an (α, β)-metric, let us

define bj;k by bj;kθ
k := dbj − bkθkj , where θj := dxj and θkj := Γkjsdx

s denote

the Levi-Civita connection form of α. Let

rit :=
1

2
(bi;t + bt;i), sit :=

1

2
(bi;t − bt;i), ri0 := rity

t,

r00 := rity
iyt, rt := birit, si0 := sity

t, st := bisit,

sit = aissst, si0 = sity
t, r0 := rty

t, s0 := sty
t.

where ait = (ait)
−1 and bi := aitbt. Put

Q :=
φ′

φ− sφ′
,

Θ :=
φφ′ − s(φ′φ′ + φφ′′)

2φ((φ− sφ′) + (b2 − s2)φ′′
,

Ψ :=
φ′′

2[(φ− sφ′) + (b2 − s2)φ′′]
, (3.1)
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where B := ||β||2α. Let Gt = Gt(x, y) and Gtα = Gtα(x, y) denote the coefficients

of F and α, respectively, in the same coordinate system. By definition, we have

Gt = Gtα + αQst0 + (r00 − 2Qαs0)(α−1Θyt + Ψbt). (3.2)

where

P :=
[
− 2Qαs0 + r00

]
Θα−1, Qt := Ψ

[
r00 − 2αQs0

]
bt + αQst0.

Clearly, if β is parallel with respect to α, that is rij = 0 and sij = 0, then

P = 0 and Qi = 0. In this case, Gi = Giα are quadratic in y. In this case, F is

a Berwald metric. Put

Φ : = (sQ′ −Q){n∆ + sQ+ 1} − (B − s2)(sQ+ 1)Q′′.

By direct computation, we can obtain a formula for the mean Cartan torsion

of (α, β)- metrics as follows

Ij = − (φ− sφ′)Φ
2∆φα2

(αbj − syj). (3.3)

Thus I = 0 if and only if Φ = 0.

Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-dimensional manifold

M . Then the S-curvature of F is given by

S =
[
2Ψ− f ′(b)

bf(b)

]
(s0 + r0)− Φ

2∆2α
(r00 − 2Qαs0),

where

f(b) : =

∫ π
0

sinn−2 t T (b cos t)dt∫ π
0

sinn−2 tdt
,

T (s) : = φ(φ− sφ′)n−2
[
(φ− sφ′) + (b2 − s2)φ′′

]
.

Here, we calculate the S-curvature of 5-th root (α, β)-metric and obtain the

following.
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Lemma 3.2. The S-curvature of 5-th root (α, β)-metric is given by

S =
1

2s2ϕµ

{
3c22s

2 + 13c2c3s
4 + 10c23s

6 + 3c1c2 + 10c1c3s
2 − f ′(b)

bf(b)

}(
s0

+r0
)
− 1

4αϕ2µ2s3

{
8c2c

3
3s

12 − 3c42b
2s4 − 20c43b

2s12 − 60nc1c
2
2c3s

6

−112nc2c1c
2
3s

8 + 36nc1c
4
2b

2s6 + 120nc1c2c
3
3b

2s12 + 640nc1c
4
3b

2s14

+348nc42c3b
2s10 + 120nc32c

2
3b

2s12 + 2456nb2c22c
3
3s

14 + 2240nb2c2c
4
3s

16

−56nc21c
2
2c3s

8 − 128nc21c2c
2
3s

10 − 304nc1c
3
2c3s

10 − 94nc1c
2
2c

2
3s

12

−120nc1c2c
3
3s

14 − 6c42s
6 − 20nc21c2c3s

4 − 58c1c3b
2c22s

4 − 136c1c
2
3c2s

6

−42nc32c3s
8 − 104nc22c

2
3s

10 − 108nc2c
3
3s

12 − 64nc33c1s
10 − 34b2c21c2c3s

2

+24c21c2c3s
4 + 800nc53b

2s18 − 24nc21c
2
3s

6 + 36nb2c52s
8 + 4c1c

3
2s

4

−800nc53s
20 + 4c21c

2
2s

2 − 8nc21c
3
2s

6 − 10nc32c1s
4 − 2456nc22c

3
3s

16

−36nc1c
4
2s

8 − 96nc21c
3
3s

12 − 640nc1c
4
3s

16 − 348nc42c3s
12 − 62c2c

3
3b

2s10

−2240nc2c
4
3s

18 + 28c1c
2
2c3s

6 + 80c1c2c
2
3s

8 + 8c22c
2
3s

10 − 9c1c
3
2b

2s2

−21c32c3b
2s6 − 60b2c22c

2
3s

8 − 80c1c
3
3b

2s8 − 60c21c
2
3b

2s4 − 40c43s
14

−130nc32c
2
3s

14 − 36c52s
10 + 48c1c

3
3s

10 + 48c21c
2
3s

6 + 56b2c21c
2
2c3s

6

+128nc21c2c
2
3b

2s8 − 4nc21c
2
2s

2 + 8nb2c21c
3
2s

4 + 944nb2c1c
2
2c

2
3s

10

+304nb2c1c
3
2c3s

8 + 96nc21c
3
3b

2s10
}(
r00 + (c1 + 3c2s

2 + 5c3s
4)s0

)
,

where

ϕ : = −c2s2 − c3s4 + 2c1c2b
2s2 + 4c1c3b

2s4 + 6c22b
2s4 + 22c2c3b

2s6 + 20c23b
2s8

− 2c1c2s
4 − 4c1c3s

6 − 6c22s
6 − 22c2c3s

8 − 20c23s
10,

µ : = c2 + 2c3s
2,

T : = (c1s+ c2s
3 + c3s

5)
(
c1s+ c2s

3 + c3s
5 − s(c1 + 3c2s

2 + 5c3s
4)
)n−2{

c1s

+ c2s
3 + c3s

5 − s(c1 + 3c2s
2 + 5c3s

4) + (b2 − s2)(6c2s+ 20c3s
3)
}
.

Now, we study weakly Landsberg 5-th root (α, β)-metrics and prove the

following.

Theorem 3.3. Every weakly Landsberg 5-th root (α, β)-metric has vanishing

S-curvature.
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Proof. For an (α, β)-metric F = αφ(s), the mean Landsberg curvature is given

by

Jt = − 1

2∆α4

[
2α2

b2 − s2
[Φ

∆
+ (n+ 1)(Q− sQ′)

]
(r0 + s0)ht

+
α

b2 − s2
(Ψ1 + s

Φ

∆
)(r00 − 2αQs0)ht + α

[
− αQ′s0ht + αQ(α2st − yts0)

+α2∆si0 + α2(ri0 − 2αQst)− (r00 − 2αQs0)yt

]Φ

∆

]
, (3.4)

where

Ψ1 :=
√
b2 − s2

[√b2 − s2Φ

∆
3
2

]′
∆

1
2 , ht := bt − α−1syt, B = b2.

contracting (3.4) with bt and simplifying it, we have J = btJt = 0. It is equal

to following

d7α
7 + d5α

5 + d4α
4 + d3α

3 + d2α
2 + d1α+ d0 = 0, (3.5)

where

d0 : =
(
− 7β6b2c31c

4
2 + 33β6b4c21c

5
2 + 4β6nc41c

3
2 + 52β6b4c31c

3
2c3 + 150β6b6c31c

5
2

− 128β6b4c41c2c
2
3 + 78β6c41c

2
2c3b

2 − 48β6b8c41c
5
2 − 2β6b2nc31c

4
2

− 96β6b4c41c
4
2 + 32β6b4nc41c

4
2 + 348β6b6c41c

3
2c3 − 12b4β5c31c

4
2 − 4β6c41c

3
2

− 28β6b2nc41c
2
2c3

)(
(2β5c3 + β3c2α

2)r00 − (α6c1 + 3α4c2β
2 + 5α2c3β

4)s0

)
,

d1 : = 8b4c21β
5
(
− 15b2c22 − 56b2c1c3 + 14c1c2 + 21b4c1c

2
2 − 2nc1c2

)(
(2β5c3

+ β3c2α
2)r00 − (α6c1 + 3α4c2β

2 + 5α2c3β
4)s0

)
,

d2 : =
(

1620β6b4c31c
3
2c3 + 1424β6b4c41c2c

2
3 − 386β6c41c

2
2c3b

2 + 108β6b2nc31c
4
2

− 140c41c
3
2c3β

6 + 112b4β5c31c
4
2 − 135β6b2c31c

4
2 + 198β6b4c21c

5
2 − 12β6nc41c

3
2

+ 180c41c
4
2β

6 + 200β6b2nc41c
2
2c3 + 12β6c41c

3
2 − 45β6b6c1c

6
2 + 342β6b8c21c

6
2

− 120β5b6c52c
2
1 + 168β5b8c31c

5
2 + 496β6b6nc41c

3
2c3 − 272β6b4nc41c2c

2
3

− 48β6b8nc41c
5
2 − 2352β6b6c31c

2
2c

2
3 − 90β6b4nc21c

5
2 + 1688β6b8c41c

2
2c

2
3

− 144β6b4nc41c
4
2 − 714β6b6c31c

5
2 − 600β6b6c41c

3
3 − 504β6b4nc31c

3
2c3

+ 2436β6b8c31c
4
2c3 + 312nc31c

5
2β

6 − 873β6b6c21c
4
2c3 − 448β5b6c31c

3
2c3

− 16β5nc31c
4
2b

4
)(
b2s0c

4
1c

3
2 + 3b4r0c

3
1c

4
2 − 4ns0c

4
1c

3
2b

2 − 46b4s0c
4
1c

2
2c3

+ 27b6s0c
4
1c

4
2 − 9b4s0c

3
1c

4
2

)
β4,
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d3 : = 396b8β4s0c
4
1c

3
2c3 − 132b6β4s0c

4
1c

4
2 + 186b4β4s0c

3
1c

4
2 − 624β4s0c

3
1c

3
2c3

− 24b4r0β
4c31c

4
2 − 42b2β4s0c

4
1c

3
2 − 100b4nβ4s0c

4
1c

2
2c3 + 48b6nβ4s0c

4
1c

4
2

− 520c41c2c
2
3β

4s0 + 198c31c
5
2β

4s0 + 436b4β4s0c
4
1c

2
2c3 + 24nβ4s0c

4
1c

3
2b

2

− 48β6b6c31c
5
2r0α

2 − 48β3b6c41c
4
2s0α

6 − 144β5b6c31c
5
2s0α

4

− 240α2β7b6c31c
4
2c3s0 − 54b4nβ4s0c

3
1c

4
2 − 81b6β4c21c

5
2s0 − 96β8b6c31c

4
2r0c3,

d4 : = −6b4c41c
3
2β

2s0,

d5 : = 3b4c31c
2
2β

2
(
12b4c1c

2
2 − 4nc1c2 − 21b2c22 − 54b2c1c3 + 16c1c2

)
s0,

d7 : = −18b6c41c
3
2s0. (3.6)

(3.5) implies that

d7α
6 + d5α

4 + d3α
2 + d1 = 0, (3.7)

d4α
4 + d2α

2 + d0 = 0. (3.8)

By (3.7), we find that there exists a non-zero function γ = γ(x, y) such that

r00 =
c1α

6 + 3c2α
4β2 + 5c3α

2β4

2c3β5 + c2β3α2
s0 + γα2. (3.9)

Similarly, (3.8) implies that there exists a non-zero function δ = δ(x, y) such

that

r00 =
c1α

6 + 3c2α
4β2 + 5c3α

2β4

2c3β5 + c2β3α2
s0 + δα2. (3.10)

Since γ 6= δ and also γ is not a multiple of δ, then by (3.9) and (3.10) we get

r00 =
(c1α6 + 3α4c2β

2 + 5α2c3β
4

2β5c3 + β3c2α2

)
s0. (3.11)

Taking a vertical derivation of (3.11) give us the following

ri0 =
{

6c1α
4yi+12c2α

2yiβ
2+6c2α

4βbi+10c3β
4yi+20c3α

2β3bi
2β5c3+β3c2α2

− (α6c1+3α4c2β
2+5α2c3β

4)(10c3β
4bi+3c2β

2α2bi+2c2β
3yi)

(2β5c3+β3c2α2)2

}
s0

+
(
α6c1+3α4c2β

2+5α2c3β
4

2β5c3+β3c2α2

)
si. (3.12)

Contracting (3.12) with bi yields

r0 =
{

6c1α
4β+12c2α

2β3+6c2α
4βb2+10c3β

5+20c3α
2β3b2

2β5c3+β3c2α2

− (α6c1+3α4c2β
2+5α2c3β

4)(10c3β
4b2+3c2β

2α2b2+2c2β
4)

(2β5c3+β3c2α2)2

}
s0. (3.13)

By putting (3.11) and (3.13) into (3.6) and simplifying the result, we have

η(x, y)s0 = 0. (3.14)
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where

η(x, y) :=(15c23b
4 + 5c3c1 − 66c3c2b

2 + 42c22)α4 + (−15c23β
2b2 + 22c3β

2c2)α2

+ 5c23β
4.

By (3.14), it is obvious that η = 0 or si = 0. Let η(x, y) = 0. One can rewrite

η = 0 as follows

θα4 + γα2β2 + εβ4 = 0, (3.15)

where θ = θ(x, y), γ = γ(x, y) and ε = ε(x, y) are functions on TM . (3.15)

implies that

α2 = (
−γ ±

√
γ2 − 4θδ

2θ
)β2. (3.16)

This contradicts with the positive-definiteness of α. Thus η 6= 0 and si = 0.

Putting it into (3.11) gives rij = 0. By putting these relations in (3.4), we

obtain S = 0. �

Proof of Theorem 1.1: In [6] Najafi-Tayebi showed that every weakly Lands-

berg (α, β)-metric with vanishing S-curvature on a manifold M of dimension

n ≥ 3 is a Berwald metric. By Theorem 1.1, every weakly Landsberg 5-th root

metric on M of dimension n ≥ 3 is a Berwald metric. We consider the class

5-th (α, β)-metrics of dimension n = 2. We know that Every 2-dimensional

Finsler manifold is C-reducible

Cijt =
1

3

{
hijIt + hjtIi + htiIj

}
. (3.17)

Taking a horizontal derivation of (3.17) along Finslerian geodesic yields

Lijt =
1

3

{
hijJt + hjtJi + htiJj

}
. (3.18)

By putting J = 0 in (3.18) implies that L = 0. On the other hand, the Berwald

curvature Finsler manifold of dimensional n = 2 can be written as follows

Bijkt = − 2

F
Ljktl

i +
2

3

{
Ejkh

i
t + Ekth

i
j + Etjh

i
k

}
. (3.19)

By Putting L = 0 and E = 0 in (3.19), we conclude that F is a Berwald metric.

The proof is complete. �

Proof of Corollary 1.2: Let F = 5
√
A 5-th root metric on manifold M , where

A := aijklm(x)yiyjykylym, with aijklm symmetric in all its indices. Put

Aj =
∂A

∂yj
, Ajt =

∂2A

∂yj∂yt
, Axt =

∂A

∂xt
, A0 = Axtyt, A0j = Axtyjy

t.
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Assuming that (Ajt) is the inverse of the definite positive tensor (Ajt). In this

case we have

gjt =
1

25
A−

8
5A, gjt = A−

2
5Ajt, yi =

1

5
A

−3
5 Ai,

where

Ajt := 5AAjt − 3AjAt

and

Ajt := 5AAjt +
3

4
yjyt.

The Cartan tensor of F is given by

Cijs =
1

5
A−

12
3 Cijs, (3.20)

where

Cijs := A2Aijs +
24

25
AiAjAs −

3

5
A{AiAjs +AjAsi +AsAij}.

Thus the mean Cartan torsion is as follows

Is = gijCijs =
1

5
A−3AijCijs. (3.21)

In [14], Yu and You found that the spray coefficients of F are given by

Gi =
1

2
(A0s −Axs)Ais. (3.22)

It is easy to see that Gi are rational functions in y. Since

Lijs =
1

2
ytG

t
yiyjys ,

then we have

Lijs = − 1

10
A−

3
5AtG

t
yiyjys .

Therefore, we have

Js = gijLijs = − 1

10
A−1AijAtGtyiyjys . (3.23)

Since F has relatively isotropic mean Landsberg curvature J = cF I, then by

(3.23), (3.21) and F = 5
√
A, we have

A2AtG
t
yiyjys = −2c

5
√
ACijs, (3.24)

The left hand side of (3.24) is a rational function in y, while the other side is

an irrational function in y. So c = 0 and F reduces to a weakly Landsberg

metric. By Theorem 1.1, we get the proof. �
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4. Proof of Theorem 1.3

In these section, we will prove a generalized version of Theorem 1.3. Indeed

we study 5-th root (α, β)-metrics with almost vanishing Ξ-curvature. More

precisely, we prove the following.

Theorem 4.1. Let F = 5
√
c1α4β + c2α2β3 + c3β5 be a 5-th root (α, β)-metric

on a manifold M . Then F has almost vanishing Ξ-curvature if and only if

S = 0.

for proving Theorem 4.1, we calculate the Ξ-curvature of 5-th root (α, β)-

metrics. For any (α, β)-metric, the Ξ-curvature is given by

Ξj := Hj;ty
t −H;j − 2H.j.tH

t, (4.1)

where “;” denotes the horizontal covariant derivative with respect to α. By

calculating the right side of the (4.1) and gaining the following

H;j := c1
r00;j
α + c2

rj0−sj0
α + c3s0;j + 2c4(rj + sj) + 2Ψr0;j ,

where

A := r00 − 2αQs0,

c1 := (n+ 1)(Ψ′ + Θ),

c2 :=
{

(n+ 1)Θ′ + (B − s2)Ψ′′ − 2sΨ′
}A
α

+ 2Ψ′r0

{
2(sQ′ −Q)Ψ

+−Q′′ − sQ− 2(n+ 1)Q′Θ− (Q′ + 2Q′Ψ′ + 2(B − s2)ΨQ′′)
}
s0,

c3 := Q′ − 2sΨQ− 2(n+ 1)QΘ− 2(B − s2)(Q′Ψ + Ψ′Q),

c4 := Ψ′
A

α
− 2Q′Ψs0.

Also, we have

H.j;ty
t := p5j

r00
α + p6sj;0 + 2p7j(r0 + s0) + 2Ψrj;0

+Λ
(

(rj0 + sj0) 1
α −

r00yj
α3

)
+ Λ;ty

t(αbj − syj) 1
α2 ,

where

p5j :=2Ψ′rj +
{
Q′′ −

(
(B − s2)Q′′ +Q− sQ′

)}
sj

+
{

(n+ 1)Θ′ − 2Ψ′s+ Ψ′′(B − s2)
}(2rj0

α
− r00

yj
α3
− 2Qsj

)
,

p6 :=Q′ − (B − s2)Q′ − sQ,

p7j :=
(2rj0
α
− r00

yj
α3
− 2Qsj

)
Ψ′ +Q′sj ,
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Λ :=
A

α

{
2Ψ′r0 + (n+ 1)Θ′ + Ψ′′(B − s2)− 2Ψ′s

}
+

{
Q′′ − 2QΨ

+ 2(Q′Ψ−QΨ′)s− 2(n+ 1)Q′Θ− 2
(

2Ψ′Q′ −ΨQ′′
)

(B − s2)

}
s0,

Λ;ty
t :=p11r00;0 +

( 1

α
p12 − 2p11Q

′s0
)
r00 +

(
Q′′ − 2(n+ 1)Q′Θ− 2αQp11

)
s0;0

+ 2Ψ′′
A

α
(r0 + s0) + 2Ψ′r0;0 − 2s

Ψ′

α

(
r00;0 − 2Q′s0r00 − 2αQs0;0

)
+ p21

r00
α

+ p22s0;0 + 2p23(r0 + s0) + p31
r00
α

+ p32s0;0 − 4Q′′Ψ(r0 + s0),

p11 :=
1

α

{
(n+ 1)Θ′ + (B − s2)Ψ′′

}
,

p12 :=
A

α

{
(n+ 1)Θ′′ − 2sΨ′′ + (B − s2)Ψ′′′

}
−
{

2(n+ 1)(Θ′Q′ +Q′′Θ)−Q′′′
}
s0,

p21 :=2Ψ′′r0 − 2
{

3Ψ′Q′s+ (Ψ′ + Ψ′′s)Q
}
s0 − 2

A

α
(Ψ′ + Ψ′′s),

p22 :=− 2Ψ′Qs− 4(B − s2)Ψ′Q′,

p23 :=− 4Q′Ψ′s0,

p31 :=
{

2(Q′Ψ′ −QΨ′ + 3Q′′Ψ)s− 2(B − s2)(Q′′Ψ′ +Q′′′Ψ)
}
s0,

p32 :=2
{
sQ′ −Q− (B − s2)Q′′

}
Ψ,

instead of H.j.tH
t in (4.1) is given by

H.j.tH
t = Q

{
c1js0 + c2jα+ c3jα

2 + Λ
(
− s0

α2 yj − ssj0
α

)
+ Λ.ms

m
0

(
bj − syj

α

)}
+AΨ

{
c1j(B−s2)

α + Λ
[
(3 s

2

α3 − B
α3 )yj − 2 s

α2 bj

]
+ Λ.mb

m
( bj
α −

syj
α2

)}
,

where

Λ.ts
t
0 :=2(αp11 − 2Ψ′s)

(q00
α
−Qt0 −

Q′

α
s20

)
+

1

α
(p12 + p21 + p31)s0 + (p41 + p22 + p32)t0 + 2Ψ′q0,

Λ.tb
t :=(αp11 − 2Ψ′s)

(
2
r0
α
− sr00

α2
− 2(B − s2)Q′

s0
α

)
+

(B − s2)

α
(p12 + p21 + p31) + 2Ψ′r,

p41 :=Q′′ − 2(n+ 1)Q′Θ,

c1j :=2Ψ′rj +
[
(n+ 1)Θ′ + (B − s2)Ψ′′ − 2sΨ′

](
2
rj0
α
− r00yj

α3
− 2Qsj

)
−
{

2Q′
(

(n+ 1)Θ + (B − s2)Ψ′
)
−Q′′ +

(
Q+ sQ′ +Q′′(B − s2)− 2Q′s

)}
sj ,

c2j :=
[
(B − s2)Ψ′ + (n+ 1)Θ

](
2
qj0
α
− 2

q00yj
α3
− r00yj

α3
sj0

)
,

c3j :=
[
(B − s2)Ψ′ + (n+ 1)Θ

](
2
rj
α
− 2

rj0
α2
s+ 3

r00syj
α4

− 2
r0yj
α3
− r00bj

α3

)
.
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Lemma 4.2. Let F = F (x, y) be a 5-th root (α, β)-metric on a manifold M of

dimension n ≥ 3. Suppose that F is of almost vanishing Ξ-curvature. Then F

has vanishing Ξ-curvature.

Proof. Let F = 5
√
aijklmyiyjykylym be a 5-th root metric with almost vanish-

ing Ξ-curvature on an n-dimensional manifold M . Then its Ξ-curvature can be

expressed as

Ξj = −(n+ 1)F 2
( θ
F

)
yj
. (4.2)

where θ = tj(x)yj is a 1-form onM . By Lemma 2.1 in [14], the spray coefficients

of an m-th root metric is rational function in y. By definition, the S-curvature

and then the Ξ-curvature of F are rational functions in y. It follows that the

left side of (4.2) is a rational function in y. while the right side of (4.2) is an

irrational function in y. Thus we get Ξ = 0. �

Proof of Theorem 4.1: Let F = 5
√
c1α4β + c2α2β3 + c3β5 be a 5-th root

(α, β)-metric on a manifold M . Suppose that F has almost vanishing Ξ-

curvature. Then, by Lemma 4.2, we have Ξj = 0. Let us define Ξ := Ξjb
j . So

multiplying (4.1) with bj yields

f7α
7 + f6α

6 + f5α
5 + f4α

4 + f3α
3 + f2α

2 + f1α+ f0 = 0. (4.3)

where

f0 := −12960c33β
6r200,

f1 := −5400c33β
6r200,

f2 := 1290c33β
5r00;0 − 8568c2c

2
3β

4r200 + 1260c33β
5r00;0 + 5610c33β

4r200

− 1620β5c33r00s0 + 6370c33β
4r200 + 100(n+ 1)c33β

4r200,

f3 := 38880c33β
5s20 − 100c33β

4r200 − 270c33β
5r00s0 + 120c33β

5r00 + 4200c33β
4r200

+ 200c33Bβ
4r200 + 38880c33β

5r0s0 + 15552c33β
5r00 − 35640c2c

2
3β

4r200

f4 : = −9020β4c33s0;0 + 40500β4c33s
2
0 + 1080β3c33r

2
00 + 31104c33β

5s0 + 31104β5c33r0

+ 64800(n+ 1)β4c33s0;0 + 12960β4c33r00 + 2052β3c33r00s0

+ 1420c33β
3r0r00 + 4100β3c33Br00;0 − 1080(n+ 1)c33β

3r200 − 808c23β
3r00;0c2

− 970β2c33B
2r200 − 380β2c23r

2
00c1 + 4184β2c23r

2
00c2 − 254β2c3r

2
00c

2
2

+ 5400(n+ 1)c33β
3r00s0 − 34560(n+ 1)c33Bβ

3r00;0 − 47520c33β
3r0r00+

− 1080c23β
3r00s0c2 − 55980c33Bβ

2r200 + 97452(n+ 1)c23β
2r200c2

+ 371088c23Bβ
2r200c2 − 130c33β

2Br200 + 700β3c33Br00s081216β3c23r00;0c2,

f5 = 3600β2c33Br
2
00 − 266976β3c23s

2
0c2 + 858β3c23r00c2 + 120β3c33Br00s0

− 560c33β
3Br00 + 324β3c33r0r00 + 266976β3c23r0s0c2 + 150β2c23Br

2
00c2
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− 430c33β
2B2r200 + 1030β3c23r00c2 − 330β4c33s

2
0 − 640β3c33Br00

+ 240c23β
2r200c2 − 18β3c33Br0s0 − 180900β3c23r00s0c2 + 181440β3c33Bs

2
0

+ 23400c33β
3r00s0 − 9200β2c33Br

2
00 − 162β2c23r

2
00 c1 − 105426β2c3r

2
00 c

2
2

− 63β2c23r
2

00 c2 − 9450β3c33r00s0,

f6 = 4516r200c
3
2 + 840c33B

3r200 + 640β3c33q0 − 639720c23B
2r200c2 + 120β2c33r00

+ 20970c33B
2r200 + 191160c23r

2
00c1 + 1288c3r

2
00c

2
2 − 45360β3c33s0 − 220β3c33r0

+ 113400β3c33t0 − 92610β2c33s
2
0 + 51840β2c33r

+
0 106350(n+ 1)c33B

2r200

+ 168480c23Br
2
00c1 − 879912c23Br

2
00c2 + 11720(n+ 1)c23r

2
00c1 + 279c3r

2
00c

2
2

− 219024c3r
2
00c1c2 + 1099152c3Br

2
00c

2
2 − 32400(n+ 1)β3c33q0 − 81β3c33t0

+ 32400(n+ 1)β3c33s0 + 420β2c33r0s0 − 175500β2c33Bs
2
0 + 100β2c33Bq00

+ 420β2c33rr00 + 210β2c33r0r00 + 480β2c33r00s0 + 339120β2c33Bs0;0

+ 607392β2c23s0;0c2 + 69480c2c
2
3βr

2
00 − 120β3c33Br0 + 42768β2c23s0;0c2

− 4320β2c23q00c2 + 276750β2c23s
2
0c2 − 14400βc33Br

2
00 − 37080βc33B

2r00;0

− 380βc23r00;0c1 − 260βc3r00;0c
2
2 − 316(n+ 1)c23Br

2
00c2 − 129600β3c33Bs0

+ 207360β3c23s0c2 + 20760β3c23r0c2 − 226c33β
2Bs0;0 − 81β2c33r00s0

− 1510(n+ 1)β2c33r0s0 − 210β2c33B(n+ 1)q00 − 430β2c33Br00

+ 8640(n+ 1)β2c23q00c2 + 84672β2c23(n+ 1)r00c2 − 121500βc33B
2r00s0

− 628920βc33Br00s0 + 9000βc33Br
2
00 − 340βc33Br0r00 − 51840βc23r00s0c1

+ 1402848βc23r00s0c2 + 160βc23r00;0c1 + 264βc23Br00;0c2 − 620βc23r
2
00c2

− 3216βc3r00s0c
2
2 + 103500βc33Br00s0 + 820(n+ 1)βc33Br0

+ 15840(n+ 1)c23βr00s0c2 − 297072(n+ 1)βc23r0r00c2 − 2108c23βBr00;0c2

+ 2160βc33B
2r00;0 + 944βc23r00c2 + 220βc3r00;0c

2
2 + 470βc23Br00s0c2,

f7 : = 184916c32r
2
00 + 39125c33B

3r200 + 25800c33B
2r200 + 12960c1c

2
3r

2
00

+ 317250β2c33s
2
0 + 477c33B

2(n+ 1)r200 − 2860c23B
2r200c2 + 729c23Br

2
00c1

+ 324(n+ 1)c23r
2
00c1 − 9208c3(n+ 1)r200c

2
2 − 907c3r

2
00c1c2 + 47c3Br

2
00c

2
2

− 160(n+ 1)β2c33s
2
0 + 155β2c33Bs

2
0 − 220β2c23s

2
0c2 + 90βc33B

2r00

+ 380βc23r00c1 − 168βc23s
2
0c1 + 2744βc3r00c

2
2 − 828βc3s

2
0c

2
2 − 90c23Br

2
00c2

− 2180βc33B
2r00s0 + 351βc33B

2r0s0 − 490βc33Br00s0 + 108βc33B
2r00

+ 12432βc23Bs
2
0c2 + 46656βc23r00c1 + 1368βc23r0s0c1 − 3788βc23Br00c2

+ 220βc23r0r00c2 + 17120βc23r00s0c2 + 8248βc3r0s0c
2
2 + 3176βc3r00c

2
2

+ 24950(n+ 1)β2c33s
2
0 + 1750(n+ 1)βc33Br00s0 − 1242432βc23Br0s0c2

+ 811800βc23Br00s0c2 − 600300βc23(n+ 1)r00s0c2 − 4240βc23Br00c2

+ 807864c22c3r
2
00 − 6260c23Br

2
00c2 + 81β2c33r0s0 − 35βc33B

2s20

− 80βc23r00s0c1 − 5430βc3r00s0c
2
2 − 820βc33Br0r00,
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By (4.3), we get

f7α
6 + f5α

4 + f3α
2 + f1 = 0, (4.4)

f6α
6 + f4α

4 + f2α
2 + f0 = 0. (4.5)

(4.4) implies that there exists a non-zero function µ = µ(x, y) such that

β6c33r
2

00 = µα2. (4.6)

Similarly, (4.5) implies that there exists a non-zero function ν = ν(x, y) such

that the following holds

β6c33r
2

00 = να2. (4.7)

Since µ 6= ν and also µ is not a multiplication of ν, then by (4.6) and (4.7) we

get

β6c33r
2

00 = 0. (4.8)

Since β6c33 6= 0, then rij = 0 which implies that ri = 0. Putting these relations

in (4.3) yields

g4α
4 + g3α

3 + g2α
2 + g1α+ g0 = 0. (4.9)

where

g0 : = +1440c23s
2
0,

g1 : = 150c23s
2
0β

3 − 152c23s0β
4 − 240(n+ 1)c23β

3s0;0 + 360c23β
3s0;0,

g2 : = 120c23s
2
0β

3 − 670c23β
2s20 + 988c2c3β

2s20,

g3 : = 300(n+ 1)c23β
2t0 − 1200(n+ 1)c23β

2s0 − 7680c2c3β
2s0 + 2496c2c3βs0;0

− 9250(n+ 1)c23βs
2
0 − 4200c23β

2t0 + 1680c23β
2s0 + 3430c23βs

2
0

+ 8400(n+ 1)c23Bβs0;0 − 1260c23βs0;0 + 480c23Bβ
2s0 − 1050c2c3βs

2
0

+ 650c23Bβs
2
0 − 140(n+ 1)c3βs0;0c2,

g4 : = 6250(n+ 1)c23βs
2
0 − 460c2c3Bs

2
0 − 5625c23Bβs

2
0 + 8500c2c3βs

2
0

− 11750c23βs
2
0 + 130c23B

2s20 + 514c1c3s
2
0 + 3024c22s

2
0,

By (4.9), we get

g3α
2 + g1 = 0, (4.10)

g4α
4 + g2α

2 + g0 = 0. (4.11)

(4.11) implies that

η(x, y)s20 = 0, (4.12)
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where

η(x, y) =
{

620(n+ 1)c23β − 4606c2c3B − 5625c23Bβ + 800c2c3β − 1150c23β

+ 1300c23B
2 + 5184c1c3 + 30424c22

}
α4 +

{
1250c23β

3 − 6720c23Bβ
2

+ 988c2c3β
2
}
α2 + 140c23β

4.

By (4.12), one can find that η = 0 or si = 0. Let η(x, y) = 0. We rewrite η as

follows

θα4 + γα2β2 + εβ4 = 0, (4.13)

where θ = θ(x, y), γ = γ(x, y) and ε = ε(x, y) are scalar functions on TM .

(4.13) give us

α2 = (
−γ ±

√
γ2 − 4θδ

2θ
)β2. (4.14)

This contradicts with the positive-definiteness of α. Thus

η 6= 0.

Hence, we get

si = 0.

Putting rij = 0 and si = 0 in (3.4) imply that S = 0. The converse is trivial. �
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