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MATHEMATICAL MODEL FOR BINGHAM FLOW
PROPERTIES OF BLOOD IN UNIFORM TAPERED
TUBE
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ABSTRACT. The stenosis and non-Newtonian property of the fluid
in the blood flow represent the behavior of Herschel- Buckley fluid.
In a tapered tube model all the vessels which carry blood towards
the tissues are considered as long and its one end slowly tapering
cones rather than cylinders. Since the blood flow consist of two
regions in which one is central region, consist of concentrated blood
cells and its behavior is non-Newtonian and other region is periph-
eral layer of plasma which represent the Newtonian behavior of fluid
motion. In present paper, we have considered the Bingham fluid
model and study the flow of blood in a uniform tapered tube and
obtained conditions and its variation in various graphs for shear
stress and pressure gradient.
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1. INTRODUCTION

Womersley [14] introduced the concept of a tapered tube model in
which all the vessels which carry blood towards the tissues are consid-
ered as long and its one end slowly tapering cones rather than cylinders.
Further Charm and Kurland [!] prove that if the flow of blood in a
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non-uniform capillary tubes then the experimental values are equivalent
to anticipated value and if the flow of blood in cylindrical tubes then
the experimental and anticipated values diverge unless it is validated in
straight tubes.

Oka [9] considered non-Newtonian flow in tapered tubes and obtained
the pressure gradient for Power law, Bingham body and Casson fluids.
Further authors of the paper [5, 8] studied the case of uniform laminar
flow of blood in tapered tube and obtained the analytical expressions
for shear stress, pressure gradient, angular and axial velocity. Further
various authors [1, 2, 3, 6, 7, 10, 11, 12, 13] studied the role of plasma
peripheral layer in capillaries for the flow of blood.

In present paper we have considered an anomalous behavior of blood
flow in uniform tapered tubes and studied its complex rheological char-
acteristics. Further we considered Bingham blood model and obtained
the analytical expressions for the shear stress and pressure gradient.
Further in various graphs we represent the variation of shear stress and
pressure gradient.

2. THE MATHEMATICAL MODEL

In present paper we considered a incompressible viscous non-Newtonian
fluid model in a tapered tube of circular cross-section for laminar flow
which satisfy the following assumptions:

(i) The tapered angle is very small.

(ii) The flow of the motion is in z-direction and steady axisymmetric.
(iii) No forces act over the entire volume of the fluid.

(iv) Inertia term can be neglected because the motion is very slow.

(v) Pressure gradient is a function of axial co-ordinates only.

Further a geometrical representation of tapered vessel given in following
figure:
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Figure 1: Geometry of the Vessel
The radius R(z) of the tapered tube is given by
R(z) = Ry — ztan ¢
where z is the axis of the tapered tube, ¢ is the tapered angle and Ry
is radius of the tube at z = 0.

The Governing equations

The laminar flow problem of an incompressible fluid in a cylindrical
co-ordinate system (7,0, z) are given by

Continuity equation

avz_f_a%ﬂ_*_ﬁ_l_}%_o
0z or roor ol
Momentum equations
Dv,  9dp 0 ov, 10 10v, Ouvy
T i S L v et 1 el e
0. 0v, 0v, W, 0v.  Ov,
5[“82’ + or )]—i_;(az + 87')

D _ 0 9 9 4 v 0 N
where 55; = 5; + vrg; + 0.5, + 52 g5 and 'p’ is the pressure.
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By using second assumptions of the model, we have
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where v is the axial velocity
Mathematical Analysis

Using equation (3) in equation (2), the equation of motion and
continuity in a steady viscous incompressible laminar flow under any
force acting on the entire volume of fluid is given

op 10

(2.4) 0= 3"+ 5 (rm)
_9p
(2.5) 0=>
ov
(2.6) 5, =0

where 7,, = (,u%) the shear stress in the z-direction and normal to ’r’.
Constitutive equation:

The constitutive equation for the shear stress 7 and strain rate ~
is given by

(2.7) T=T04+py; T > 70, and 4=0; 7<7

where 7 is the yield stress, p the coefficient of viscosity and 4 the shear
strain rate.

The Boundary conditions

The appropriate boundary conditions are given by

(2.8) v=0 at r=R(z)
(2.9) Trz =Tw at 1= R(2)
(2.10) v=uv, at 1=R,
(2.11) Trz 15 finite at r = 0.

where R, and v, is the plug radius and plug velocity respectively.

The Solution for velocities, Volume flow rate and wall shear
stress
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Velocities

Now integrating equation (4) and using the condition (11), we have

rop
(212) Tryz — 5&
Again using equation (7) and (12), we have
dv 1, 0pr
2.1 ool ) <r<
(213) b= - Ry <r<RE)
dv
(2.14) EfZO; 0<r<R,

Thus we say that, the plug flow exists whenever the shear stress does
not exceed. So from equations (13), (14) and the conditions from (8) to
(10), we have

_ Tw(2) r? r
(2.15) v = mLR@ﬂL—§q$—2ml—R@y]
(2.16) o= "0 R0 - 2
where 8 = TwT?Z).

Volume flow rate and wall shear stress

If V' be the volume flow rate, then it is given by

(2.17) V=Vi+W
where V; and V5 are given by
RP
(2.18) Vi = /0 2muprdr = m)pRIZ,
R(z)
(2.19) Va :/ 2mordr
RP

Now substituting the values of v, and v from equations (15) and (16) in
equations (18) and (19), we obtain

7 Tw(z)

(2.20) Vi= 3

R*(2)(1 - B)?
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(2.21) Va = QMTw(Z)R ()5 — 38— 6" +26°~=F]

Using equations (20) and (21) in equation (17), we have
- 3 _4

(222) V= Cr@RE)0 - 50)

higher order of 8 are neglected.
By using equation (12), (22) and (9), the pressure gradient is given by

dp SuV 4
2.23 — = 14 -
(2:23) 0z 7TR4(Z)( * 35)
From equation (22) we have the shear stress at the wall as
4uV 4
2.24 = 14—
(2.24) mu(s) = s 1+ 39
Now using equations (23) and (24), we have
_ R(z)9p
(225) Tw<2) = 9 &

From the equations (23) and (24) it is clear that if pressure and the shear
stress at the wall will be increases whenever radius R, of the tapered
tube is decreases.

3. RESULTS AND DISCUSSION:

The pressure gradient and shear stress on the wall are given by
equations (23) and (25) respectively, from which we conclude that when-
ever the radius of the tapered tube decreases the pressure gradient and
shear stress on the wall will increase. Thus the pressure gradient is not
considered constant.

To represent the variation of pressure gradient and shear stress at the
wall we considered the radius of tapered vessel Ry = 100um and by use
of equations (23) and (24) we obtained both the variation for the flow
rate 0.02 to 0.10 cc/sec in various tapered angles (1° < 6 < 2°) and the
suspension concentrations 20%, 30% and 40% .

Figures 2, 3 and 4 shows the variation of flow rate V' for the pressure
gradient for various values of suspension concentration, tapered angle
and axial distance. From the variation we can conclude that the pres-
sure gradient will be increases with increase in suspension concentration,
tapered angle and axial distance.
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Figure 2: Variation of the pressure gradient with flow rate for various
suspension concentrations for fixed value of z=0.10 cm, ¢ = 1.4°,
Rp=0.01 cm.
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Figure 3: Variation of flow rate for the pressure gradient various
tapered angles for fixed value of H=40%, Ry = 0.01cm, z=0.10 cm.
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Figure 4 : Variation of the pressure gradient with axial distance for
different flow rate for fixed value of Ry = 0.01cm, H=40%, ¢=1.40.

Now the Figures 5, 6 and 7 show the variation of flow rate V' for the
shear stress at the wall with respect to various values of tapered angles,
axial distance and suspension concentration.
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Figure 5: Variation of flow rate for the wall shear stress with various
tapered angles for fixed value of H=40%, Ry = 0.01cm, z=0.10 cm.
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Figure 6: Variation of wall shear stress with various axial distance for
different flow rate for fixed value of H=40%, ¢ = 1.4°, Ry = 0.01cm.
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Figure 7 : Variation of flow rate for wall shear stress with various
concentration for fixed value of ¢p=1.4°, z=0.1 cm, Ry = 0.01cm.

From above variation we can conclude that the wall shear stress will
be increases with suspension concentration and tapered angles. Again
TwZ 1s an increasing function for the axial distance, we can conclude that
the shear stress at any point of the tapered tube can be calculated for
any given axial distance. These results are very useful for understanding
the flow in vascular fluid mechanics.
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Now from figures 8, 9 and 10 represents variation of flow rate V for
the pressure gradient in case of Newtonian fluid g = 0 for various values
of suspension concentration, tapered angle and axial distance. Since
we know that in Bingham Fluid Model, the values of pressure gradient
are less. From these Figures we can conclude that the same trends for
pressure gradient are obtained in Bingham Fluids.
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Figure 8: Variation of flow rate for the pressure gradient with various
suspension concentration in Newtonian fluid for fixed value of ¢ = 1.49,
z=0.10 cm, Ry = 0.01cm, 5 = 0.
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Figure 9: Variation of flow rate for the pressure gradient with various
tapered angles in Newtonian fluid for fixed value of H=40%,
Ry = 0.01¢m, z=0.10 cm, 8 = 0.
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Figure 10 : Variation of flow rate for the pressure gradient with various
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