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UNIQUE COMMON FIXED POINT RESULTS IN

C∗-ALGEBRA VALUED METRIC SPACES USING

(Φ-C∗)-CONTRACTIONS OF HARDY-ROGERS TYPE

MITHUN PAUL∗ AND KALISHANKAR TIWARY

Abstract. In this paper we have developed C∗ -class function
and introduced (Φ-C∗)-contractions of Hardy-Rogers type on C∗-
algebra valued metric spaces.We have also established some unique
common fixed point results for six maps in C∗-algebra valued metric
spaces using this type contractions. Some basic definitions, proper-
ties and lemmas are also discussed in the introduction and prelim-
inaries parts. Some corollaries and examples are also given on the
basis of the results.
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1. Introduction

Fixed point theorem is the most important and indispensable part
in the theory of metric space for solving different problems in topol-
ogy, analysis, operator theory, non-linear analysis, differential equations
etc. and others fields also. In 1972, the famous Stefan Banach founded
The Banach Contraction Principle[3], which is the most valuable and
powerful tools in the field of Fixed Point Theory. Since then many dis-
tinguished authors have been generalizing and developing various type
of contractions on different type of metric spaces and establishing fixed
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point results. C∗-algebra valued metric space is such type of generaliza-
tion of various metric spaces.

In 2014, Ma et al.[15] introduced and established some fixed point re-
sults on C∗- algebra valued metric spaces and then in 2016, Xin et al.[31]
established some common fixed point results on C∗- algebra valued met-
ric spaces. In 2016, Piri et al.[21] established fixed point theorems con-
cerning F -contraction in complete metric spaces and in 2016, Shehwar
et al.[27] established Caristi’s fixed point theorem on C∗-algebra val-
ued metric spaces; in 2017, Radenovic et al.[23] established some cou-
pled fixed point results in the framework of C∗-algebra-valued b-metric
spaces and in 2018, Moeini et al.[19] established Zamfirescu type con-
tractions on C∗-algebra valued metric spaces. Later in 2020, Derouche,
D. and Ramoul, H. [8] introduced the notions of Extended F -contraction
of Hardy-Rogers type, extended F -contraction of Suzuki-Hardy-Rogers
type and established fixed point results on complete b-metric spaces
with these contractions. Also in 2020, Yang et al.[33] introduced the
notion of an orthogonal (F,ψ)-contraction of Hardy-Rogers-type map-
ping and prove some fixed point theorems on such contraction map-
pings in orthogonally metric spaces. In 2021, Zhiqun Xue and Guiwen
Lv [32] established fixed point theorem for generalized (ψ,ϕ)-weak con-
tractions in Branciari type generalized metric spaces, Kumar et al.[13]
established some unique common fixed point results on C∗-algebra val-
ued metric spaces using C∗-class function and Hafida Massit and Mo-
hamed Rossafi[16] established fixed point results for (φ, F )-contraction
on C∗-algebra valued metric spaces. Recently, in 2022, Rossafi et al.[25]
introduced (φ,MF )-contraction on C∗-algebra valued metric spaces and
established some fixed point results and its uniqueness.

One important result of Xin et al.[31] is given below:

Theorem 1.1. ([31], Theorem 2.3). Let (X,A, d) be a complete C∗-
algebra valued metric space. Suppose that two mappings T, S : X → X
satisfying the following:

d(Tx, Ty) � ad(Tx, Sx) + ad(Ty, Sy), ∀ x, y ∈ X;

where a ∈ A′+ with ‖a‖ < 1
2 . If R(T ) is contained in R(S) and R(S) is

complete in X, then T and S have a unique point of coincidence in X.
Furthermore, if T and S are weakly compatible, T and S have a unique
common fixed point in X.

Discussing, analyzing and Motivating from the results of the article
given in the ref. ([1], [3], [6], [7], [8], [10], [16], [20], [21], [22], [19],
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[26], [30], [32], [33]), we have introduced (Φ-C∗)-contractions of Hardy-
Rogers type and established some unique common fixed point results
for six mappings on C∗-algebra valued metric spaces, which are the
generalizations of the results given in [13] and [31]. .

2. Preliminaries

Discussing the articles given in the ref. ([5],[13],[14],[18],[23],[24]) we
are introducing some basic definitions, notations and results which are
the following:

A complex algebra A with linear involution ∗ : A → A satisfying
(uv)∗ = v∗u∗ and u∗∗ = u, for all u, v ∈ A is said to Banach ∗-algebra
if it is complete with respect to sub-multiplicative norm ‖.‖ such that
for all u ∈ A, ‖u∗‖ = ‖u‖. A Banach ∗- algebra satisfying ‖u∗u‖ = ‖u‖2
is called C∗-algebra. In this paper, we denote A by an unital( unity
element IA) C∗-algebra with linear involution ∗.
An element u ∈ A is called a positive element and denote it by θA � u,
(where θA is the zero element in A) if u = u∗ and ρ(u) ⊂ [0,+∞),
where ρ(u) is the spectrum of u. A norm on A is defined by ‖u‖ =

(u∗u)
1
2 , ∀u ∈ A. Set Ah = {u ∈ A : u = u∗} and we define a partial

ordering � on Ah by u � v if and only if θA � v − u. Here A+ and
A′ are defined by A+ = {u ∈ A : θA � u} and A′ = {u ∈ A : uv =
vu,∀v ∈ A}. As A is a unital C∗-algebra, then for all u ∈ A+ we have
u � IA ⇔ ‖u‖ ≤ 1 and ‖IA‖ = 1.

Definition 2.1. [13]. Let X be a non-empty set and d : X × X → A
be a mapping such that for x, y, z ∈ X , where z is different from x and
y, satisfying the followings:

(c1) d(x, y) = θA if and only if x = y; and θA � d(x, y), for all x, y ∈ X;
(c2) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
(c3) d(x, z) � d(x, y) + d(y, z), for all x, y, z ∈ X.

Then (X,A, d) is called a C∗-algebra valued metric space.

Note: If A = R, then, C∗-algebra valued metric space becomes equiv-
alent to the definition to the real metric space.

Example 2.1. Let X = [0, 2], A = R2. Then A is C∗-algebra with
norm on A is defined by

‖x, y‖ = |x|+ |y|; ∀ (x, y) ∈ R2.
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Also define C∗-algebra valued metric on X by

d(x, y) = (2|x− y|, 3|x− y|); ∀ x, y ∈ X,
with the ordering on A by (e, f) � (g, h) if and only if e ≤ g and f ≤ h.

Definition 2.2. [13]. Let (X,A, d) be a C∗-algebra valued metric space.
A sequence {xn} ⊂ X is said to be convergent to x in X with respect
to A if for any ε > 0, there exists N ∈ N such that for all n,m >
N, ‖d(xn, x)‖ < ε.

Definition 2.3. [16]. Let (X,A, d) be a C∗-algebra valued metric
space.A sequence {xn} ⊂ X is said to be Cauchy in X with respect
to A if for any ε > 0, there exists N ∈ N such that for all n,m >
N, ‖d(xn, xm)‖ < ε.

The space (X,A, d) is complete C∗-algebra valued metric space if
every Cauchy sequence in X with respect to A is convergent to a point
in X.

Definition 2.4. ([11],[28]). Let f and g be two maps on a metric space
(X, d). If w = f(x) = g(x) for some x ∈ X, then x is called a coincidence
point of f and g; and w is called a point of coincidence of f and g.

Definition 2.5. ([11],[28]). A pair of maps f and g on a metric space
(X, d) is called weakly compatible if they commute at coincidence points.

Example 2.2. Let X = [0, 3] and define two functions f, g on X as

f(x) = 2x2, 0 ≤ x ≤ 1;
= x+ 1, 1 ≤ x ≤ 2;
= 6− x, 2 < x ≤ 3.

and
g(x) = x

2 , 0 ≤ x < 1;
= 3, 1 ≤ x ≤ 2;
= 12− x2, 2 < x ≤ 3.

Here, f(0) = g(0) = 0; f(2) = g(2) = 3 and f(3) = g(3) = 3. So,
fg(0) = gf(0) = 0; fg(2) = gf(2) = 3 and fg(3) = gf(3) = 3. Then the
pair {f, g} is weakly compatible.

Lemma 2.1. [34]If (E, τ) is a topological vector space ordered by a closed
cone K and if C is a compact subset of (E, τ), the supremum(imfimum)
of each increasing(decreasing) net in C exists and the net converges to
it with respect to τ .

Lemma 2.2. [31]. Let (X,A, d) be a C∗-algebra valued metric space.
Then following are hold:

(l1) If {Un}∞n=1 ⊂ A and lim
n→∞

Un = θA, then for any V ∈ A, lim
n→∞

V ∗UnV =

θA.
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(l2) If U, V ∈ A+ and W ∈ A′+, then U � V deduces WU �WV , where
A′+ = A+ ∩A′

(l3) Limit of a convergent sequence in a C∗- algebra valued metric space
is unique.

Definition 2.6. [21]. A function F : (0,∞) → R is said to be F -
contraction if it satisfies the following conditions:
(i) F is strictly increasing; (ii) For every sequence {tn} ⊂ (0,∞), lim

n→∞
tn =

0⇔ lim
n→∞

F (tn) = −∞; (iii) There exists a constant l ∈ (0, 1) such that

xlF (t)→ 0, when t→ 0+.

Definition 2.7. [16]. Let (X, d) be a metric space such that the map-
pings F : (0,∞)→ R and φ : (0,∞)→ (0,∞) are satisfying the follow-
ing:
(i) F is strictly increasing, i.e., x < y implies F (x) < F (y), for all
x, y ∈ (0,∞); (ii) lim

α→0+
φ(α) > 0, for all s > 0.

A mapping T : X → X is called an (φ, F )-contraction on (X, d) if

φ(d(x, y)) + F (d(Tx, Ty)) ≤ F (d(x, y)), ∀x, y ∈ X for which Tx 6= Ty.

3. Main Results

To established our results first we define the following:

Definition 3.1. A function ψ : A+ → A+ is said to be monotonic
non-decreasing with respect to � if

U � V ⇒ ψ(U) � ψ(V ), ∀ U, V ∈ A+.

Definition 3.2. A function J∗ : A+ × A+ → A+ is called a non-
decreasing function with respect to � if

U ⊂W,V ⊂ Z ⇒ J∗(U, V ) � J∗(W,Z).

Definition 3.3. A sequence {Wn} ⊂ A+ is said to be bounded below
with respect to � if there exists L ∈ A+ such that L �Wn with ‖L‖ ≤
‖Wn‖,∀n ∈ N.

Definition 3.4. ( C∗ -class function). Let A be a unit C∗-algebra. Then
a continuous function J∗ : A+ × A+ → A+ is called a C∗-class function
if for any U, V ∈ A+, the following conditions hold:
(i) J∗ is non-decreasing; (ii) J∗(U, V ) � U ; (iii) J∗(U, V ) = U implies
either U = θA, or, V = θA; (iv) J∗(θA, θA) = θA.
Note: Here C∗ will denote the class of all C∗-class function.
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Definition 3.5. Φ be the set of all functions φ : A+ → A+ such that the
following conditions hold: (i) φ is monotonic non-decreasing; (ii) lim

Y→U
φ(Y )

exists, for all U ∈ A+; (iii) φ is continuous at θA and φ(U) = θA ⇔ U =
θA.

Definition 3.6. ((Φ-C∗)-contraction of Hardy-Rogers type). Let (X,A, d)
be a complete C∗-algebra valued metric space. A function T on X is
said to be (Φ-C∗)-contraction of Hardy-Rogers type if for all x, y ∈ X,
the following conditions hold:

ψ{d(Tx, Ty)} � J∗{ψ{P (x, y}), φ{P (x, y)}}; ψ, φ ∈ Φ and J∗ ∈ C∗;

where, P (x, y) =W1d(x, y) +W2d(x, Ty) +W3d(y, Tx) +W4d(x, Tx)+

W5d(y, Ty); Wi ∈ A′, ∀ i = 1, 2, 3, 4, 5.

with W1 +W2 +W3 +W4 +W5 � IA; θA �Wi, ∀ i = 1, 2, 3, 4, 5.

Note: This contraction is the generalizations of F -contraction, (φ, F )-
contraction and (ψ,ϕ)-weak contraction.

Theorem 3.1. Let (X,A, d) be a complete C∗-algebra valued metric
space and F,G, S, T,H and L be self maps on X such that for all x, y ∈
X, the following conditions hold:

ψ{d(Hx,Ly)} � J∗{ψ{P (x, y}), φ{P (x, y)}}, ψ, φ ∈ Φ and J∗ ∈ C∗;
(3.1)

where,

P (x, y) = W1d(FGx,Hx) +W2d(STy, Ly) +W3d(STy,Hx)+

W4d(FGx,Ly) +W5d(FGx, STy); Wi ∈ A′, ∀ i = 1, 2, 3, 4, 5.

(3.2)

with W1 +W2 + 2(W3 +W4) +W5 � IA; θA �Wi, ∀ i = 1, 2, 3, 4, 5;
and ‖W1‖+ ‖W2‖+ 2(‖W3‖+ ‖W4‖) + ‖W5‖ ≤ 1;
Also
(i)H(X) ⊂ ST (X), L(X) ⊂ FG(X); (ii) FG = GF,ST = TS,HG =
GH,LT = TL; (iii) The pairs {H,FG} and {L, ST} are weekly compat-
ible and one of the ranges H(X), FG(X), L(X) and ST (X) is complete
in X.
Then F,G, S, T,H,L have a unique common fixed point in X.

Proof: We will prove the fixed point result by step by step process.
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Let x0 ∈ X. From condition (i), there exist x1, x2 ∈ X such that
Hx0 = STx1 = y0 and Lx1 = FGx2 = y1. Proceeding inductively we
can construct sequences {xn} and {yn} in X such that

y2n = Hx2n = STx2n+1 and y2n+1 = Lx2n+1 = FGx2n+2, for n = 0, 1, 2, ...

Case-I: Assume for some n ∈ Z+, yn = yn+1 implies yn+1 = yn+2.
(3.3)

Now for is n even i.e., for n = 2m,m ∈ Z+, we have, y2m = y2m+1

Now from (3.2) we have,

P (x2m+2, x2m+1)

= W1d(FGx2m+2, Hx2m+2) +W2d(STx2m+1, Lx2m+1)+

W3d(STx2m+1, Hx2m+2) +W4d(FGx2m+2, Lx2m+1)+

W5d(FGx2m+2, STx2m+1)

= W1d(y2m+1, y2m+2) +W2d(y2m, y2m+1) +W3d(y2m, y2m+2)+

W4d(y2m+1, y2m+1) +W5d(y2m+1, y2m)

= W1d(y2m+1, y2m+2) +W2d(y2m, y2m+1) +W3d(y2m+1, y2m+2)+

W5d(y2m+1, y2m+1)

= (W1 +W3)d(y2m+1, y2m+2)

� d(y2m+1, y2m+2)

(3.4)

Now from (3.1) we have,

ψ{d(y2m+2, y2m+1)} � J∗{ψ{P (x2m+2, x2m+1)}, φ{P (x2m+2, x2m+1)}}
� J∗{ψ{d(y2m+1, y2m+2)}, φ{d(y2m+1, y2m+2)}}
� ψ{d(y2m+1, y2m+2)}, which gives

J∗{ψ{d(y2m+1, y2m+2)}, φ{d(y2m+1, y2m+2)}} = ψ{d(y2m+1, y2m+2)}
So, by definition either

ψ{d(y2m+1, y2m+2)} = θA,

or

φ{d(y2m+1, y2m+2)} = θA.

Hence

d(y2m+1, y2m+2) = θ, implies y2m+1 = y2m+2.

Therefore

(3.5) y2m = y2m+1 implies y2m+1 = y2m+2.
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For n is odd i.e., for n = 2m+ 1,m ∈ N ∪ {0}, then

(3.6) y2m+1 = y2m+2, implies y2m+2 = y2m+3.

From (3.5) and (3.6) we have,

yn = yn+1, implies yn+1 = yn+2, ∀ n = 1, 2, 3, ...

Proceeding in this manner we have yn = yn+1 implies yn = yn+k, for all
k = 1, 2, 3, ...
Therefore, {yn} becomes a constant sequence and hence a Cauchy one
in X.
Case-II: Assume yn 6= yn+1, for each n = 1, 2, 3, ...
Now for n = 2m, from (3.2) we have,

P (x2m, x2m+1)

= W1d(FGx2m, Hx2m) +W2d(STx2m+1, Lx2m+1) +W3d(STx2m+1, Hx2m)

+W4d(FGx2m, Lx2m+1) +W5d(FGx2m, STx2m+1)

= W1d(y2m−1, y2m) +W2d(y2m, y2m+1) +W3d(y2m, y2m) +W4d(y2m−1, y2m+1)

+W5d(y2m−1, y2m)

= W1d(y2m−1, y2m) +W2d(y2m, y2m+1) +W4d(y2m−1, y2m) +W4d(y2m, y2m+1)

+W5d(y2m−1, y2m)

(3.7)

If d(y2m, y2m−1) � d(y2m+1, y2m), then from (3.2) and using (3.7) we have,

P (x2m, x2m+1) � (W1 +W2 + 2W4 +W5)d(y2m+1, y2m)

� d(y2m+1, y2m) [as (W1 +W2 + 2W4 +W5) � IA.]
(3.8)

Now from (3.1) we have,

ψ{d(Hx2m, Lx2m+1)} � J∗{ψ{P (x2m, x2m+1)}, φ{P (x2m, x2m+1)}}
or, ψ{d(y2m, y2m+1)} � J∗{ψ{d(y2m+1, y2m)}, φ{d(y2m+1, y2m)}}

� ψ{d(y2m+1, y2m)}, which implies

J∗{ψ{d(y2m+1, y2m)}, φ{d(y2m+1, y2m)}} = ψ{d(y2m+1, y2m)}.
So, by definition either ψ{d(y2m+1, y2m)} = θA, or, φ{d(y2m+1, y2m)} =
θA.
Hence, d(y2m+1, y2m) = θA, implies y2m+1 = y2m, which is a contradic-
tion.

(3.9) Hence, d(y2m+1, y2m) ≺ d(y2m, y2m−1).
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For n is odd i.e., for n = 2m+ 1,m ∈ N∪ {0}, then from (3.2) we have,

P (x2m+2, x2m+1)

= W1d(FGx2m+2, Hx2m+2) +W2d(STx2m+1, Lx2m+1)+

W3d(STx2m+1, Hx2m+2) +W4d(FGx2m+2, Lx2m+1)+

W5d(FGx2m+2, STx2m+1)

= W1d(y2m+1, y2m+2) +W2d(y2m, y2m+1)+

W3d(y2m, y2m+2) +W4d(y2m+1, y2m+1)+

W5d(y2m+1, y2m)

�W1d(y2m+1, y2m+2) +W2d(y2m, y2m+1) +W3d(y2m, y2m+1)+

W4d(y2m+1, y2m+2) +W5d(y2m+1, y2m)

(3.10)

If d(y2m, y2m+1) � d(y2m+1, y2m+2), then from (3.2) we have,

P (x2m+2, x2m+1) � (W1 +W2 + 2W3 +W5)d(y2m+1, y2m+2)

� d(y2m+1, y2m) [as (W1 +W2 + 2W3 +W5) � IA.]

(3.11)

Now from (3.1) we have,

ψ{d(Hx2m+2, Lx2m+1)} � J∗{ψ{P (x2m+2, x2m+1)}, φ{P (x2m+2, x2m+1)}}
or, ψ{d(y2m+2, y2m+1)} � J∗{ψ{d(y2m+2, y2m+1)}, φ{d(y2m+2, y2m+1)}}

� ψ{d(y2m+2, y2m+1)}, which gives

J∗{ψ{d(y2m+2, y2m+1)}, φ{d(y2m+2, y2m+1)}} = ψ{d(y2m+2, y2m+1)}.
So, by definition either ψ{d(y2m+2, y2m+1)} = θA, or, φ{d(y2m+2, y2m+1)} =
θA.
Hence, d(y2m+2, y2m+1) = θA ⇒ y2m+2 = y2m+1, which is a contradic-
tion.
Hence,

(3.12) d(y2m+1, y2m+2) ≺ d(y2m, y2m+1)

From (3.9) and (3.12) we have,

(3.13) d(yn, yn+1) ≺ d(yn−1, yn), ∀ n = 1, 2, 3, ...

Therefore, the sequence {d(yn, yn+1)} is monotonic decreasing with re-
spect to � and bounded below by θA and hence convergent.
Let lim

n→∞
d(yn, yn+1) = U, lim

n→∞
ψ{d(yn, yn+1)} = V and lim

n→∞
φ{d(yn, yn+1)} =

W , where U, V,W ∈ A+, i.e., θ � U, V,W.
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Claim: U = θA i.e., lim
n→∞

d(yn, yn+1) = θA.

Now from (3.1) we have,
(3.14)

ψ{d(y2m, y2m+1)} � J∗{ψ{P (x2m, x2m+1)}, φ{P (x2m, x2m+1)}}
or, ψ{d(Hx2m, Lx2m+1)} � J∗{ψ{d(y2m−1, y2m)}, φ{d(y2m−1, y2m)}}

� ψ{d(y2m−1, y2m)}

Taking limit as m→∞ on both sides of (3.14) we have,

lim
m→∞

ψ{d(y2m, y2m+1)} � lim
m→∞

J∗{ψ{P (x2m, x2m+1)}, φ{P (x2m, x2m+1)}}

� lim
m→∞

J∗{ψ{d(y2m−1, y2m)}, φ{d(y2m−1, y2m)}}

= J∗{ lim
m→∞

ψ{d(y2m−1, y2m)}, lim
m→∞

φ{d(y2m−1, y2m)}}

� lim
m→∞

ψ{d(y2m−1, y2m)}, which gives

V � J∗{ lim
m→∞

ψ{d(y2m−1, y2m)}, lim
m→∞

φ{d(y2m−1, y2m)}} � V

or, V � J∗(V,W ) � V, which gives J∗(V,W ) = V

(3.15)

Therefore, either V = θA, or, W = θA, which imply that
either lim

m→∞
ψ{d(y2m−1, y2m)} = θA, or, lim

m→∞
φ{d(y2m−1, y2m)} = θA.

Therefore, in both cases lim
m→∞

d(y2m−1, y2m) = θA.

Hence,

(3.16) lim
m→∞

d(y2m−1, y2m) = θA

Similarly for n = 2m+ 1, we have U = θA i.e.,

(3.17) lim
m→∞

d(y2m+1, y2m) = θA

Hence from (3.16) and (3.17) we have,

(3.18) lim
n→∞

d(yn+1, yn) = θA

and hence,

(3.19) lim
n→∞

‖d(yn+1, yn)‖ = 0

Now we prove that {yn} is Cauchy in X with respect to A. For this it
is sufficient to show that {y2n} is Cauchy in X.
If not, then for ε > 0, there exist integers 2nk and 2mk with 2mk >
2nk > k such that

(3.20) ‖d(y2mk
, y2nk

)‖ > ε and ‖d(y2mk−2, y2nk
)‖ ≤ ε
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Now,

ε < ‖d(y2mk
, y2nk

)‖ ≤ ‖d(y2nk
, y2mk−2)‖+‖d(y2mk−2, y2mk−1)‖+‖d(y2mk−1, y2mk

)‖.

Taking limit as k →∞ we get ε ≤ lim
k→∞

‖d(y2mk
, y2nk

)‖ ≤ ε, which gives

(3.21) lim
k→∞

‖d(y2mk
, y2nk

)‖ = ε

Again ε < ‖d(y2mk+1, y2nk
)‖ ≤ ‖d(y2mk

, y2mk+1)‖+ ‖d(y2mk+1, y2nk
)‖

Taking limit as k →∞ we get
(3.22)
ε ≤ lim

k→∞
‖d(y2mk+1, y2nk

)‖ ≤ ε,which gives lim
k→∞

‖d(y2mk+1, y2nk
)‖ = ε

By similar process we obtained that

(3.23) lim
k→∞

‖d(y2mk
, y2nk+1)‖ = ε and lim

k→∞
‖d(y2nk−1, y2mk+1)‖ = ε

Therefore, there exists U ∈ A+ with ‖U‖ = ε such that

lim
k→∞

d(y2mk
, y2nk

) = lim
k→∞

d(y2mk+1, y2nk
) = lim

k→∞
d(y2mk

, y2nk+1) =

lim
k→∞

d(y2nk−1, y2mk+1) = U.

Furthermore, there exists K ∈ N and with ε > 0 such that

‖d(y2nk−1, y2mk
‖ > ε

2 , ‖d(y2nk−1, y2nk
‖ < ε

2 , ‖d(y2mk+1, y2mk
)‖ < ε

2 ,
‖d(y2nk

, y2mk+1)‖ > ε
2 ∀ 2mk, 2nk > K.

Now for 2mk, 2nk > K, from (3.2) we have,

P (x2nk
, x2mk+1)

=W1d(FGx2nk
, Hx2mk

) +W2d(STx2mk+1, Lx2mk+1)+

W3d(STx2mk+1, Hx2nk
) +W4d(FGx2nk

, Lx2mk+1)+

W5d(FGx2nk
, STx2mk+1)

=W1d(y2nk−1, y2nk
) +W2d(y2mk

, y2mk+1) +W3d(y2mk
, y2nk

)+

W4d(y2nk−1, y2mk+1) +W5d(y2nk−1, y2mk
)

(3.24)

Therefore, from (3.24) we have,

‖P (x2nk
, x2mk+1)‖ ≤‖W1‖‖d(y2nk−1, y2nk

)‖+ ‖W2‖‖d(y2mk
, y2mk+1)‖+

‖W3‖‖d(y2mk
, y2nk

)‖+ ‖W4‖‖d(y2nk−1, y2mk+1)‖+
‖W5‖‖d(y2nk−1, y2mk

)‖.

(3.25)
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Taking limit as k →∞ on both sides of (3.24) we have,

lim
n→∞

P (x2nk
, x2mk+1) = lim

n→∞
{W1d(y2nk−1, y2nk

) +W2d(y2mk
, y2mk+1)+

W3d(y2mk
, y2nk

) +W4d(y2nk−1, y2mk+1)+

W5d(y2nk−1, y2mk
)}

=(W3 +W4 +W5)U

�U

(3.26)

Now (3.1) gives,

ψ{d(y2nk
, y2mk+1)} = ψ{d(Hx2nk

, Lx2mk+1)}
� J∗{ψ{P (x2nk

, x2mk+1)}, φ{P (x2nk
, x2mk+1)}}

� ψ{P (x2nk
, x2mk

)}

(3.27)

Taking lower limit as k →∞ on both sides of (3.27) we have,

lim
k→∞

ψ{d(y2nk
, y2mk+1)} � lim

k→∞
J∗{ψ{P (x2nk

, x2mk+1)}, φ{P (x2nk
, x2mk+1)}}

� lim
k→∞

ψ{P (x2nk
, x2mk

)}

lim
k→∞

ψ{d(y2nk
, y2mk+1)} � J∗{ lim

k→∞
ψ{d(x2nk

, x2mk+1)}, lim
k→∞

φ{d(x2nk
, x2mk+1)}}

� lim
k→∞

ψ{d(x2nk
, x2mk+1)}

(3.28)

As lim
n→∞

P (x2nk
, x2mk+1) � U = lim

k→∞
d(y2nk

, y2mk+1), then from (3.28)

we have
J∗{ lim

k→∞
ψ{d(x2nk

, x2mk+1)}, lim
k→∞

φ{d(x2nk
, x2mk+1)}} = lim

k→∞
ψ{d(x2nk

, x2mk+1)}
Hence, either lim

k→∞
ψ{d(x2nk

, x2mk+1)} = θA, or, lim
k→∞

φ{d(x2nk
, x2mk+1)} =

θA,
which implies that lim

k→∞
d(x2nk

, x2mk+1) = θA, which is a contradiction.

Hence, {yn} is a Cauchy sequence in A.
Since (X,A, d) is complete C∗ algebra valued metric space so, there
exists z ∈ X such that

(3.29) lim
n→∞

y2n = lim
n→∞

Hx2n = lim
n→∞

STx2n+1 = z.

and

(3.30) lim
n→∞

y2n+1 = lim
n→∞

Lx2n+1 = lim
n→∞

FGx2n+2 = z.
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Assume ST (X) is complete in X, then there exists u ∈ X such that
z = STu.

Now,
Step-1.

Claim: Lu = z.
Putting x = x2n and y = u in (3.2) we have,

P (x2n, u) = W1d(FGx2n, Hx2n) +W2d(STu, Lu) +W3d(STu,Hx2n)+

W4d(FGx2n, Lu) +W5d(FGx2n, STu)

(3.31)

Taking limit as n→∞ on both sides of (3.31) we have,

lim
n→∞

P (x2n, u) = W1d(z, z) +W2d(z, Lu) +W3d(z, z) +W4d(z, Lu)+

W5d(z, z)

= (W2 +W4)d(z, Lu)

� d(z, Lu)

(3.32)

Now from (3.1) and using (3.32) we have,

ψ{d(HGz,Lx2n+1)} � J∗{ψ{P (Gz, x2n+1)}, φ{P (Gz, x2n+1)}}
(3.33)

Taking limit as n→∞ on both sides of (3.33) we have,

lim
n→∞

ψ{d(Hx2n, Lu)} � lim
n→∞

J∗{ψ{P (x2n, u)}, φ{P (x2n, u)}}

or, lim
n→∞

ψ{d(Hx2n, Lu)} � J∗{ lim
n→∞

ψ{P (x2n, u)}, lim
n→∞

φ{P (x2n, u)}}

or, lim
n→∞

ψ{d(Hx2n, Lu)} � J∗{ lim
n→∞

ψ{d(Hx2n, Lu)}, lim
n→∞

φ{d(Hx2n, Lu)}}

� lim
n→∞

ψ{d(Hx2n, Lu)}

(3.34)

Therefore,
J∗{ lim

n→∞
ψ{d(Hx2n, Lu)}, lim

n→∞
φ{d(Hx2n, Lu)}} = lim

n→∞
ψ{d(Hx2n, Lu)}

Hence, either lim
n→∞

ψ{d(Hx2n, Lu)} = θA, or, lim
n→∞

φ{d(Hx2n, Lu)} = θA

Thus,

lim
n→∞

ψ{d(Hx2n, Lu) = θA, which gives

lim
n→∞

d(Hx2n, Lu) = θA, implies d(z, Lu) = θA.
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Hence,

(3.35) Lu = z and therefore, STu = Lu = z.

Since {L, ST} is weakly compatible, so

(3.36) Lz = L(STu) = ST (Lu) = STz.

Step-2.
Claim: Lz = z.
Now from (3.2) we have,

P (x2n, z) =W1d(FGx2n, Hx2n) +W2d(STz, Lz) +W3d(STz,Hx2n)+

W4d(FGx2n, Lz) +W5d(FGx2n, STz)

(3.37)

Taking limit as n→∞ on both sides on (3.37) we have,

lim
n→∞

P (x2n, z) =W1d(z, z) +W2d(STz, Lz) +W3d(Lz, z) +W4d(z, Lz)+

W5d(z, Lz)

= (W3 +W4 +W5)d(Lz, z)

� d(Lz, z)

(3.38)

Now from (3.1) and using (3.38) we have,

ψ{d(Hx2n, Lz)} � J∗{ψ{P (x2n, z)}, φ{P (x2n, z)}}(3.39)

Taking limit as n→∞ on both sides of (3.39) we have,
(3.40)

lim
n→∞

ψ{d(Hx2n, Lz)} � lim
n→∞

J∗{ψ{P (x2n, z)}, φ{P (x2n, z)}}

or, lim
n→∞

ψ{d(Hx2n, Lz)} � J∗{ lim
n→∞

ψ{P (x2n, z)}, lim
n→∞

φ{P (x2n, z)}}

or, lim
n→∞

ψ{d(Hx2n, Lz)} � J∗{ lim
n→∞

ψ{d(Hx2n, Lz)}, lim
n→∞

φ{d(Hx2n, Lz)}}

� lim
n→∞

ψ{d(Hx2n, Lz)}.

Therefore,
J∗{ lim

n→∞
ψ{d(Hx2n, Lz)}, lim

n→∞
φ{d(Hx2n, Lz)}} = lim

n→∞
ψ{d(Hx2n, Lx2n+1)}.

Hence, either

lim
n→∞

ψ{d(Hx2n, Lx2n+1)} = θA,

or,

lim
n→∞

φ{d(Hx2n, Lx2n+1)} = θA.
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Thus,

lim
n→∞

ψ{d(Hx2n, Lz) = θA

or, lim
n→∞

d(Hx2n, Lz) = θA, implies d(Lz, z) = θA.

Hence,

(3.41) Lz = z.

Therefore,

(3.42) L(STu) = (ST )Lu = Lz = STz = z.

Now since L(X) ⊂ FG(X), then there exists w ∈ X such that Lz =
FGw = z.
Then using (3.42), we have

(3.43) Lz = FGw = STz = z.

Step-3.
Claim: FGw = Hw.
Now from (3.2) we have,

P (w, z) =W1d(FGw,Hw) +W2d(STz, Lz) +W3d(STz,Hw)+

W4d(FGw,Lz) +W5d(FGw,STz)

=W1d(FGw,Hw) +W2d(Lz, Lz) +W3d(FGw,Hw)+

W4d(FGw,FGw) +W5d(FGw,FGw)

=(W1 +W3)d(FGw,Hw)

�d(FGw,Hw)

(3.44)

Now from (3.2) and using (3.44) we have,

ψ{d(Hw,FGw)} = ψ{d(Hw,Lz)}
� J∗{ψ{P (w, z)}, φ{P (w, z)}}
� J∗{ψ{d(FGw,Hw)}, φ{d(FGw,Hw)}}
� ψ{d(FGw,Hw)},

(3.45)

Therefore, J∗{ψ{d(FGw,Hw)}, φ{d(FGw,Hw)}} = ψ{d(FGw,Hw)}.
Then, either ψ{d(FGw,Hw)} = θA, or, φ{d(FGw,Hw)} = θA,
which implies d(FGw,Hw) = θA.
Hence,

(3.46) FGw = Hw, which gives FGw = Hw = z.
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Since {H,FG} is weakly compatible so,

(3.47) Hz = HLz = H(FGw) = FG(Hw) = FGz.

Step-4.
Claim: Hz = z.
Now from (3.2) we have,

P (z, x2n+1)

=W1d(FGz,Hz) +W2d(STx2n+1, Lx2n+1) +W3d(STx2n+1, Hz)+

W4d(FGz,Lx2n+1) +W5d(FGz, STx2n+1)

(3.48)

Taking limit as n→∞ on both sides on (3.48) we have,

lim
n→∞

P (x2n, z) =W1(FGz,Hz) +W2d(z, z) +W3d(z,Hz) +W4d(Hz, z)+

W5d(Hz, z)

=(W3 +W4 +W5)d(Hz, z)

�d(Hz, z)

(3.49)

Now from (3.1) and using (3.49) we have,

ψ{d(Hz,Lx2n+1)} � J∗{ψ{P (z, x2n+1)}, φ{P (z, x2n+1)}}
(3.50)

Taking limit as n→∞ on both sides of (3.50) we have,

lim
n→∞

ψ{d(Hz,Lx2n+1)} � lim
n→∞

J∗{ψ{P (z, x2n+1)}, φ{P (z, x2n+1)}}

or, lim
n→∞

ψ{d(Hz,Lx2n+1)} � J∗{ lim
n→∞

ψ{P (z, x2n+1)}, lim
n→∞

φ{P (z, x2n+1)}}

or, lim
n→∞

ψ{d(Hz,Lx2n+1)} � J∗{ lim
n→∞

ψ{d(Hz,Lx2n+1)}, lim
n→∞

φ{d(Hz,Lx2n+1)}}

� lim
n→∞

ψ{d(Hz,Lx2n+1)}, which implies

(3.51)

J∗{ lim
n→∞

ψ{d(Hz,Lx2n+1)}, lim
n→∞

φ{d(Hz,Lx2n+1)}} = lim
n→∞

ψ{d(Hz,Lx2n+1)}
Then,
either lim

n→∞
ψ{d(Hz,Lx2n+1)} = θA, or, lim

n→∞
φ{d(Hz,Lx2n+1)} = θA.

Hence, lim
n→∞

ψ{d(Hz,Lx2n+1)} = θA

or, lim
n→∞

d(Hz,Lx2n+1) = θA, implies d(Hz, z) = θA.
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Hence,

(3.52) Hz = z.

Thus,
(3.53)
Hz = HLz = FGz = z and therefore,Hz = HLz = FGz = STz = Lz = z.

Step-5.
Claim: Tz = z.
As LT = TL and ST = TS, we have LTz = TLz = Tz and ST (Tz) =
T (STz) = Tz
Now from (3.2) we have,

P (x2n, T z)

= W1d(FGx2n, Hx2n) +W2d(STTz, LTz) +W3d(STTz,Hx2n)

+W4d(FGx2n, LTz) +W5d(FGx2n, STTz)

(3.54)

Taking limit as n→∞ on both sides on (3.54) we have,

lim
n→∞

P (x2n, T z) =W1(z, z) +W2d(Tz, Tz) +W3d(Tz, z)

+W4d(z, Tz) +W5d(z, Tz)

=(W3 +W4 +W5)d(z, Tz)

�d(z, Tz)

(3.55)

Now from (3.1) and using (3.55) we have,

ψ{d(Hx2n, LTz)} � J∗{ψ{P (x2n, T z)}, φ{P (x2n, T z)}}
(3.56)

Taking limit as n→∞ on both sides of (3.56)we have,

lim
n→∞

ψ{d(Hx2n, LTz)} � lim
n→∞

J∗{ψ{P (x2n, T z)}, φ{P (x2n, T z)}}

or, lim
n→∞

ψ{d(Hx2n, LTz)} � J∗{ lim
n→∞

ψ{P (z, x2n+1)}, lim
n→∞

φ{P (z, x2n+1)}}

or, lim
n→∞

ψ{d(Hx2n, LTz)} � J∗{ lim
n→∞

ψ{d(Hx2n, T z)}, lim
n→∞

φ{d(Hx2n, T z)}}

� lim
n→∞

ψ{d(Hx2n, T z)}

(3.57)

Therefore,
J∗{ lim

n→∞
ψ{d(x2n, T z)}, lim

n→∞
φ{d(Hx2n, T z)}} = lim

n→∞
ψ{d(Hx2n, T z)}
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Then either lim
n→∞

ψ{d(Hx2n, T z)} = θA, or, lim
n→∞

φ{d(Hx2n, T z)} = θA.

Therefore, lim
n→∞

ψ{d(Hx2n, T z)} = θA, which gives

lim
n→∞

d(Hx2n, T z) = θA, implies d(z, Tz) = θA.

Hence,

(3.58) Tz = z.

Now STz = Tz = z, which implies Sz = z.
Therefore,

(3.59) Sz = Tz = Lz = z.

Now as FG = GF, HG = GH, so

H(Gz) = G(Hz) = Gz and FG(Gz) = GF (Gz) = G(FGz) = Gz.

Step-6.
Claim: Gz = z.
Now from (3.1) we have,

P (Gz, x2n+1)

= W1d(FGGz,Hz) +W2d(STx2n+1, Lx2n+1) +W3d(STx2n+1, HGz)

+W4d(FGGz,Lx2n+1) +W5d(FGGz, STx2n+1)

(3.60)

Taking limit as n→∞ on both sides on (3.60) we have,

lim
n→∞

P (Gz, z) = W1(Gz, z) +W2d(z, z) +W3d(z,Gz) +W4d(Gz, z)+

W5d(Gz, z)

= (W1 +W3 +W4 +W5)d(Gz, z)

� d(Gz, z)

(3.61)

Now from (3.1) and using (3.61) we have,

ψ{d(HGz,Lx2n+1)} � J∗{ψ{P (Gz, x2n+1)}, φ{P (Gz, x2n+1)}}
(3.62)
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Taking limit as n→∞ on both sides of (3.62) we have,

lim
n→∞

ψ{d(HGz,Lx2n+1)} � lim
n→∞

J∗{ψ{P (Gz, x2n+1)}, φ{P (Gz, x2n+1)}}

or,

lim
n→∞

ψ{d(HGz,Lx2n+1)} � J∗{ lim
n→∞

ψ{P (Gz, x2n+1)}, lim
n→∞

φ{P (Gz, x2n+1)}}

or,

lim
n→∞

ψ{d(Gz,Lx2n+1)} � J∗{ lim
n→∞

ψ{d(Gz,Lx2n+1)}, lim
n→∞

φ{d(Gz,Lx2n+1)}}

or, lim
n→∞

ψ{d(Gz,Lx2n+1)} � lim
n→∞

ψ{d(Gz,Lx2n+1)}

(3.63)

Therefore,
J∗{ lim

n→∞
ψ{d(Hz,Lx2n+1)}, lim

n→∞
φ{d(Hz,Lx2n+1)}} = lim

n→∞
ψ{d(Hz,Lx2n+1)}

Then either lim
n→∞

ψ{d(Gz,Lx2n+1)} = θA, or, lim
n→∞

φ{d(Gz,Lx2n+1)} =

θA.

Hence, lim
n→∞

ψ{d(Gz,Lx2n+1)} = θA, which implies

lim
n→∞

d(Gz,Lx2n+1) = θA, which gives d(Gz, z) = θA.

Hence,

(3.64) Gz = z.

Therefore,

(3.65) Hz = Gz = Fz = z.

Hence, from (3.59) and (3.65) we have, Sz = Tz = Lz = Hz = Gz =
Fz = z.
Hence, z is a common fixed point of F,G,H,L, S and T .
Uniqueness: If possible let, u and z be two distinct fixed points of
F,G,H,L, S and T i.e., Fu = Gu = Hu = Lu = Su = Tu = u and
Fz = Gz = Hz = Lz = Sz = Tz = z with u 6= z.
Now from (3.2) we have,

P (u, z)

= W1d(FGu,Hu) +W2d(STz, Lz) +W3d(STz,Hu) +W4d(FGu,Lz)

+W5d(FGu, STz)

= (W3 +W4 +W5)d(u, z)

� d(u, z)

(3.66)
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Now from (3.1) and using (3.66) we have,

ψ{d(Hu,Lz)} � J∗{ψ{P (u, z)}, φ{P (u, z)}}
� J∗{ψ{d(u, z)}, φ{d(u, z)}}
� ψ{d(u, z)}

Therefore, J∗{ψ{d(u, z)}, φ{d(u, z)}} = ψ{d(u, z)}
Hence, either ψ{d(u, z)} = θA, or, φ{d(u, z)} = θA.
In both cases we have, d(u, z) = θ, which is a contradiction.
Hence, z = u.
Therefore, F,G,H,L, S and T have a unique common fixed point in X.
This completes the proof.

Example 3.1. Assume X = R and A = M2(R) be the set of all bounded
linear operators on a Hilbert space R2.

Define d(x, y) =

(
k|x− y| 0

0 |x− y|

)
, where k > 0 is a constant. Then

(X,A+, d) is a complete C∗-algebra valued metric space.

Assume S(x) = 8x, T (x) = x
2 , H(x) = x, L(x) = 2x, F (x) = 6x,G(x) =

x
3 , then ST (x) = 4x, FG(x) = 2x.

Then H(X) ⊂ ST (X), L(X) ⊂ FG(X) and FG = GF,ST =
TS,HG = GH,LT = TL.

Now

d(FGx,Hx) =

(
k|2x− x| 0

0 |2x− x|

)
, d(STy, Ly) =

(
k|4y − 2y| 0

0 |4y − 2y|

)
,

d(STy,Hx) =

(
k|4y − x| 0

0 |4y − x|

)
, d(FGx,Ly) =

(
k|2x− 2y| 0

0 |2x− 2y|

)
,

d(FGx, STy) =

(
k|2x− 4y| 0

0 |2x− 4y|

)
, d(Hx,Ly) =

(
k|x− 2y| 0

0 |x− 2y|

)
Here

P (x, y)

= W1

(
k|2x− x| 0

0 |2x− x|

)
+W2

(
k|4y − 2y| 0

0 |4y − 2y|

)
+W3

(
k|4y − x| 0

0 |4y − x|

)
+W4

(
k|2x− 2y| 0

0 |2x− 2y|

)
+W5

(
k|2x− 4y| 0

0 |2x− 4y|

)
.

Let

ψ(Q) = 2Q and φ(Q) = Q, ∀Q ∈ A+, then ψ{d(Hx,Ly)} =

(
k|2x− 4y| 0

0 |2x− 4y|

)
.

If we take

W1 =

(
0 0
0 0

)
, W2 =

(
0 0
0 0

)
, W3 =

(
0 0
0 0

)
, W4 =

(
0 0
0 0

)
,

W5 =

( 2
3

0

0 2
3

;

)
;
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then

ψ{P (x, y)} =

( 4k
3
|2x− 4y| 0

0 4
3
|2x− 4y|

)
and φ{P (x, y)} =

( 2k
3
|2x− 4y| 0

0 2
3
|2x− 4y|

)
.

Therefore, the condition ψ{d(Hx,Ly)} � J∗{ψ{P (x, y)}, φ{P (x, y)}}
holds.
Here, x = 0 is the unique common fixed point of F,G, S, T,H and L.

Example 3.2. Let X = [0, 1], A = C and a norn on A is defined by

‖(x, y)‖ =
√
x2 + y2, ∀ (x, y) ∈ C. Also we define C∗-metric on X as

d(x, y) = (0, |x− y|), ∀ x, y ∈ X with the partial ordering (e, f) � (g, h)
by e ≤ g and f ≤ h.
We consider Hx = Lx = x

8 and Fx = Gx = Sx = Tx = x
2 , ∀ x ∈ X.

Then FGx = STx = x
4 .

Also consider ψ(U) = 5U, φ(U) = 4U, ∀ U ∈ A.
Now,

P (x, y) =W1d(FGx,Hx) +W2d(STy, Ly) +W3d(STy,Hx)+

W4d(FGx,Ly) +W5d(FGx, STy)

=W1d(
x

4
,
x

8
) +W2d(

y

4
,
y

8
) +W3d(

y

4
,
x

8
) +W4d(

x

4
,
y

8
) +W5d(

x

4
,
y

4
)

=(0,
1

5
|x− y|), Taking [W1 = 0,W2 = 0,W3 = 0,W4 = 0,W5 =

4

5
.]

Then d(Hx,Ly) = d(x8 ,
y
8 ) = (0, 1

8 |x− y|) and therefore,

ψ{d(Hx,Ly)} = (0, 5
8 |x−y|), ψ{P (x, y)} = (0, |x−y|) and φ{P (x, y)} =

(0, 4
5 |x− y|).

Therefore, the condition ψ{d(Hx,Ly)} � J∗{ψ{P (x, y)}, φ{P (x, y)}}
holds.
Here, x = 0 is the unique common fixed point of F,G, S, T,H and L.

Corollary 3.1. Let (X,A, d) be a complete C∗-algebra valued metric
space and F,G, S, T,H,L be self maps on X such that for all x, y ∈ X,
the following hold:

ψ{d(Hx,Ly)} � ψ{P (x, y})− φ{P (x, y)}, ψ, φ ∈ Φ ;(3.67)

where,

P (x, y) =W1d(FGx,Hx) +W2d(STy, Ly) +W3d(STy,Hx)+

W4d(FGx,Ly) +W5d(FGx, STy); Wi ∈ A′, ∀ i = 1, 2, 3, 4, 5.

(3.68)

with W1 +W2 + 2(W3 +W4) +W5 � IA; θA �Wi, ∀ i = 1, 2, 3, 4, 5;
and ‖W1‖+ ‖W2‖+ 2(‖W3‖+ ‖W4‖) + ‖W5‖ ≤ 1.
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Also
(i) H(X) ⊂ ST (X), L(X) ⊂ FG(X); (ii) FG = GF,ST = TS,HG =
GH,LT = TL; (iii) The pairs {H,FG} and {L, ST} are weekly compat-
ible and one of the ranges H(X), FG(X), L(X) and ST (X) is complete
in X. Then F,G, S, T,H,L have a unique common fixed point in X.

Corollary 3.2. Let (X,A, d) be a complete C∗-algebra valued metric
space and F, S,H,L be self maps on X such that for all x, y ∈ X, the
following hold:

ψ{d(Hx,Ly)} � J∗{ψ{P (x, y}), φ{P (x, y)}}, ψ, φ ∈ Φ and J∗ ∈ C∗;
(3.69)

where,

P (x, y) =W1d(Fx,Hx) +W2d(Sy, Ly) +W3d(Sy,Hx)+

W4d(Fx,Ly) +W5d(Fx, STy); Wi ∈ A′, ∀ i = 1, 2, 3, 4, 5.

(3.70)

with W1 +W2 + 2(W3 +W4) +W5 � IA; θA �Wi, ∀ i = 1, 2, 3, 4, 5.
and ‖W1‖+ ‖W2‖+ 2(‖W3‖+ ‖W4‖) + ‖W5‖ ≤ 1.
Also
(i) H(X) ⊂ S(X), L(X) ⊂ F (X); (ii) The pairs {H,F} and {L, S} are
weekly compatible and one of the ranges H(X), F (X), L(X) and S(X)
is complete in X. Then F, S,H,L have a unique common fixed point in
X.

Corollary 3.3. Let (X,A, d) be a complete C∗-algebra valued metric
space and F,G, S, T,H,L are self maps on X such that for all x, y ∈ X,
the following hold:

ψ{d(Hx,Ly)} � ψ{P (x, y})− φ{P (x, y)}, ψ, φ ∈ Φ;(3.71)

where,

P (x, y) =w1d(FGx,Hx) + w2d(STy, Ly) + w3d(STy,Hx) + w4d(FGx,Ly)

+ w5d(FGx, STy);

(3.72)

with w1 + w2 + 2(w3 + w4) + w5 ≤ 1; wi ≥ 0, ∀ i = 1, 2, 3, 4, 5.
Also
(i) H(X) ⊂ ST (X), L(X) ⊂ FG(X); (ii) FG = GF,ST = TS,HG =
GH,LT = TL; (iii) The pairs {H,FG} and {L, ST} are weekly compat-
ible and one of the ranges H(X), FG(X), L(X) and ST (X) is complete
in X. Then F,G, S, T,H,L have a unique common fixed point in X.
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Corollary 3.4. Let (X,A, d) be a complete C∗-algebra valued metric
space and F, S,H,L are self maps on X such that for all x, y ∈ X
satisfying the following:

ψ{(d(Hx,Ly)} � J∗{ψ{P (x, y}), φ{P (x, y)}}, ψ, φ ∈ Φ and J∗ ∈ C∗;
(3.73)

where,

P (x, y) =w1d(Fx,Hx) + w2d(Sy, Ly) + w3d(Sy,Hx) + w4d(Fx,Ly)

+ w5d(Fx, STy);

(3.74)

with w1 + w2 + 2(w3 + w4) + w5 ≤ 1; wi ≥ 0, ∀ i = 1, 2, 3, 4, 5.
Also
(i) H(X) ⊂ S(X), L(X) ⊂ F (X); (ii) The pairs {H,F} and {L, S} are
weekly compatible and one of the ranges H(X), F (X), L(X) and S(X)
is complete in X. Then F, S,H,L have a unique common fixed point in
X.

Note: If the mappings F,G, S, T,H and L satisfy F -contraction and
(φ, F )-contraction, then the results also hold.

4. Conclusion

C∗-algebra valued metric space is the generalization of various metric
spaces. In this paper we have developed C∗-class function and intro-
duced (Φ-C∗)-contraction of Hardy-Rogers type which is the generaliza-
tion of F -contractions, (φ, F )-contractions and (ψ,ϕ)-weak contractions.
Using this contraction we have established unique common fixed point
results for six mappings in C∗-algebra valued metric spaces. We have
given some relevant corollaries and examples on our results. In this
paper some new ideas are given and our results generalize many previ-
ous results in the field of the fixed point theory on various metric spaces.
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