تعداد نشریات | 26 |
تعداد شمارهها | 343 |
تعداد مقالات | 2,933 |
تعداد مشاهده مقاله | 4,431,212 |
تعداد دریافت فایل اصل مقاله | 3,019,663 |
Some ordered hypersemigroups which enter their properties into their σ-classes | ||
Journal of Hyperstructures | ||
دوره 6، Spec. 13th AHA، مهر 2017، صفحه 27-37 اصل مقاله (276.83 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2017.2680 | ||
نویسنده | ||
Niovi Kehayopulu* | ||
Department of Mathematics, University of Athens, P.O.Box 16784, Athens, Greece | ||
چکیده | ||
An important problem in the theory of ordered hypersemigroups is to describe the ordered hypersemigroups which enter their properties into their σ-classes. In this respect, we prove the following: If H is a regular, left (right) regular, completely regular, intra-regular, left (right) quasi-regular, semisimple, k regular, archimedean, weakly commutative, left (right) simple, simple, left (right) strongly simple ordered semigroup and σ a complete semilattice congruence on H then, for each a ∈ H, the σ-class (a)σ of H is, respectively, so. | ||
کلیدواژهها | ||
Ordered hypersemigroup؛ regular؛ left regular؛ intra-regular؛ left quasi-regular؛ semisimple؛ k-regular؛ archimedean؛ weakly commutative؛ left simple؛ simple؛ left strongly simple؛ complete semilattice congruence | ||
مراجع | ||
[1] M. Al Tahan and B.Davvaz, Algebraic hyperstructures associated to biological inheritance,Math.Biosci.285(2017),112–118. [2] P. Bonansinga and P. Corsini, On semihypergroup and hypergroup homomor-phisms (Italian), Boll. Un. Mat. Ital. B (6) 1, no. 2 (1982), 717–727. [3] J. Chvalina and L. Chvalinova, Transposition hypergroups formed by transforma-tion operators on rings of differentiable functions, Ital. J. Pure Appl. Math. no.15 (2004), 93–106. [4] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Math. Surveys no. 7, Amer. Math. Soc. Providence, R.I. 1961 xv+224pp. [5] P. Corsini, Sur les semi-hypergroupes, Atti. Soc. Peloritana Sci. Fis. Mat. Natur. 26, no. 4 (1980), 363–372. [6] P. Corsini, Prolegomena of Hypergroup Theory, Supplement to Riv. Mat. Pura Appl. Aviani Editore, Tricesimo, 1993. 215 pp. ISBN: 88-7772-025-5. [7] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics (Dordrecht), 5. Kluwer Academic Publishers, Dordrecht, 2003. xii+322 pp. ISBN: 1-4020-1222-5. [8] P. Corsini, M. Shabir and T. Mahmood, Semisimple semihypergroups in terms of hyperideals and fuzzy hyperideals, Iran. J. Fuzzy Syst. 8, no. 1 (2011), 95–111. [9] T. Changphas and B. Davvaz, Bi-hyperideals and quasi-hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. no. 35 (2015), 493–508. [10] C. Darwin, The Variation of Animals and Plants Under Domestication (1st American edition), Orange Judd and Co., New York, 1868. [11] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malays. Math.Sci. Soc. (2) 23 (2000), no. 1, 53–58. [12] B. Davvaz, Characterizations of sub-semihypergroups by various triangular norms, Chechoslovak Math. J. 55, no. 4 (2005), 923–932. [13] B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ 2013. viii+200 pp. [14] B. Davvaz, Semihypergroup Theory, 1st Edition, Elsevier 2016. [15] B. Davvaz and A. Dehghan-Nezhad, Chemical examples in hypergroups, Ratio Matematica 14 (2003), 71–74. [16] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Interna-tional Academic Press, USA 2007. [17] B. Davvaz, A. D. Nezad and A. Benvidi, Chain reactions as experimental ex-amples of ternary algebraic hyperstructures, MATCH Commun. Math. Comput.Chem. 65, no. 2 (2011), 491–499. [18] B. Davvaz, A. D. Nezad and M. Mazloum-Ardakani, Chemical hyperalgebra: re-dox reactions, MATCH Commun. Math. Comput. Chem. 71 (2014), 323–331. [19] B. Davvaz, A. D. Nezhad, Dismutation reactions as experimental verifcations of ternary algebraic hyperstructures, MATCH Commun. Math. Comput. Chem. 68 (2012), 551–559. [20] B. Davvaz, A. D. Nezhad and A. Benvidi, Chemical hyperalgebra: dismutation reactions, MATCH Commun. Math.Comput. Chem. 67 (2012), 55–63. [21] B. Davvaz, A. D. Nezhad and M. Heidari, Inheritance examples of algebraic hyper-structures, Inform. Sci. 224 (2013), 180–187. [22] B. Davvaz and N. S. Poursalavati, Semihypergroups and S-hypersystems, Pure Math. Appl. 11 (2000), 43–49. [23] A. J. F. Griffith, An Introduction to Genetic Analysis, 7th edn. New York: W.H. Freeman, 1999. [24] K. Hila, B. Davvaz and J. Dine, Study on the structure of Γ-semihypergroups,Comm. Algebra 40, no. 8 (2012), 2932–2948. [25] K. Hila, B. Davvaz and K. Naka, On quasi-hyperideals in semihypergroups,Comm. Algebra 39, no. 11 (2011), 4183–4194. [26] N. Kehayopulu and M. Tsingelis, Remark on ordered semigroups. In: Ljapin, E. S. (edit.), Decompositions and Homomorphic Mappings of Semigroups. In-teruniversitary collection of scientific works. St. Petersburg: Obrazovanie (ISBN 5-233-00033-4), pp. 50–55 (1992). [27] M. Kondo and N. Lekkoksung, On intra-regular ordered Γ-semihypergroups, Int. J. Math. Anal. (Ruse) 7, no. 25–28 (2013), 1379–1386. [28] S. Lekkoksung, On weakly semi-prime hyperideals in semihypergroups, Int. J. Algebra 6, no. 13–16 (2012), 613–616. [29] S. Lekkoksung, On left, right weakly prime hyperideals on semihypergroups, Int. J. Contemp. Math. Sci. 7, no. 21–24 (2012), 1193–1197. [30] S. Lekkoksung, Fuzzy bi-hyperfilters in semihypergroups, Int. J. Math. Anal. (Ruse) 7, no. 33–36 (2013), 1629–1634. [31] T. Mahmood, Some contributions to semihypergroups, Ph.D. Thesis, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan 2011. [32] F. Marty, Sur une g´en´eralization de la notion de groupe, Actes du Congr`es des Math.Scand.,Stockholm 1934,p.45–49. [33] M. S. Mitrovi´c, Semilattices of Archimedean Semigroups, University of Nis, Faculty of Mechanical Engineering, Nis, 2003. xiv+160pp. [34] J. Mittas, Hypergroupes canoniques valu´es et hypervalu´es, Math. Balkanica 1 (1971), 181–185. [35] J. Mittas, Hypergroups canoniques, Math. Balkanica 2 (1972), 165–179 . [36] B. Pibaljommee, K. Wannatong and B. Davvaz, An investigation of fzzy hyper-ieals of ordered semihypergroups, Quasigroup Related Systems 23 (2015), 297– 308. [37] M. Petrich, Introduction to Semigroups, Charles E. Merrill Publ. Comp. A Bell & Howell Comp. Columbus, Ohio 1973. viii+198pp. [38] B. A. Pierce, Genetics, A Conceptual Approach, MacMillan 2012. [39] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Monographs in Mathematics. Hadronic Press, Inc., Palm Harbor, FL, 1994. vi+180 pp. ISBN: 0-911767-76-2. [40] T. Vougiouklis, Convolutions on WASS hyperstructures, Combinatorics (Rome and Montesilvano, 1994). Discrete Math. 174 (1997), no. 1–3, 347-355. [41] T. Vougiouklis, Hypermatrix representations of finite Hv-groups, European J. Combin. 44 (2015), part B, 307-315. [42] T. Vougiouklis, On the hyperstructure theory, Southeast Asian Bull. Math. 40 (2016), no. 4, 603-620. | ||
آمار تعداد مشاهده مقاله: 29 تعداد دریافت فایل اصل مقاله: 45 |