FUZZY WEAKLY PRIME Γ-IDEALS IN Γ-RINGS

G. YEŞILKURT, S. ONAR, D. SÖNMEZ, B. A. ERSOY

ABSTRACT. In this work, we investigate fuzzy weakly prime Γ -ideal, fuzzy partial weakly prime Γ -ideal and fuzzy semiprime Γ - ideal of a commutative Γ -ring with nonzero identity. We obtained some characterizations of fuzzy weakly prime Γ -ideal, partial weakly prime Γ -ideal and semiprime Γ -ideal of a Γ -ring. Also some properties of these concepts have been studied.

Key Words: Fuzzy Prime Ideal, Fuzzy Weakly Prime Ideal, Fuzzy Weakly Prime Γ-Ideal,
Fuzzy Partial Weakly Prime Γ-Ideal, Fuzzy Weakly Semiprime Γ-ideal.
2010 Mathematics Subject Classification: Primary: 03E72; Secondary: 16D25, 13G05.

1. INTRODUCTION

L. A. Zadeh [5] introduced the concept of a fuzzy set in 1965, and N. Nobusawa [6] introduced the notion of a Γ -ring which is more general than a ring. Two years after that W. E. Barnes [7] emaciated relatively the conditions in the definition of the Γ -ring in the sense of Nobusawa. In [8], Jun and Lee introduced the concept of a fuzzy Γ -ring and again Jun [9] defined fuzzy prime ideal of a Γ -ring and obtained certain characterizations for a fuzzy ideal to be a fuzzy prime ideal. In [3], T. K. Dutta and Tanusree Chanda studied fuzzy prime ideal of a Γ -ring via its operator rings and obtained a number of characterisations of fuzzy prime ideal of a Γ -ring. As a continuation of the paper [3], in this paper, we assert the notion of a fuzzy weakly prime, fuzzy partial weakly prime

Received: 17 October 2017. Communicated by Ali Taghavi;

^{*}Address correspondence to ...; E-mail:

^{© 2017} University of Mohaghegh Ardabili.

¹⁴

and fuzzy semiprime Γ -ideals of a Γ -ring. We obtain some characterizations of fuzzy weakly prime, fuzzy partial weakly prime and fuzzy semiprime Γ -ideal.

2. Preliminaries

Definition 2.1. Let R be a ring and $\mu \in LI(R)$. Then μ is called a fuzzy prime if μ is non-constant and for every $\alpha, \beta \in LI(R)$ such that $\alpha \circ \beta \subseteq \mu$ the either $\alpha \subseteq \mu$ or $\beta \subseteq \mu$. [1]

Theorem 2.2. Let μ is a fuzzy prime ideal of R, then μ_* is a prime ideal of R. [2]

Definition 2.3. An *L*-ideal μ of *R* is called a fuzzy weakly prime if for every *L*-ideals α , β of *R* such that $0 \neq \alpha \circ \beta \subseteq \mu$ the either $\alpha \subseteq \mu$ or $\beta \subseteq \mu$. [1]

Theorem 2.4. Let μ is non-constant fuzzy weakly prime ideal of R, then μ_* is a weakly prime ideal of R. [1]

Definition 2.5. An element $1 \neq t \in L$ is called a prime element if $a \land b \leq t$ implies that either $a \leq t$ or $b \leq t$, for all $a, b \in L$. [1]

Definition 2.6. An element $t \neq 1$ in *L* is called a weakly prime element if $0 \neq a \land b \leq t$ implies that either $a \leq t$ or $b \leq t$, for all $a, b \in L$. [1]

Definition 2.7. Let R and Γ be two additive abelian groups. R is called a Γ - ring if there exists a mapping $f : R \times \Gamma \times R \longrightarrow R$ such that $f(a,\alpha,b) = a\alpha b, a, b \in R, \alpha \in \Gamma$, satisfying the following conditions for all $a, b, c \in R$ and for all $\alpha, \beta, \gamma \in \Gamma$

- (1) $(a+b)\alpha c = a\alpha c + b\alpha c$
- (2) $a(\alpha+\beta)b = a\alpha b + a\beta b$
- (3) $a\alpha(b+c) = a\alpha b + a\alpha c$
- (4) $a\alpha(b\beta c) = (a\alpha b)\beta c.$ [3]

Definition 2.8. A subset S of a Γ - ring R is said to be a Γ -ideal of R if

(1) S is an additive subgroup of R

(2) $r\alpha a \in S$ and $a\alpha r \in S$ for all $r \in R$, $\alpha \in \Gamma$, $a \in S$.

Proposition 2.9. Let μ and ν be fuzzy Γ -ideals, then $\mu \cap \nu$ is a fuzzy Γ -ideal.

^[3]

Definition 2.10. Let μ and σ be two fuzzy subsets of Γ -ring R. Then the product of μ and σ is denoted by $\mu\Gamma\sigma$ and defined by as follows. [3]

$$(\mu\Gamma\sigma)(x) = \begin{cases} \sup_{x=r\gamma s} [min[\mu(r)\sigma(s)]], & for r, s \in R \text{ and } \gamma \in \Gamma \\ 0 & otherwise \end{cases}$$

Definition 2.11. Let R be a Γ - ring. A non-constant fuzzy ideal μ of R is called a fuzzy prime Γ -ideal of R, if $\alpha \circ \beta \subseteq \mu$ implies that $\alpha \subseteq \mu$ or $\beta \subseteq \mu$ for any α , β fuzzy ideals of R. [3]

Definition 2.12. An element $1 \neq t \in L$ is called a weakly prime Γ element if $0 \neq a \land \gamma \land b \leq t$ implies that either $a \leq t$ or $b \leq t$, for all $a, b \in L$ and $\gamma \in R$. [3]

Definition 2.13. Let f be a mapping from Γ -ring R into Γ -ring S and μ be a fuzzy ideal of R. Now μ is said to be an f-invariant if f(x) = f(y) implies that $\mu(x) = \mu(y)$ for all $x, y \in R$. [3]

Definition 2.14. A function $f: R \mapsto S$, where R,S are Γ -rings is said to be a Γ -homomorphism if

$$f(a + b) = f(a) + f(b), f(a\gamma b) = f(a)\gamma f(b)$$

for all $a, b \in R, \gamma \in \Gamma$. [3]

Definition 2.15. A fuzzy subset μ of a Γ -ring R is called a fuzzy point if $\mu(x) \in (0, 1]$ for some $x \in R$ and $\mu(y) = 0$ for all $y \in R \setminus x$. If $\mu(x) = t$, then the fuzzy point μ is denoted by x_t . [3]

Definition 2.16. Let μ be a fuzzy Γ -ideal of Γ -ring R. Then μ is said to be a fuzzy semiprime Γ -ideal if $\nu \Gamma \nu \subseteq \mu$, for all Γ -ideals ν implies that $\nu \subseteq \mu$. [10]

Theorem 2.17. If R is a Γ -ring and μ is a fuzzy ideal of R. Then the following expressions are equivalent :

- (1) If $0_R \neq x_r \Gamma x_r \subseteq \mu$, then $x_r \subseteq \mu$ where x_r fuzzy point on R and $\alpha \in \Gamma$.
- (2) μ is a fuzzy semiprime Γ -ideal of R. [10]

3. Fuzzy Weakly prime Γ -Ideals

Throughout this paper R be a commutative Γ -ring with nonzero identity.

Fuzzy Weakly Prime $\Gamma\text{-ideal}$ in $\Gamma\text{-Rings}$

Definition 3.1. Let R be a Γ - ring. A non-constant fuzzy ideal μ of R is called a fuzzy weakly prime Γ - ideal if $0 \neq \alpha \Gamma \beta \subseteq \mu$ implies that $\alpha \subseteq \mu$ or $\beta \subseteq \mu$ for any α , β fuzzy ideals of R. [3]

Definition 3.2. Let μ be a nonempty fuzzy subset of a Γ - ring R. If μ provide the following conditions, then μ is said to be a fuzzy Γ -ideal of R.

- (1) $\mu(x-y) \ge \mu(x) \land \mu(y)$
- (2) $\mu(x\alpha y) \ge \mu(x)$ and $\mu(x\alpha y) \ge \mu(y)$, for all $x, y \in R$ and all $\alpha \in \Gamma$. [3]

Theorem 3.3. If R is a commutative Γ -ring and μ is a fuzzy ideal of R. Then the following expressions are equivalent :

- (1) If $0_R \neq x_r \alpha y_t \subseteq \mu$, then $x_r \subseteq \mu$ or $y_t \subseteq \mu$, where x_r and y_t two fuzzy point on R and $\alpha \in \Gamma$
- (2) μ is a fuzzy weakly prime Γ -ideal of R

Proof. (1) \Rightarrow (2) Let $0_R \neq \sigma \Gamma \theta \subseteq \mu$ for the fuzzy ideals σ and θ of R. Assume that $\sigma \not\subseteq \mu$. Then there exists an $x \in R$ such that $\mu(x) < \sigma(x)$. Let $\sigma(x) = a$ for this $x \in R$ and $\theta(y) = b$ for $y \in R$. Now there are two cases : b = 0 and $b \neq 0$. If b = 0, then automatically $x_a \gamma y_b \subseteq \mu$. If there exist $0 \neq b$ such that $\theta(y) = b \neq 0$, some $y \in R$ and if $z = x\gamma y$ for some $\gamma \in \Gamma$, then $(x_a\gamma y_b)(z) = a \land b$. Hence,

$$\mu(z) = \mu(x\gamma y) \ge (\sigma \Gamma \theta)(x\gamma y) = \bigvee \{ (\sigma(x) \land (\theta(y)) \} \\ \ge \sigma(x) \land \theta(y) = a \land b = (x_a \gamma y_b)(x\gamma y).$$

Thus $x_a \gamma y_b \subseteq \mu$. In both cases by (1) $x_a \subseteq \mu$ or $y_b \subseteq \mu$. Hence $a \leq \mu(x)$ or $b \leq \mu(y)$. Therefore $\theta \subseteq \mu$, since $\sigma \not\subseteq \mu$. Thus μ is a weakly prime Γ - ideal of R.

 $(2) \Rightarrow (1)$ Assume that μ is a fuzzy weakly prime Γ -ideal of Γ -ring R. Also let x_r, y_t be two fuzzy points of Γ -ring R and $0 \neq x_r \Gamma y_t \subseteq \mu$. From this we can say for all $\gamma \in \Gamma$,

$$(x_r \Gamma y_t)(x \gamma y) = \min \{r, t\} \le \mu(x \gamma y)$$

Now, let we define two fuzzy subsets σ and θ as follows.

$$\sigma(a) = \begin{cases} r & a \in \langle x \rangle \\ 0 & otherwise \end{cases} and \quad \theta(a) = \begin{cases} t & a \in \langle y \rangle \\ 0 & otherwise \end{cases}$$

 $(\sigma\Gamma\theta)(a) = \sup_{a=u\gamma v} [\min[\sigma(u), \theta(v)]] = \min\{r, t\}$ where $u \in \langle x \rangle$, $v \in \langle y \rangle$ and $\gamma \in \Gamma$ or $(\sigma\Gamma\theta)(a) = 0$ where $u \notin \langle x \rangle$, $v \notin \langle y \rangle$ and $\gamma \in \Gamma$. From this two cases we get $(\sigma\Gamma\theta) \subseteq \mu$. Besides $\sigma \subseteq \mu$ or $\theta \subseteq \mu$ since μ is a fuzzy weakly prime Γ -ideal. Then $x_r \subseteq \mu$ or $y_t \subseteq \mu$ since x_r $\subseteq \sigma$ and $y_t \subseteq \theta$.

Example 3.4. Every fuzzy prime Γ -ideal is a fuzzy weakly prime Γ -ideal. But a fuzzy weakly prime Γ -ideal need not be fuzzy prime Γ -ideal.

Let $R = \mathbb{Z}_6$ and $\Gamma = \mathbb{Z}$. Then μ is defined by

(3.1)
$$\mu(x) = \begin{cases} 0 & x \in \{0, 3\} \\ 1 & otherwise \end{cases}$$

for all $t \in L$. Let $\mu_t = \{\overline{0}, \overline{3}\}$. Since $\{\overline{0}, \overline{3}\}$ is a fuzzy prime Γ -ideal of R, then μ_t is a fuzzy weakly prime Γ -ideal but μ is not a fuzzy weakly prime Γ -ideal.

For fuzzy point $\overline{3}_{0.6}$, $\overline{1}_{0.5}$ of R.

$$\overline{\mathbf{3}}_{0.6} \cdot 5 \cdot \overline{\mathbf{1}}_{0.5} = (\ \overline{\mathbf{3}} \cdot 5 \cdot \overline{\mathbf{1}}\)_{0.6 \wedge 0.5} = (\overline{\mathbf{3.5.1}})_{0.6 \wedge 0.5} = \overline{\mathbf{3}}_{0.5} \\ \overline{\mathbf{3}}_{0.5}(3) = 0.5 \le \mu(3) \Rightarrow \overline{\mathbf{3}}_{0.5} \in \mu \\ \overline{\mathbf{3}}_{0.6}(3) = 0.6 \nleq \mu(3) = 0.5 \Rightarrow \overline{\mathbf{3}}_{0.5} \notin \mu \\ \overline{\mathbf{1}}_{0.5}(1) = 0.5 \nleq \mu(1) = 0 \Rightarrow \overline{\mathbf{1}}_{0.5} \notin \mu$$

Hence μ is not a weakly prime Γ -ideal of Γ -ring.

Remark. It is obvious that $\mu \cap \nu$ is a Γ - ideal for all Γ - ideal μ and ν , but it is not a fuzzy weakly prime Γ -ideal.

Theorem 3.5. Let R be a Γ -ring and I be an ideal of R. Also μ be a fuzzy subset of R defined by

(3.2)
$$\mu(x) = \begin{cases} 1 & x \in I \\ \alpha & x \notin I \end{cases}$$

where $\alpha \in [0,1)$. Then where μ is a fuzzy weakly prime Γ -ideal of Γ -ring R if and only if I is weakly prime Γ -ideal of R.

Proof. (\Longrightarrow) : Suppose that *I* be a prime Γ - ideal of *R*.

$$\begin{split} \mu(x) \wedge \mu(y) &= \alpha \Longrightarrow \mu(x \text{-} y) \ge \alpha = \mu(x) \wedge \mu(y), \\ \mu(x) \wedge \mu(y) &= 1 \Longrightarrow \mu(x) = 1 \text{ and } \mu(y) = 1. \end{split}$$

Let $x, y \in I$, then $x - y \in I$. Hence $\mu(x - y) = 1$ and $\mu(x - y) \ge \mu(x) \land \mu(y)$ for all $x, y \in M$.

If $\mu(x) \vee \mu(y) = \alpha$, then $\mu(x\gamma y) \ge \mu(x) \vee \mu(y)$

Fuzzy Weakly Prime $\Gamma\text{-ideal}$ in $\Gamma\text{-Rings}$

and hence $\mu(x\gamma y) \ge \mu(x)$ and $\mu(x\gamma y) \ge \mu(y)$.

If $\mu(x) \vee \mu(y) = 1$, then $\mu(x) = 1$ or $\mu(y) = 1$ or both are equal to 1.

Thus $x \in I$ or $y \in I$ or both. So $x\gamma y \in I$. Then $\mu(x\gamma y) = 1 \ge \mu(x)$ and $\mu(x\gamma y) = 1 \ge \mu(y)$. Therefore μ is a fuzzy prime Γ -ideal. Now we take two fuzzy ideals σ , θ of M such that $0 \ne \sigma \Gamma \theta \subseteq \mu$. Let $\sigma \nsubseteq \mu$ and $\theta \nsubseteq \mu$. Then there exists $a, b \in R$ such that $\sigma(a) > \mu(a)$ and $\theta(b) > \mu(b)$. In this case $\mu(a) = \alpha$ and $\mu(b) = \alpha$. Hence $a, b \notin I$. Also $a\Gamma R\Gamma b \subsetneq I$, since I is weakly prime Γ -ideal [4]. Then there exist $a\gamma_1 r\gamma_2 b \notin I$ where $r \in R, \gamma_1, \gamma_2 \in \Gamma$ such that $\mu(a\gamma_1 r\gamma_2 b) = \alpha$. Then,

$$\sigma\Gamma\theta(a\gamma_1r\gamma_2b) \ge \sigma(a) \land \theta(r\gamma_2b) \ge \sigma(a) \land \theta(b) > \mu(a) \land \mu(b) = \alpha = \mu(a\gamma_1r\gamma_2b).$$

This is a contradiction. Therefore μ is fuzzy a weakly prime Γ -ideal. (\Leftarrow) : Let μ be a fuzzy prime Γ -ideal and P,Q be ideals of Γ -ring R such that $0 \neq P\Gamma Q \subseteq I$. Suppose that $P \subsetneq I$ and $Q \subsetneq I$. Then there exist $p \in P$ -I and $q \in Q$ -I.

$$\sigma(x) = \begin{cases} 1 & x \in P \\ \alpha & x \notin P \end{cases} and \quad \theta(x) = \begin{cases} 1 & x \in Q \\ \alpha & x \notin Q \end{cases}$$

two fuzzy subsets are defined as above. Obviously σ , θ are fuzzy ideals of R. $\sigma \subsetneq \mu$ since $\sigma(p) = 1 > \alpha = \mu(p)$. Also $\theta \subsetneq \mu$ since $(q) = 1 > \alpha = \mu(q)$. So there is a contradiction since $\sigma \Gamma \theta \subseteq \mu$. Thus I is weakly prime.

Proposition 3.6. If μ be a non-constant fuzzy weakly prime Γ -ideal of R such that $\mu \neq 0_R$. Then $\mu(0) = 1$.

Proof. Let μ be a fuzzy weakly prime Γ -ideal of R. Suppose $\mu(0) < 1$. Since we know that μ is a non-constant, there exist $a \in R$ such that $\mu(a) < \mu(0)$. Let σ , θ be two fuzzy Γ -ideals of R defined by

$$\sigma(x) = \begin{cases} 1 & x \in \mu_* \\ 0 & otherwise \end{cases}$$

and

$$\theta(x) = \mu(0)$$

for all $x \in R$. Then $\sigma \gamma \theta \subseteq \mu$. Also $\sigma \gamma \theta \neq 0$, since $\sigma \gamma \theta(0) = \mu(0) \neq 0$. Since $\sigma(0) = 1 > \mu(0)$ and $\theta(a) = \mu(0) > \mu(a)$, $\sigma \not\subseteq \mu$ and $\theta \not\subseteq \mu$. Thus this is a contradiction.

Proposition 3.7. Let μ be a non-constant fuzzy weakly prime Γ -ideal of R. Then μ_* is a weakly prime Γ -ideal R.

Proof. Let we take $0 \neq x\gamma y \in \mu_*$ for all $\gamma \in \Gamma$. Then $\mu(x\gamma y) = \mu(0) = 1$ and for all $t \in (0,1]$, $t \leq \mu(x\gamma y)$. So, $x_t\gamma y_t \in \mu$ and since μ is a weakly prime Γ -ideal, $x_t \in \mu$ or $y_t \in \mu$. Therefore, $\mu(x) \geq t$ or $\mu(y) \geq t$. For t = 1,

$$\mu(x) \ge 1 = \mu(0) \text{ or } \mu(y) \ge 1 = \mu(0)$$

and hence $\mu(x) = \mu(0)$ and $\mu(y) = \mu(0)$. So $x \in \mu_*$ or $y \in \mu_*$. Thus μ_* is a weakly prime Γ -ideal.

Lemma 3.8. If μ is a non-constant fuzzy weakly prime Γ -ideal of R, then μ_t is a fuzzy weakly prime Γ -ideal.

Proof. Let $0 \neq x\gamma y \in \mu_t$, for all $x, y \in R$ and $\gamma \in \Gamma$. $x\gamma y \neq 0_t$ since

$$0_t(0) = t \neq 0 = (x \gamma y)_t(0).$$

Also $\mu(x\gamma y) \geq t$ and $(x\gamma y)_t = x_t\gamma y_t \in \mu$ since $x\gamma y \in \mu_t$. We know that μ is fuzzy weakly prime Γ -ideal and so $x \in \mu_t$ or $y \in \mu_t$. Therefore μ_t is a weakly prime Γ -ideal.

Theorem 3.9. Let R and S be Γ -rings, $f : R \longrightarrow S$ be an epimorphism, μ be an f-invariant and $\mu(R)$ is finite. If μ_* is a fuzzy weakly prime Γ -ideal of R, then $f(\mu_*)$ is a weakly prime Γ -ideal of S.

Proof. All subsets of $\mu(R)$ are finite since $\mu(R)$ is finite. Also μ has the sup-property since all subsets of $\mu(R)$ have maximal element. Hence $f(\mu_*) = f(\mu)_* \cdot [2]$ Now, we take

$$0 \neq x' \gamma' y' \in f(\mu_*).$$

There exist $x, y \in R$ and $\gamma \in \Gamma$ such that f(x) = x', f(y) = y', $f(\gamma) = \gamma'$ since f is an epimorphism and hence $f(x\gamma y) = x'\gamma' y' \in f(\mu_*) = f(\mu)_*$. Thus,

 $f(\mu)(0) = f(\mu)(f(x\gamma y)) = \bigvee \{\mu(a\sigma b) : f(a\sigma b) = f(x\gamma y)\} = \mu(0).$ Hence, there exist $z\alpha t \in R$ such that $\mu(0) = \mu(z\alpha t)$ and $f(x\gamma y) = f(z\alpha t)$. Thus we obtained $\mu(z\alpha t) = \mu(x\gamma y) = \mu(0)$ since μ is f-invariant.

Fuzzy Weakly Prime $\Gamma\text{-ideal}$ in $\Gamma\text{-Rings}$

Thereby $0 \neq x\gamma y \in \mu_*$. From hence $x \in \mu_*$ or $y \in \mu_*$ since μ_* is a weakly prime Γ -ideal. And then $x' = f(x) \in f(\mu_*)$ or $y' = f(y) \in f(\mu_*)$. Therefore, $f(\mu_*)$ is a weakly prime Γ -ideal of S.

Theorem 3.10. Let R and S be Γ -rings, S be an integral domain, ν be a fuzzy ideal of S and $f : R \longrightarrow S$ be a homomorphism. If ν_* is a fuzzy weakly prime Γ -ideal of S, then $f^{-1}(\nu)_*$ is a weakly prime Γ -ideal of R.

Proof. If we can show that $f^{-1}(\nu_*)$ is a weakly prime Γ -ideal, it is enough since

$$f^{-1}(\nu_*) = f^{-1}(\nu)_* [2]$$

Let $0 \neq x\gamma y \in f^{-1}(\nu_*)$. Then $f(x\gamma y) \in \nu_*$. From this $f(x)f(\gamma)f(y) \in \nu_*$. There are two cases that need to be considered. If $f(x)f(\gamma)f(y) = 0$, f(x) = 0 or f(y) = 0. If $f(x)f(\gamma)f(y) \neq 0$, then $f(x) \in \nu_*$ or $f(y) \in \nu_*$ since ν_* is a fuzzy weakly prime Γ -ideal. Therefore $x \in f^{-1}(\nu_*)$ or $y \in f^{-1}(\nu_*)$ and $f^{-1}(\nu_*)$ is a weakly prime Γ -ideal.

4. Fuzzy Partial Weakly Prime Γ -Ideal

Definition 4.1. Let μ be a non-constant fuzzy Γ -ideal of Γ -ring R. Then μ is said to be a fuzzy partial weakly prime Γ -ideal if for $0 \neq x\gamma y$

$$\mu(x\gamma y) = \mu(x) \text{ or } \mu(x\gamma y) = \mu(y),$$

where $x, y \in R, \gamma \in \Gamma$.

Theorem 4.2. Let μ be a nonconstant fuzzy Γ -ideal of R. Then μ is a fuzzy partial weakly prime Γ -ideal if and only if μ_t is a fuzzy weakly prime Γ -ideal of R for all $t \in (0,1]$.

Proof. Suppose that μ is a fuzzy partial weakly prime Γ -ideal. Take $0 \neq x\gamma y \in \mu_t$. Then $\mu(x\gamma y) \geq t$ and also we get

$$\mu(x\gamma y) = \mu(x) \ge t \text{ or } \mu(x\gamma y) = \mu(y) \ge t,$$

since μ is a fuzzy partial weakly prime Γ -ideal. Thus $x \in \mu_t$ or $y \in \mu_t$. So, μ_t is a fuzzy weakly prime Γ -ideal.

Conversely, assume that μ_t is a fuzzy weakly prime Γ -ideal. Let $\mu(x\gamma y) = t$, for all $x\gamma y \neq 0$. There are two cases to be examined here: t = 0 and $t \neq 0$. If t = 0, then $\mu(x) \leq \mu(x\gamma y) = t = 0$ and $\mu(x) = 0$ or $\mu(y) \leq \mu(x\gamma y) = t = 0$ and $\mu(y) = 0$, since μ is a fuzzy Γ -ideal. If $t \neq 0$, then $0 \neq x\gamma y \in \mu_t$. Since μ_t is a fuzzy weakly prime Γ -ideal, we get $x \in \mu_t$ or $y \in \mu_t$. Thus

$$\mu(x) \ge t = \mu(x\gamma y) \text{ or } \mu(y) \ge t = \mu(x\gamma y).$$

From here, we obtain $\mu(x) = \mu(x\gamma y)$ or $\mu(y) = \mu(x\gamma y)$ because μ is also a fuzzy Γ -ideal. Thus, μ is a fuzzy partial weakly Γ -ideal.

Theorem 4.3. Let R, S be a Γ -ring and $f : R \longrightarrow S$ be an injective ring homomorphism. If μ is a fuzzy partial weakly prime Γ -ideal of S, then $f^{1}(\mu)$ is a fuzzy partial weakly prime Γ -ideal of R.

Proof. We take $0 \neq x\gamma y \in R$ where $x, y \in R$ and $\gamma \in \Gamma$. Since f is a homomorphism

$$f^{-1}(\mu)(x\gamma y) = \mu(f(x\gamma y)) = \mu(f(x)\gamma f(y)).$$

f is injective and so $f(x\gamma y) \neq 0$. Also because μ is a fuzzy partial weakly prime Γ -ideal,

$$f^{1}(\mu) (x\gamma y) = \mu(f(x\gamma y)) = \mu(f(x)\gamma f(y)) = \mu(f(x)) \text{ or }$$
$$f^{1}(\mu) (x\gamma y) = \mu(f(x\gamma y)) = \mu(f(x)\gamma f(y)) = \mu(f(y)).$$

So, $f^{-1}(\mu)(x\gamma y) = f^{-1}(\mu)(x)$ or $f^{-1}(\mu)(x\gamma y) = f^{-1}(\mu)(y)$. Then $f^{-1}(\mu)$ is a fuzzy partial weakly prime Γ -ideal of R.

Theorem 4.4. Let R and S be two Γ -ring and $f: R \longrightarrow S$ be a surjective ring homomorphism which is a constant on Kerf. Then $f(\mu)$ is a fuzzy partial weakly prime Γ -ideal of S.

Proof. Suppose that $0 \neq x\gamma y \in S$ where $x, y \in S$. Since f is an epimorphism, there exist r, t such that x = f(r) and y = f(t). Then,

$$f(\mu)(x\gamma y) = f(\mu)(f(r)\gamma f(t)) = f(\mu)(f(r\gamma t)) = \mu(r\gamma t).$$

If $r\gamma t = 0$, we obtain $f(0) = 0 = f(r\gamma t) = f(r)\gamma f(t) = x\gamma y$ and this is a contradiction. Then $r\gamma t \neq 0$. Since μ is a fuzzy partial weakly prime Γ -ideal, we get

$$f(\mu)(x\gamma y) = \mu(r\gamma t) = \mu(r) = f(\mu)f(r) = f(\mu)(x) \text{ or}$$
$$f(\mu)(x\gamma y) = \mu(r\gamma t) = \mu(t) = f(\mu)f(t) = f(\mu)(y).$$

Hence $f(\mu)$ is a fuzzy partial weakly prime Γ -ideal.

Fuzzy Weakly Prime $\Gamma\text{-}\mathrm{ideal}$ in $\Gamma\text{-}\mathrm{Rings}$

5. Fuzzy Semiprime Γ -Ideal

Definition 5.1. Let μ be a non-constant fuzzy Γ -ideal of R. Then μ is said to be a fuzzy weakly semiprime Γ -ideal if $0 \neq \nu \Gamma \nu \subseteq \mu$, for all Γ -ideal ν implies that $\nu \subseteq \mu$.

Theorem 5.2. If R is a Γ -ring and μ is a fuzzy ideal of R. Then the following expressions are equivalent :

- (1) If $0_R \neq x_r \Gamma x_r \subseteq \mu$, then $x_r \subseteq \mu$ where x_r fuzzy point on R and $\alpha \in \Gamma$.
- (2) μ is a fuzzy weakly semiprime Γ -ideal of R.

Proof (1) \Rightarrow (2) Let $0_R \neq \nu \Gamma \nu \subseteq \mu$ for the fuzzy ideal ν of R. Suppose $\nu \not\subseteq \mu$. Then there exist $x \in R$ such that $\mu(x) < \nu(x)$. Let $\nu(x) = r$. If $z = x\gamma x$ for some $\gamma \in \Gamma$, then $x_r \Gamma x_r(z) = r$. So,

$$\mu(z) = \mu(x\gamma x) \ge \nu \Gamma \nu(x\gamma x) \ge \nu(x) = r = x_r \Gamma x_r(z).$$

Hence $x_r \Gamma x_r \subseteq \mu$. From condition 1) $x_r(x) \leq \mu(x)$. From this we obtain

$$r = \nu(x) \le \mu(x)$$
 and $\nu \subseteq \mu$.

This is a contradiction. Thus μ is a weakly semiprime Γ - ideal of R. (2) \Rightarrow (1) Assume that μ is a fuzzy weakly semiprime Γ -ideal of Γ -ring R. Also let x_r be a fuzzy point of Γ -ring R and $0 \neq x_r \Gamma x_r \subseteq \mu$. From this we can say for all $\gamma \in \Gamma$,

$$(x_r\Gamma x_r)(x\gamma y) = r \le \mu(x\gamma y) \text{ or } (x_r\Gamma x_r)(x\gamma y) = 0 \le \mu(x\gamma y)$$

Now, let we define a fuzzy subset σ as follows.

$$\sigma (a) = \begin{cases} r & a \in \\ 0 & a \notin \end{cases}$$

 $(\sigma\Gamma\sigma)$ $(a) = \sup_{a} = u\gamma v [\min[\sigma(u), \sigma(v)]] = r$, where $u \in \langle x \rangle, v \in \langle x \rangle$ and $\gamma \in \Gamma$ or $(\sigma\Gamma\sigma)$ (a) = 0 where $u \notin \langle x \rangle, v \notin \langle x \rangle$ and $\gamma \in \Gamma$. From this two cases we get $(\sigma\Gamma\sigma) \subseteq \mu$. Hence $\sigma \subseteq \mu$ since μ is a fuzzy weakly semiprime Γ -ideal. Then $x_r \subseteq \mu$ since $x_r \subseteq \sigma$.

Theorem 5.3. Every fuzzy weakly prime Γ -ideal of R is a fuzzy weakly semiprime Γ -ideal of R.

Proof. Let μ be a weakly prime Γ -ideal and $0 \neq \nu \Gamma \nu \subseteq \mu$. Since μ be a weakly prime Γ -ideal $\nu \subseteq \mu$ from the definition of fuzzy weakly prime Γ -ideal.

Theorem 5.4. Let R be a Γ -ring and I be an ideal of R. Also ν be a fuzzy subset of R defined by

$$\nu(x) = \begin{cases} 1 & x \in I \\ \alpha & x \notin I \end{cases}$$

where $\alpha \in [0,1)$. Then if I is a weakly semiprime Γ -ideal of R, then ν is a fuzzy weakly semiprime Γ -ideal of R.

Proof. (\Longrightarrow) : Suppose that *I* be a semiprime Γ - ideal of *R*.

$$\mu(x) \land \mu(y) = \alpha \Longrightarrow \mu(x \cdot y) \ge \alpha = \mu(x) \land \mu(y).$$
$$\mu(x) \land \mu(y) = 1 \Longrightarrow \mu(x) = 1 \text{ and } \mu(y) = 1.$$

Let $x, y \in I$, then $x \cdot y \in I$. Hence $\mu(x \cdot y) = 1$ and $\mu(x \cdot y) \ge \mu(x)$ $\land \mu(y)$ for all $x, y \in M$.

If
$$\mu(x) \lor \mu(y) = \alpha$$
, then $\mu(x\gamma y) \ge \mu(x) \lor \mu(y)$

and hence $\mu(x\gamma y) \ge \mu(x)$ and $\mu(x\gamma y) \ge \mu(y)$. If $\mu(x) \lor \mu(y) = 1$, then $\mu(x) = 1$ or $\mu(y) = 1$ or both are equal to 1. Thus $x \in I$ or $y \in I$ or both. So $x\gamma y \in I$. Then

$$\nu(x\gamma y) = 1 \ge \mu(x) \text{ and } \nu(x\gamma y) = 1 \ge \mu(y).$$

Therefore, μ is a fuzzy prime Γ -ideal. And so μ is a fuzzy semiprime Γ -ideal. Now we take a fuzzy ideal ν of R such that $0 \neq \nu \Gamma \nu \subseteq \mu$. Let $\nu \subsetneq \mu$. Then there exist $a \in R$ such that $\nu(a) > \mu(a)$. In this case $\mu(a) = \alpha$ and $a \notin I$. Also $a\Gamma R\Gamma a \subsetneq I$, since I is a weakly semiprime Γ -ideal of R [4]. Then there exist $a\gamma_1 r\gamma_2 a \notin I$ where $r \in R, \gamma_1, \gamma_2 \in \Gamma$ such that $\mu(a\gamma_1 r\gamma_2 b) = \alpha$. Then

$$\nu \Gamma \nu(a\gamma_1 r \gamma_2 b) \ge \nu(a) \land \nu(r\gamma_2 a) \ge \nu(a) \land \nu(a) \\> \nu(a) \land \nu(a) = \alpha = \mu(a\gamma_1 r \gamma_2 a).$$

This is a contradiction. Therefore μ is a fuzzy weakly semiprime Γ -ideal.

Conclusion

In this study, we introduced the definitions of fuzzy weakly prime Γ ideal, fuzzy partial weakly prime Γ -ideal and fuzzy weakly semiprime Γ -ideals on the commutative Γ -ring with nonzero identity. In addition to that we obtained some characterizations of fuzzy weakly prime Γ -ideal, fuzzy partial weakly prime Γ -ideal and fuzzy weakly semiprime Γ -ideals and gave example.

References

- Mahjoob, R., On Weakly Prime L- Ideals, Italian Journal Of Pure and Applied Mathematics, 36 (2016), 465-472.
- [2] Mordeson, J. N. and Malik, D. S., Fuzzy Commutative Algebra, World Scientific Publishing Co. Pte. Ltd., (1998)
- [3] Dutta, T. K. and Chanda, T., Fuzzy Prime Γ-Ideals in Γ-Rings, Bulletin of the Malaysian Mathematical Sciences Society, (2) 30(1) (2007), 65-73
- [4] Luh J., On the Theory of Simple Γ-Rings, Michigan Mathematical Journal, 16(1969), 65-75
- [5] Zadeh, L.A., Fuzzy sets, Inform. and Control 8 (1965), 338-353
- [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [7] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422
- [8] Jun, Y. B. and Lee, C. Y. Fuzzy $\Gamma\text{-rings},$ Pusan Kyongnam Math. J. 8, 163-170, 1992
- [9] Y. B. Jun, On fuzzy prime ideals of Γ-rings, Soochow J. Math. 21(1)(1995), 41-48.
- [10] B. A. Ersoy, Fuzzy Semiprime Ideals in Γ-Rings, International Journal of Physical Sciences Vol. 5(4)(2010), pp. 308-312.

Gülşah Yeşilkurt

Department of Mathematics, University of Yildiz Technical University, P.O.Box XXXX, Istanbul, Turkey

Email: gulsahyesilkurt@gmail.com

Serkan Onar

Department of Mathematics, University of Yildiz Technical University Istanbul, Turkey

Email: serkan10ar@gmail.com

Deniz Sönmez

Department of Mathematics, University of Yildiz Technical University, Istanbul, Turkey

Email: dnzguel@hotmail.com

Bayram Ali Ersoy

Department of Mathematics, University of Yildiz Technical University, Istanbul, Turkey

Email: ersoya@yildiz.edu.tr