AN INFINITE FAMILY OF FINITE 2-GROUPS WITH FIXED CO-CLASS

HOSSEIN ABDOLZADEH AND REZA SABZCHI

Abstract

In [1] six pro-2-groups of finite and fixed coclasses is studied. Infinite sequences of finite 2-groups arising from this pro2 -groups also investigated. One of the five infinite sequences associated with the pro-2-group $S=\left\langle a, u \mid a^{2}=u^{4},\left(u^{2}\right)^{a}=u^{-2}\right\rangle$ is the sequence $$
G_{j}(1,2)=\left\langle a, u \mid a^{2} u^{-4}\left(u^{-1} a\right)^{2^{j}},\left(u^{2}\right)^{a} u^{2}\left(u^{-1} a\right)^{2^{j+1}},\left(u^{-1} a\right)^{2^{j+2}}\right\rangle .
$$

In this paper we calculate the orders of the members of this infinite family.

Keywords: pro-2-group, finite 2-group, coclass.
2010 Mathematics Subject Classification: Primary: 20F05; Secondary: 20D15

1. Introduction

Presentation of a group is introducing the group by a set of generators and a sufficient set of relations between the generators, that is as a factor group of a free group. For a group G it is denoted by $G=\langle X \mid R\rangle$ in which X is the set of its generators and R is the set of relations. Such an expression of a group provides a short description of its associated group. A group may has many presentations. A presentation $\langle X \mid R\rangle$ is called finite presentation if the cardinals of X and R are both finite. We refer to [5] for background and an introduction into the theory of group presentations. A parameterized presentation for an infinite family of finite groups (in particular for finite p-groups) is of much interest in

[^0]group presentation theory, so that one can defines an infinite family of finite groups with only one presentation. In this paper we show that the parameterized presentation
$$
G(n)=\left\langle x, y \mid x^{2} y^{-4} w^{2^{n}}=1, x^{-1} y^{2} x y^{2} w^{2^{n+1}}=1, w^{2^{n+2}}=1\right\rangle
$$
in which $w=y^{-1} x$, defines an infinite family of finite 2 -groups and for every positive integer n the order of $G(n)$ is 2^{n+5}.

Infinite pro-2-groups and their presentations have been studied in [1], [2] and [4]. The groups $G(n)$ is a coclass family associated with the infinite pro-2-group $S=\left\langle a, u \mid a^{2}=u^{4},\left(u^{2}\right)^{a}=u^{-2}\right\rangle$ of coclass 3 .

For a p-group G of order p^{n} and nilpotency class c, the coclass of G is the number $n-c$. In [1] it is shown that all the members of this family have the same coclass 3 and therefore $G(n)$ has nilpotency class $n+2$.

Throughout the paper $|G: H|$ denotes the index of the subgroup H in a group $G,[x, y]$ used for the commutator $x^{-1} y^{-1} x y$ and $Z(G)$ used for the center of the group G. We use Todd-Coxeter coset enumeration algorithm in the form as given in [3].

2. Preliminaries

We make some small changes in the presentation of $G(n)$ and in the obtained group we find some relations to help us to prove the main theorem of the paper.
Lemma 2.1. Let $n \geq 2$ be an integer and let $G=\langle x, y| x^{2} y^{-4}(y x)^{2^{n}}=$ $\left.1, x^{-1} y^{2} x y^{2}\left(x^{-1} y\right)^{2^{n+1}}=1,\left(y^{-1} x\right)^{2^{n+2}}=1\right\rangle$. Then $\left(y^{-1} x\right)^{2^{n+1}} \in Z(G)$.
Proof. Consider the subgroup $H=\left\langle a=x^{2}, b=y^{2}, c=(y x)^{2}, d=\right.$ $\left.\left(y^{-1} x\right)^{2}\right\rangle$ of G. By using the modified Todd-Coxeter coset enumeration we find a presentation for H. Defining $1 . x=2$ completes the table of the generator $a=x^{2}$ and we obtain the bonus $2 . x=a .1$. By defining $1 . y=3$ we have $3 . y=b .1$. Now by defining $3 . x=4$, the table of the generator c completes to give us the bonus $4 . y=c a^{-1} .2$ and from the table of the generator d we get the bonus $2 . y=a d^{-1} b^{-1} .4$. Now the 4th row of the table of the first relation of G gives us $4 . x=t .3$ in which $t=c^{-2^{n-1}}\left(c d^{-1} b^{-1}\right)^{2}$. Now all the tables are complete. We deduce that $|G: H|=4$, and we have the following presentation for H,

$$
H \cong\left\langle a, b, c, d \mid r_{i}, i=1, \ldots, 9\right\rangle
$$

in which

$$
\begin{aligned}
& r_{1}: a b^{-2} c^{2^{n-1}}=1, \\
& r_{2}
\end{aligned}: a^{2}\left(c^{-1} b d\right)^{2} a^{-1}\left(a d^{-1} b^{-1} t b\right)^{2^{n-1}}=1,
$$

By the relation r_{7} we have $[c, d]=1$ and then r_{4} gives us $[c, b]=1$. Also by r_{5} and r_{6} the relation $b a d^{-1} b^{-1} c a^{-1}=t^{-1} c d^{-1} b^{-1} t b$ or equivalently $b a d^{-1} b^{-1} c a^{-1}=d^{2^{n}}$ holds in H. Translating this relation in the generators of G yields that $y^{2} x y^{2} x^{-1}=\left(y^{-1} x\right)^{2^{n+1}}$. Comparing this with the second relation of G yields that $\left[\left(y^{-1} x\right)^{2^{n+1}}, x\right]=1$ and therefore $\left[\left(y^{-1} x\right)^{2^{n+1}}, y\right]=1$ as $\left(y^{-1} x\right)^{2^{n+1}}$ is a power of $y^{-1} x$. Hence $\left(y^{-1} x\right)^{2^{n+1}} \in Z(G)$.
Lemma 2.2. Let G be as in Lemma 2.1. Then $|G|=2^{n+5}$.
Proof. By the second relation of G we have $(y x)^{2}=\left(y^{-1} x\right)^{2^{n+1}+2}$ and using the third relation of G we get $(y x)^{4}=\left(y^{-1} x\right)^{4}$. Hence $(y x)^{2^{k}}=$ $\left(y^{-1} x\right)^{2^{k}}$ holds in G for $k \geq 2$. Set $N=\left\langle\left(y^{-1} x\right)^{2^{n+1}}\right\rangle$. By Lemma 2.1, N is a central subgroup of G of order 2 . Therefore

$$
\begin{aligned}
& G / N \cong\langle x, y| x^{2} y^{-4}(y x)^{2^{n}}=1, x^{-1} y^{2} x y^{2}\left(x^{-1} y\right)^{2^{n+1}}=1, \\
&\left(y^{-1} x\right)^{2^{n+2}}=1,\left(y^{-1} x\right)^{2^{n+1}}=1\rangle \\
& \cong\left\langle x, y \mid x^{2} y^{-4}(y x)^{2^{n}}=1, x^{-1} y^{2} x y^{2}=1,\left(y^{-1} x\right)^{2^{n+1}}=1\right\rangle \\
& \cong\left\langle x, y \mid x^{2} y^{-4}\left(y^{-1} x\right)^{2^{n}}=1, x^{-1} y^{2} x y^{2}=1,\left(y^{-1} x\right)^{2^{n+1}}=1\right\rangle
\end{aligned}
$$

Let $n \geq 2$ and set

$$
L:=\left\langle x, y \mid x^{2} y^{-4}\left(y^{-1} x\right)^{2^{n}}=1, x^{-1} y^{2} x y^{2}=1,\left(y^{-1} x\right)^{2^{n+1}}=1\right\rangle .
$$

Consider the subgroup $K=\left\langle a=x^{2}, b=y^{-1} x\right\rangle$ of L. Again using the modified Todd-Coxeter coset enumeration we find a presentation for K.

Defining $1 . x=2$ completes the tables of the generators $a=x^{2}$ and $b=y^{-1} x$. Now we have the bonuses $2 . x=a .1$ and $2 . y=a b^{-1} .1$. By defining $1 . y=3$ and $3 . x=4$, first row of the table of the relation $x^{-1} y^{2} x y^{2}=1$ gives us the bonus $4 . y=b^{2} a^{-1} .2$ and third row of that gives $4 . x=b a b^{-1} .3$. Now the first row of the table of the relation $x^{2} y^{-4}\left(y^{-1} x\right)^{2^{n}}=1$ completes to get $3 . y=b^{2^{n}} a b^{-1} .4$. Now all the tables are compete and we deduce $|L: K|=4$ and the following presentation for K

$$
K \cong\left\langle a, b \mid s_{i}, i=1,2,3, \ldots, 8\right\rangle
$$

in which

$$
\begin{array}{ll}
s_{1} & : a^{2} b^{-1} a^{-1} b^{-2^{n}+1} a^{-1}\left(a b^{-1}\right)^{2^{n}}=1 \\
s_{2} & : b a b^{-1} a^{-1} b^{-2^{n}}\left(a b^{-1}\right)^{2^{n}}=1 \\
s_{3} & : b^{-2^{n}}\left(b a^{-1} b^{-2^{n}}\right)^{2^{n}}=1 \\
s_{4} & : a^{-1} b^{2^{n}} a\left(a b^{2^{n}-1} a b\right)=1 \\
s_{5} & : b^{2^{n}}\left(a b^{2^{n}-1} a b\right)=1 \\
s_{6} & : b^{2^{n+1}=1}=1 \\
s_{7} & :\left(a b^{-1}\right)^{2^{n+1}}=1 \\
s_{8} & :\left(b a^{-1} b^{-2^{n}}\right)^{2^{n+1}}=1 .
\end{array}
$$

Comparing s_{4} and s_{5} yields that $\left[a, b^{2^{n}}\right]=1$. Therefore s_{5} could be written in the form $b^{2^{n+1}} a b^{-1} a b=1$, which using s_{6} gives us the relation $a b^{-1} a b=1$ or equivalently $\left(a b^{-1}\right)^{2}=b^{-2}$. This relation together with s_{2} and s_{6} yields that $[a, b]=1$ and $a^{2}=1$. Therefore K is abelian and

$$
K \cong\left\langle a, b \mid a^{2}=b^{2^{n+1}}=1,[a, b]=1\right\rangle .
$$

Hence the order of L is $|L|=4|K|=2^{n+4}$ and consequently $|G|=$ $|N||L|=2^{n+5}$.

3. Main Result

In this section we prove the main result of the paper. The key point of the proof is to show that the group G in Lemma 2.1 is isomorphic to the group $G(n)$.
Theorem 3.1. Let $n \geq 2$ be an integer and let $G(n)=\langle x, y| x^{2} y^{-4} w^{2^{n}}=$ $\left.1, x^{-1} y^{2} x y^{2} w^{2^{n+1}}=1, w^{2^{n+2}}=1\right\rangle$, in which $w=y^{-1} x$. Then $|G(n)|=$ 2^{n+5}.

Proof. Consider the group G in Lemma 2.1. By the second relation in G we see that the relation $y x y^{2}=\left(y^{-1} x\right)^{2^{n+1}+1}$ holds in G and hence

$$
\begin{equation*}
(y x)^{2}=\left(y^{-1} x\right)^{2^{n+1}+2}, \tag{3.1}
\end{equation*}
$$

also holds in G. Now by third relation of G we have $(y x)^{4}=\left(y^{-1} x\right)^{4}$ in G. Applying the Tietze transformations we have

$$
\begin{array}{r}
G \cong\langle x, y| x^{2} y^{-4}(y x)^{2^{n}}=1, x^{-1} y^{2} x y^{2}\left(x^{-1} y\right)^{2^{n+1}}=1,\left(y^{-1} x\right)^{2^{n+2}}=1 \\
\left.(y x)^{4}=\left(y^{-1} x\right)^{4}\right\rangle \\
\cong\langle x, y| x^{2} y^{-4}\left(y^{-1} x\right)^{2^{n}}=1, x^{-1} y^{2} x y^{2}\left(x^{-1} y\right)^{2^{n+1}}=1,\left(y^{-1} x\right)^{2^{n+2}}=1 \\
\left.(y x)^{4}=\left(y^{-1} x\right)^{4}\right\rangle \\
\cong\langle x, y| x^{2} y^{-4}\left(y^{-1} x\right)^{2^{n}}=1, x^{-1} y^{2} x y^{2}\left(x^{-1} y\right)^{2^{n+1}}=1 \\
\left.\left(y^{-1} x\right)^{2^{n+2}}=1\right\rangle \quad(\text { by } 3.1)
\end{array}
$$

Therefore $G \cong G(n)$ and the result follows by Lemma 2.2. The order of $G(n)$ for $n=1$ could be calculated separately by considering a suitable subgroup and using Todd-coxeter coset enumeration, however in this case the order of $G(1)$ is 64 and requires the obtained formula for the order of $G(n),(n \geq 2)$.

Acknowledgments

The authors are indebted to the referees for providing insightful comments. Specially we wish to thank one of the referees suggesting us to add a suitable reference([4]).

References

[1] H. Abdolzadeh and B. Eick, On Effcient Presentations for Infinite Sequences of 2-Groups with Fixed Coclass, Algebra Colloquium 20(4) (2013), 561-572.
[2] A. Arjomandfar and H. Doostie, Proving the efficiency of pro-2-groups of fixed co-classes, Bull. Iranian Math. Soc. 37 (2011), 73-80.
[3] M. J. Beetham and C. M. Campbell, A note on the Todd-Coxeter coset enumeration algorithm, Proc. Edinburgh Math. Soc. 20(2) (1976), 73-79.
[4] H. Doostie and M. Hashemi. Fibonacci lengths involving the Wall number $K(n)$, Journal of Applied Mathematics and Computing 20(1-2) (2006), 171-180.
[5] D. L. Johnson, Presentations of Groups, London Math. Soc. stud. texts. Cambridge University Press, Cambridge 15 (1990).

Hossein Abdolzadeh

Department of Mathematics and Applications, Faculty of Science,
University of Mohaghegh Ardabili, P. O. Box 56199-11367, Ardabil, Iran.
Email: narmin.hsn@gmail.com
Reza Sabzchi
Department of Mathematics and Applications, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 56199-11367, Ardabil, Iran.
Email: rsabzchi@uma.ac.ir

[^0]: Received: 31 October 2016, Accepted: 6 February 2017. Communicated by Ahmad Yousefian Darani;
 *Address correspondence to Hossein Abdolzadeh; E-mail: narmin.hsn@gmail.com.
 (C) 2017 University of Mohaghegh Ardabili.

