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APPROXIMATE METHODS FOR SOLVING LOCAL

FRACTIONAL INTEGRAL EQUATIONS

HASSAN KAMIL JASSIM

Abstract. This paper presents new analytical approximate meth-
ods such as local fractional variational iteration method and local
fractional decomposition method for a family of the linear and non-
linear integral equations of the second kind within local fractional
derivative operators. Some examples are presented to illustrate the
efficiency and accuracy of the proposed methods. The obtained re-
sults reveal that the proposed methods are very efficient and simple
tools for solving local fractional integral equations.
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1. Introduction

An integral equation is defined as an equation in which the unknown
function to be determined appear under the integral sign. The subject of
integral equations is one of the most useful mathematical tools in both
pure and applied mathematics. It has enormous applications in many
physical problems. Many initial and boundary value problems associ-
ated with ordinary differential equation and partial differential equation
can be transformed into problems of solving some approximate integral
equations [1].

The theory of integral equations has close contacts with many different
areas of mathematics. Foremost among these are differential equations
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and operator theory. Many problems of mathematical physics can be
stated in the form of integral equations [2].

The theory of local fractional integrals and derivatives was dealing
with fractal functions, and was successfully applied in fractional Fokker-
Planck equation, anomalous diffusion and relaxation equation in frac-
tal space, fractal heat conduction equation, fractal-time dynamical sys-
tems, fractal elasticity, local fractional diffusion equation, local fractional
Laplace equation, local fractional ordinary differential equations, local
fractional partial differential equation, local fractional integral equa-
tions, fractional Brownian motion in local fractional derivatives sense,
fractal signals, local fractional short time transforms and local fractional
wavelet transform [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20].

Our aim in this paper is to investigate the applications of the local
fractional variational iteration method and local fractional decomposi-
tion method for solving the integral equations in the sense of local frac-
tional derivative operators. To illustrate the validity and advantages of
the methods, we will apply it to the local fractional Fredholm integral
equation and Volterra integro-differential equation as follows:

ψ(x) = ϕ(x) +
1

Γ(1 + α)

∫ b

a
Ω(x, τ)F (ψ(τ)) (dτ)α, 0 < α ≤ 1(1.1)

ψ(kα)(x) = ϕ(x) +
1

Γ(1 + α)

∫ x

a
Ω(x, τ)ψ(τ)(dτ)α, ψ(mα) = am,(1.2)

where m=0,1,. . . , k-1, Ω(x, τ) is the kernel of the local fractional integral
equation, ϕ(x) and F (ψ) are known functions. The limits of integration
a and b are constants and ψ(x) is the unknown solution of integral equa-
tions. The paper has been organized as follows. In Section 2, we give the
concept of local fractional calculus. In Section 3, we give analysis of the
methods used. In Section 4, we consider several illustrative examples.
Finally, in Section 5, we present our conclusions.

2. The Theory of Local Fractional Calculus

In this section we present some basic definitions and notations of the
local fractional operators (see [21, 22, 23, 24, 25, 26, 27]).
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Definition 2.1. The local fractional derivative of ψ(x) of order α at
x = x0 is given by

(2.1) ψ(α)(x0) =
dα

dxα
ψ(x)|x=x0 = lim

x→x0

4α(ψ(x)− ψ(x0))

(x− x0)α
,

where 4α(ψ(x)− ψ(x0) ∼= Γ(α+ 1)(ψ(x)− ψ(x0)).

The formulas of local fractional derivatives of special functions used
in the paper are as follows:

D(α)
x aψ(x) = aD(α)

x ψ(x)(2.2)

dα

dxα

(
xnα

Γ(1 + nα)

)
=

x(n−1)α

Γ(1 + (n− 1)α)
(2.3)

Definition 2.2. The local fractional integral of ψ(x) in the interval [a, b]
is given by

aI
(α)
b ψ(x) =

1

Γ(1 + α)

∫ b

a
ψ(t)(dt)α

=
1

Γ(1 + α)
lim
4t−→0

N−1∑
j=0

ψ(tj)(4tj)α.(2.4)

where the partition of the interval [a, b] is denoted as (tj , tj+1), j =
0, ..., N − 1, t0 = a and tN = b with 4tj = tj+1 − tj and 4t =
max {4t0,4t1, . . .}.

The formulas of local fractional integrals of special functions used in
the paper are as follows:

0I
(α)
x aψ(t) = a0I

(α)
x ψ(t),(2.5)

0I
(α)
x

(
tnα

Γ(1 + nα)

)
=

x(n+1)α

Γ(1 + (n+ 1)α)
(2.6)

Definition 2.3. The Mittage Leffler function, sine function and cosine
function are defined as

Eα(xα) =
∞∑
k=0

xkα

Γ(1 + kα)
, 0 < α ≤ 1(2.7)

sinα(xα) =
∞∑
k=0

(−1)k
x(2k+1)α

Γ(1 + (2k + 1)α)
, 0 < α ≤ 1(2.8)

cosα(xα) =
∞∑
k=0

(−1)k
x2kα

Γ(1 + 2kα)
, 0 < α ≤ 1.(2.9)
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3. Analysis of the Methods

In this section, two methods, namely the variational iteration method
and Adomian decomposition method with local fractional derivative op-
erators are analyzed and utilized for solving the local fractional integral
equations of the second kind.

3.1 Local Fractional Variational Iteration Method
For solving (1.1) by local fractional variational iteration method, first
we differentiate once from both sides of equation (1.1) with respect to x
gives

(3.1) ψ(α)(x) = ϕ(α)(x) +
1

Γ(1 + α)

∫ b

a

∂αΩ(x, τ)

∂xα
F (ψ(τ)) (dτ)α,

According to local fractional variational iteration method correction
functional can be written in the following form [22, 23, 24]:

ψn+1(x) = ψn(x) +0 I
(α)
x

(
λ(ξ)α

Γ(1 + α)

[
ψ(α)
n (ξ)− ϕ(α)(ξ)

− 1

Γ(1 + α)

∫ b

a

∂αΩ(ξ, τ)

∂ξα
F (ψ∼n (τ)) (dτ)α,

(3.2)

where λ(ξ)α

Γ(1+α) is a general fractal Lagranges multiplier. To make the

above correction functional stationary with respect to ψn , we have :

δαψn+1(x) = δαψn(x) + δα0 I
(α)
x

(
λ(ξ)α

Γ(1 + α)

[
ψ(α)
n (ξ)− ϕ(α)(ξ)

− 1

Γ(1 + α)

∫ b

a

∂αΩ(ξ, τ)

∂ξα
F (ψ∼n (τ)) (dτ)α,

= δαψn(x) +0 I
(α)
x

[
λ(ξ)α

Γ(1 + α)
δα
(
ψ(α)
n (ξ)

)]
= δαψn(x) +

λ(x)α

Γ(1 + α)
δαψ(α)

n (x) +0 I
(α)
x

[
λα(ξ)α

Γ(1 + α)
δα (ψn(ξ)] .

From the above relation for any δαψn , we obtain

1 +
λ(ξ)α

Γ(1 + α)
|ξ=x= 0,

[
λα(ξ)α

Γ(1 + α)

](α)

|ξ=x= 0(3.3)

This in turn gives

λ(ξ)α

Γ(1 + α)
= −1.(3.4)
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Substituting the identified Lagrange multiplier (3.4) into (3.2), result in
the following iterative formula:

ψn+1(x) = ψn(x)−0 I
(α)
x

[
ψ(α)
n (ξ)− ϕ(α)(ξ)

− 1

Γ(1 + α)

∫ b

a

∂αΩ(ξ, τ)

∂ξα
F (ψn(τ)) (dτ)α.

(3.5)

Finally, we obtain the exact solution or an approximate solution of the
equation (1.1) as follows:

(3.6) ψ(x) = lim
n→∞

ψn(x).

3.2 Local Fractional Decomposition Method By integrating both sides
of (1.2) leads to

L(−kα)
x

[
ψ(kα)(x)

]
= L(−kα)

x [ϕ(x)] + L(−kα)
x

[
1

Γ(1 + α)

∫ x

a
Ω(x, τ)ψ(τ)(dτ)α

](3.7)

where L
(−kα)
x [·] =0 I

(kα)
x [·] =

k−time︷ ︸︸ ︷
0I

(α)
x0 I

(α)
x . . .0 I

(α)
x [·] .

Thus, we obtain

ψ(x) = a0 + · · ·+ ak−1
x(k−1)α

Γ (1 + (k − 1)α)
+ L(−kα)

x [ϕ(x)]

+L(−kα)
x

[
1

Γ(1 + α)

∫ x

a
Ω(x, τ)ψ(τ)(dτ)α

]
,(3.8)

where the initial conditions ψ(0), ψ(α)(0), . . . , ψ((k−1)α)(0) are used.
We then use the decomposition series

(3.9) ψ(x) =

∞∑
n=0

ψn(x).

in both sides(3.8) to obtain

∞∑
n=0

ψn(x) = a0 + · · ·+ ak−1
x(k−1)α

Γ (1 + (k − 1)α)
+ L(−kα)

x [ϕ(x)]

+L(−kα)
x

[
1

Γ(1 + α)

∫ x

a
Ω(x, τ)

[ ∞∑
n=0

ψn(τ)

]
(dτ)α

]
,(3.10)
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or equivalently

ψ0(x) + ψ1(x) + · · · = a0 + · · ·+ ak−1
x(k−1)α

Γ (1 + (k − 1)α)
+ L(−kα)

x [ϕ(x)]

+L(−kα)
x

[
1

Γ(1 + α)

∫ x

a
Ω(x, τ)ψ0(τ)(dτ)α

]
+L(−kα)

x

[
1

Γ(1 + α)

∫ x

a
Ω(x, τ)ψ1(τ)(dτ)α

]
+ · · · .(3.11)

To determine the components ψ0(x), ψ1(x), · · · of the solution ψ(x) we
set the recurrence relations:

ψ0(x) = a0 + · · ·+ ak−1
x(k−1)α

Γ (1 + (k − 1)α)
+ L(−kα)

x [ϕ(x)] ,

ψn+1(x) = L(−kα)
x

[
1

Γ(1 + α)

∫ x

a
Ω(x, τ)ψn(τ)(dτ)α

]
.(3.12)

4. Applications to Solve Integral Equations Involving
Local Fractional operators

To illustrate the ability and simplicity of the proposed methods, some
illustrative examples are provided here.

I. Solving the linear and Nonlinear Fredholm Integral Equation with
Local Fractional Variational Iteration Method

Example 4.1. Consider the following linear Fredholm integral equation
involving local fractional derivative operator:
(4.1)

ψ(x) = Eα(xα)− xα

Γ(1 + α)
+

1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

τα

Γ(1 + α)
ψ(τ)(dτ)α,

with the exact solution ψ(x) = Eα(xα).
Differentiating both sides of (4.1) with respect to x yields

(4.2) ψ(α)(x) = Eα(xα)− 1 +
1

Γ(1 + α)

∫ 1

0

τα

Γ(1 + α)
ψ(τ)(dτ)α.

The iterative formula can be expressed as the following:

ψn+1(x) = ψn(x)− I(α)
x

[
ψ(α)
n (ξ)− Eα(ξα) + 1

− 1

Γ(1 + α)

∫ 1

0

rα

Γ(1 + α)
ψn(r)(dr)α,

(4.3)
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where we used
λ(ξ)α

Γ(1 + α)
= −1.

Notice that the initial condition ψ(0) = 1 is obtained by substituting
x = 0 into (4.1). Therefore, we have

ψ0(x) = 1,

ψ1(x) = Eα(xα)− 1

2

xα

Γ(1 + α)
,

ψ2(x) = Eα(xα)− 1

6

xα

Γ(1 + α)
,

ψ3(x) = Eα(xα)− 1

18

xα

Γ(1 + α)
,

...

ψn(x) = Eα(xα)− 1

2× 3n−1

xα

Γ(1 + α)
, n ≥ 1.

Hence, we have

ψ(x) = lim
n→∞

ψn(x)

= lim
n→∞

[
Eα(xα)− 1

2× 3n−1

xα

Γ(1 + α)

]
= Eα(xα),(4.4)

which is the exact solution.

Example 4.2. Consider the following nonlinear Fredholm integral equa-
tion involving local fractional derivative operators:

ψ(x) = cosα(xα)− xα

Γ(1 + α)
+

1

Γ(1 + α)

∫ 1

0

xα

Γ(1 + α)

[
ψ2(τ) + sin2

α(τα)
]

(dτ)α,(4.5)

with the exact solution ψ(x) = cosα(xα).
In the same procedure, the iterative formula can be expressed as the

following:

ψn+1(x) = ψn(x)−0 I
(α)
x

[
ψ(α)
n (ξ) + sinα(ξα) + 1

− 1

Γ(1 + α)

∫ 1

0

[
ψ2(τ) + sin2

α(τα)
]

(dτ)α,
(4.6)
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By using this iterative formula and taking ψ0(x) = cosα(xα), we have:

ψ0(x) = cosα(xα),

ψ1(x) = cosα(xα),

ψ2(x) = cosα(xα),

...

ψn(x) = cosα(xα), n ≥ 0.

Thus, we have

ψ(x) = lim
n→∞

ψn(x)

= lim
n→∞

cosα(xα)

= cosα(xα),(4.7)

which is the exact solution.

II. Solving the Volterra integro-differential Equation with Local Frac-
tional Decomposition Method

Example 4.3. We consider the Volterra integro-differential equation in-
volving local fractional derivative operator:

(4.8) ψ(2α(x) = 1 +
xα

Γ(1 + α)
+

1

Γ(1 + α)

∫ x

0

(x− τ)α

Γ(1 + α)
ψ(τ)(dτ)α,

with initial conditions

ψ(0) = 1, ψ(α)(0) = 0.

Let the solution in the series form

(4.9) ψ(x) =

∞∑
n=0

ψn(x).

Applying the integral operator L
(−2α)
x to both sides of (4.8), and using

the given initial condition we obtain

ψ(x) = 1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
+

x3α

Γ(1 + 3α)
+

L(−2α)
x

[
1

Γ(1 + α)

∫ x

0

(x− τ)α

Γ(1 + α)
ψ(τ)(dτ)α

]
.(4.10)
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Then substituting (4.9) in(4.10), we have that
∞∑
n=0

ψn(x) = 1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
+

x3α

Γ(1 + 3α)
+

L(−2α)
x

[
1

Γ(1 + α)

∫ x

0

(x− τ)α

Γ(1 + α)

( ∞∑
n=0

ψn(x)

)
(dτ)α

]
.(4.11)

Making use of (4.11), we give the recurrence relations in the following
form:

ψ0(x) = 1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
+

x3α

Γ(1 + 3α)
,

ψn+1(x) = L(−2α)
x

[
1

Γ(1 + α)

∫ x

0

(x− τ)α

Γ(1 + α)
ψn(τ)(dτ)α

]
.(4.12)

From (4.12), we obtain

ψ0(x) = 1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
+

x3α

Γ(1 + 3α)
,

ψ1(x) =
x4α

Γ(1 + 4α)
+

x5α

Γ(1 + 5α)
+

x6α

Γ(1 + 6α)
+

x7α

Γ(1 + 7α)
,

ψ2(x) =
x8α

Γ(1 + 8α)
+

x9α

Γ(1 + 9α)
+

x10α

Γ(1 + 10α)
+

x11α

Γ(1 + 11α)
,

...

This gives the solution in a series form

ψ(x) = 1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
+

x3α

Γ(1 + 3α)
+ · · ·

=
∞∑
n=0

xnα

Γ(1 + nα)

= Eα(xα).(4.13)

Example 4.4. Consider the Volterra integro-differential equation involv-
ing local fractional derivative operator:

(4.14) ψ(4α(x) = −1 +
xα

Γ(1 + α)
− 1

Γ(1 + α)

∫ x

0

(x− τ)α

Γ(1 + α)
ψ(τ)(dτ)α,

subject to the initial conditions given by

ψ(0) = −1, ψ(α)(0) = 1, ψ(2α)(0) = 1, ψ(3α)(0) = −1.(4.15)
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In view of (3.12) and (4.14), we arrive at the following iteration formula:

ψ0(x) = −1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
− x3α

Γ(1 + 3α)

− x4α

Γ(1 + 4α)
− x5α

Γ(1 + 5α)
,(4.16)

ψn+1(x) = −L(−4α)
x

[
1

Γ(1 + α)

∫ x

0

(x− τ)α

Γ(1 + α)
ψn(τ)(dτ)α

]
.

From (4.16), we obtain

ψ0(x) = −1 +
xα

Γ(1 + α)
+

x2α

Γ(1 + 2α)
− x3α

Γ(1 + 3α)

− x4α

Γ(1 + 4α)
− x5α

Γ(1 + 5α)
,

ψ1(x) =
x6α

Γ(1 + 6α)
+

x7α

Γ(1 + 7α)
+

x8α

Γ(1 + 8α)
+ · · ·

...

This gives the solution in a series form

ψ(x) =

[
xα

Γ(1 + α)
− x3α

Γ(1 + 3α)
+

x5α

Γ(1 + 5α)
· · ·
]

−
[
1− x2α

Γ(1 + 2α)
+

x4α

Γ(1 + 4α)
· · ·
]
,

and finally in its closed form gives

ψ(x) = sinα(xα)− cosα(xα).(4.17)

5. Conclusions

In this work, we have successfully provided new applications of the
local fractional variational iteration method and local fractional decom-
position method for solving several integral equations of the second kind
with local fractional derivative operators. The analytical approximate
solutions for local fractional integral equations were obtained and four
examples were given, in order to illustrate the high efficiency and ac-
curacy of the proposed techniques to solve the local fractional integral
equations.
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