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HYPERSURFACES IN THE GENERAL INNER

PRODUCT SPACES

ALI PARSIAN

Abstract. Let A be a symmetric positive definite (n+1)×(n+1)
real matrix for n ≥ 1 and S ∈ Rn+1 be a hypersurface. We are
supposed to determine the tangent space TpS in an arbitrary point
p ∈ S in the case that the whole space Rn+1 admits the inner
product with matrix A. Among other things, some maximum and
minimum properties for the vector fields perpendicular to tangent
spaces of hypersurfaces, the compatibility of the image or inverse
image of a hypersurface and its tangent space under an embedding,
an isometry, and a submersion are also pointed out.
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1. Introduction and Preliminaries

The idea of the definition of a regular surface is to introduce a set S,
that is, in a certain sense, two dimensional and that also is smooth so
that the usual notions of calculus can be extended to it. For example, if
x : U ⊆ R2 → S be a parameterization of a regular surface S and p ∈ U ,
then the vector subspace dxpR

2 ⊆ R3 of dimension 2, coincides with the
set of all tangent vectors of S at x(p). In the case that f : U ⊆ R3 → R
is a smooth map and c ∈ f(U) is a regular value of f , the set S = f−1(c)
is a regular surface in R3. As a result, in this case, the tangent space
of S at p, coincides with ∇f(p)⊥, i.e., the set of all vectors at p which
are perpendicular to ∇f(p) with respect to the usual inner product of

Received: 30 August 2016, Accepted: 15 May 2017. Communicated by Yuming Feng;

∗Address correspondence to A. Parsian; E-mail: Parsian@Tafreshu.ac.ir.

c© 2017 University of Mohaghegh Ardabili.

17



18 Ali Parsian

R3 [7, 18]. Recently, in last two dedicates, the problem of studying the
tangent spaces to some zero sets at some remarkable points is considered
by some authors. For example, a description of Zariski tangent spaces
of Schubert varieties in some representation-theoretic terms is given in
[13, 14, 17]. All the slopes of tangents to a real plane algebraic curve
at a particular point also represented in [20]. Bouligand tangent of
S = {x ∈ X|F (x) = 0}, where X is a Banach space and F : X → Rl is
a sufficiently smooth map, is characterized in [1]. In this paper, we are
supposed to characterize the tangent space TpS for a hypersurface S, in
the case that Rn+1 admits the general inner product θA(u, v) = uAvt

for a symmetric positive definite (n+1)× (n+1) real matrix A [3]. This
is mainly due to the applications to local differential geometry as well
as to theory of vector fields.

Investigation the subject of hypersurfaces can be followed through the
hyperstructures. Hyperstructures represent a suitable generalization of
classical ones [8]. Informally, a hyperstructure H consists of a collection
of bond sets at various levels H = {B0, B1, · · · , Bn} and the bond levels
are connected by maps ∂i : Bi+1 → P (Bi) where taking a bond at
the level (i + 1) and assigning the collection of bonds at level i that it
binds. Bonds may be viewed as a kind of general multirelations, but
it should be noted that properties suitably defined at one level, play
a role in the construction of the next level. Bonds are constructed or
created in order to persist as functional units according to some presheaf
property. For instance, let H0 be a collection of hypersurfaces, and let
Ω0 assigned a vector field χ0 for each hypersurface. Let B1 be a bond
of a collection of hypersurfaces with vector fields, i.e., b1{bi00 , χ

i0
0 } is a

hypersurface b1 where the bi00 ’s are embedded and b1 has a vector field χ̂1

extending the χi0
0 ’s. Let Ω1 assign a vector field χ1 to each b1. Possibly

χ̂1 = χ1, but this is not required and depends on the situation. Let B2

be a collection of hypersurfaces b2{bi11 , χ
i1
1 }. A bond b2 of this collection

will be a hypersurface with the bi11 ’s embedded and with a vector field χ̂2

extending the χi1
1 ’s. Then the procedure continues to obtain any number

of levels [2]. Some of the numerous applications of hyperstructures,
especially those that were found and studied in the last fifteen years
are to hypergraphs, hypergroups, binary relations, lattices, automata,
geometry, fuzzy sets and rough sets [4, 6, 9, 10, 15]. A history and new
possible research directions of hyperstructures are also provided in [5].
Before advancing any further, let us bring this section to an end by some
notions and definitions on the essential ingredients of this manuscript.
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Let f : U → R be a smooth map, where U ⊆ Rn+1 is an open set, a
point p ∈ U such that ∇f(p) 6= 0 is called a regular point of f . If c ∈ R
be such that S = f−1(c) is non-empty, then S is called a level set of f
or simply a level set. A level set S = f−1(c) is said a hypersurface if
∇f(p) 6= 0 for all p ∈ S. A vector is said to be tangent to the level set S,
if it is the velocity vector of a smooth parametric curve α : I → Rn+1 for
some open interval I whose image is contained in S. A vector field χ on
a hypersurface S, is a map which assigns to each point p ∈ S, a vector
χ(p) ∈ TpRn+1. Similarly, a tangent vector field on a hypersurface S, is
a map which assigns to each point p ∈ S an element of TpS [7, 18]. A
smooth parametric curve α : I → Rn+1, is said to be an integral curve
of the vector field χ defined on the open set U ⊆ Rn+1, if α(t) ∈ U
and α̇(t) = χ(α(t)) for all t ∈ I [12]. A map g : S → Rk for some
k ∈ N , is called smooth if it is the restriction to S of some smooth
function g̃ : V → Rk defined on some open set V [16]. A smooth vector
field on S is defined similarly. If χ is a smooth tangent vector field on a
hypersurface S, then α : I → S satisfying previous conditions is called an
integral curve of χ [11]. The smooth map G : U → V between two open
subsets of Rn+1 is called an imbedding if its derivative is nonsingular
and it is a homeomorphism onto its image with the subspace topology
[19]. A hypersurface, as a subset of the inner product space (Rn+1, θA),
the norm and the orthogonality in (Rn+1, θA) are denoted by SA, ‖
. ‖A and ⊥A respectively. An isometry of Rn+1, is a mapping F :
(Rn+1, θA) → (Rn+1, θB) such that dA(p, q) = dB(F (p), F (q)) where
dA(p, q) =‖ p − q ‖A and dB(F (p), F (q)) =‖ F (p) − F (q) ‖B. Finally,
if m,n ∈ N,m ≥ n, and U ⊆ Rm+1, V ⊆ Rn+1 are two open subsets,
then the smooth map G : U → V is called a submersion if the rank of
its derivative at all points of U is equal to n+ 1 [19].

2. Tangent Space of Hypersurfaces

In this section, we are going to find a representation for a hypersurface
SA and its tangent space TpSA at an arbitrary point p ∈ SA.

Theorem 2.1. Let SA be a level set and p ∈ SA, then the vector
∇f(p)A−1 is orthogonal to all vectors tangent to SA at p.

Proof. Each vector tangent to SA at p is of the form α̇(t0) for some
smooth parametric curve α : I → Rn+1 with α(t0) = p and Imα ⊆ SA.
But Imα ⊆ SA implies that f(α(t)) = c for all t ∈ I, so the chain rule
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implies that

θA(∇f(p)A−1, α̇(t0)) =
d

dt
(f ◦ α)(t)|t=t0 = 0.

This completes the proof. �

Theorem 2.2. Let SA be a level set of f and p ∈ SA be a regular
point of f , then the set of all vectors tangent to SA at p is precisely
(∇f(p)A−1)⊥A.

Proof. It suffices to show that if V = (p, v) ∈ (∇f(p)A−1)⊥A , then
V = α̇(0) for some smooth parametric curve α with Imα ⊆ S. Consider
the constant vector field χ on U defined by χ(q) = (q, v). Let

Y (q) = χ(q)− θA(∇f(q)A−1, χ(q))

θA(∇f(q)A−1,∇f(q))
∇f(q),(2.1)

Y is defined on an open set U containing p, such that ∇f(q) 6= 0 for all
q ∈ U and Y (p) = χ(p) = V ∈ (∇f(p)A−1)⊥A . Moreover

θA(∇f(q)A−1, Y (q)) = 0,(2.2)

for all q ∈ U . Thus Y (q)⊥A∇f(q)A−1 for all q ∈ U . If α is an integral
curve of Y through p, then

(2.3) α(0) = p, α̇(0) = Y (α(0)) = Y (p) = χ(p) = V,

and

(2.4)
d

dt
(f ◦ α)(t) = θA(∇f(α(t))A−1, Y (α)(t))) = 0

for all t ∈ I, so f(α(t)) = c. Since f(α(0)) = f(p) = c, so Imα ⊆ SA.
This completes the proof. �

Theorem 2.3. For any hypersurface SA and p ∈ SA, TpSA is a hyper-
surface.

3. Existence and Uniqueness of Integral Curves of Tangent
Vector Fields

The proof of the following theorems is an exploitation of the proof
of Theorem 2.2, extends the fundamental theorem of local existence
and uniqueness of integral curves (See [7, 18]) to a hypersurface. The
fundamental theorem in two references is proved in the case that the
vector field χ defined on an open set U ⊆ Rn+1 as a reformulation of the
existence and uniqueness theorem for solutions of systems of first order
differential equations [12].
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Theorem 3.1. Let SA be a hypersurface, and χ be a smooth tangent
vector field on SA. There exists an open interval I containing 0 and a
smooth parametric curve α : I → SA such that,

(1) α(0) = p,
(2) α̇(t) = χ(α(t)) for all t ∈ I,

(3) If β : Ĩ → SA is any other parametric curve in SA satisfying 1

and 2, then Ĩ ⊆ I and β(t) = α(t) for all t ∈ Ĩ.

Proof. There exists an open set V containing SA, and a smooth vector
field χ̃ on V such that χ̃(q) = χ(q) for all q ∈ SA. Let f : U → R and
c ∈ R be such that SA = f−1(c) and ∇f(q) 6= 0 for all q ∈ SA. Let
W = {q ∈ U ∩ V |∇f(q) 6= 0}, then W is an open set containing SA
and both χ̃ and f are defined on W . Let Y be defined as in (2.1) with
χ̃ instead of χ, then Y (q) = χ̃(q) for all q ∈ SA. Let α : I → W be
the maximal integral curve of Y through p, then α maps I into SA by
(2.3) and (2.4). Conditions 1 and 2 are clearly satisfied, and condition
3 is also satisfied because any β : I → W satisfying 1 and 2 is also an
integral curve of the vector field Y on W , so the fundamental theorem
of local existence and uniqueness of integral curves of (2.1) applies [7].
This completes the proof. �

Theorem 3.2. Let SA be a hypersurface and χ be a smooth tangent
vector field on SA. If α : I → U is any integral curve of χ such that
α(t0) ∈ SA for some t0 ∈ I, then α(t) ∈ SA for all t ∈ I.

Proof. Suppose α(t) 6∈ SA for some t ∈ I, t < t0. Let

t1 = sup{t ∈ I|t < t0, α(t) 6∈ SA}.

Then f(α(t)) = 0 for t1 < t ≤ t0, so by continuity f(α(t1)) = c; that

is α(t1) ∈ SA. Let β : Ĩ → SA be an integral curve through α(t1) of
X. Thus β(0) = α(t1), as the curve α̃ defined by α̃(t) = α(t + t1). By
Theorem 3.1, α(t) = α̃(t − t1) = β(t − t1) for all t such that t − t1 ∈
Dom(α̃) ∩ Dom(β). But this contradicts the fact that α(t) 6∈ SA for
values of t arbitrary close to t1. Hence α(t) ∈ SA for all t ∈ I with
t < t0. The proof for t > t0 is similar. �

4. Maximum and Minimum Properties

Lagrange’s Multiplier Theorem, is a consequence of the representation
of tangent spaces as indicated in Theorem 2.2.
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Theorem 4.1. Let SA be a hypersurface. Suppose V is an open subset
of Rn+1 containing SA, g : V → R be a smooth map and p ∈ SA be an
extreme point of g on SA, then there exists a real number λ such that
∇g(p) = λ∇f(p).

Proof. The tangent space at p to SA is TpSA = (∇f(p)A−1)⊥A by The-

orem 2.2. Hence TpS
⊥A
A is the one dimensional subspace of TpR

n+1

spanned by ∇f(p)A−1. Moreover each v ∈ TpSA is of the form v = α̇(t0)
for some smooth parametric curve α : I → SA, t0 ∈ I with α(t0) = p.
Since p is an extreme point of g on SA, so t0 is an extreme point of g ◦α
on I and

0 =
d

dt
(g ◦ α)(t0) = θA(∇g(p)A−1, v)

for all v ∈ TpSA. Therefore ∇g(p)A−1 ∈ TpS⊥A
A and there exists a real

number λ such that ∇g(p)A−1 = λ∇f(p)A−1, i.e., ∇g(p) = λ∇f(p).
This completes the proof. �

Theorem 4.2. Let SA be a hypersurface and p0 ∈ U − SA. Then the
shortest line segment from p0 to SA, if one exists, is perpendicular to
SA, i.e., if p ∈ SA be such that θA(p − p0, p − p0) ≤ θA(q − p0, q − p0)
for all q ∈ SA then (p, p−p0)⊥ASA. The same conclusion also holds for
the longest segment from p0 to SA.

Proof. Let SA be a hypersurface in U and g : U → R be defined by
g(u) = θA(u − p0, u − p0). Then a computation using differentiation
laws of smooth maps yields that ∇g(u) = 2(u− p0)A. Since g takes its
minimum on SA at p, Theorem 4.1 implies that 2(p − p0)A = λ∇f(p)
for some λ ∈ R − {0} and so (p, p − p0) is parallel to ∇f(p)A−1. The
proof of the longest segment is similar. �

Since a smooth map attains its extremums on a compact set, one can
deduce the following Theorem.

Theorem 4.3. Let SA be a compact hypersurface and p0 ∈ U − SA.
Then there exist points pi ∈ SA, i = 1, 2 such that (pi, pi − p0)⊥ASA.

In the following, we are going to present a general property of the
integral curves of the vector fields ±(∇f)A−1.

Theorem 4.4. If f : U → R be a smooth map, and α : I → U be an
integral curve of (∇f)A−1 (res. −(∇f)A−1), then for each t0 ∈ I, the
map f is increasing faster (res. slower) along α at α(t0) than along any
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other curve passing through α(t0) with the same speed, i.e., if β : Ĩ → U

is such that β(s0) = α(t0) for some s0 ∈ Ĩ and ‖β̇(s0)‖ = ‖α̇(t0)‖, then
d
dt(f ◦ β)(s0) ≤ d

ds(f ◦ α)(t0) (res. d
dt(f ◦ β)(s0) ≥ d

ds(f ◦ α)(t0)).

Proof. Let α be an integral curve of (∇f)A−1. There exists a real num-
ber k ∈ [−1, 1] such that

d

dt
(f ◦ β)(s0) = θA(∇f(β(s0))A−1, β̇(s0))(4.1)

= k‖∇f(β(s0))A−1‖‖β̇(s0)‖
= k‖∇f(α(t0))A−1‖‖α̇(t0)‖
= k‖∇f(α(t0))A−1‖‖∇f(α(t0))A−1‖
= kθA(∇f(α(t0))A−1,∇f(α(t0))A−1)

≤ θA(∇f(α(t0))A−1,∇f(α(t0))A−1)

= θA(∇f(α(t0))A−1, α̇(t0)) =
d

dt
(f ◦ α)(t0).

The proof of the theorem for −(∇f)A−1 parallels that of (∇f)A−1, as
presented above. �

As a consequence of Theorems 3.2 and 4.4 we have the following
Theorem.

Theorem 4.5. Let SA be a hypersurface with a smooth tangent vector
field on it and p ∈ SA. Then there exists an open interval I and a smooth
parametric curve α : I → SA through p such that the map f is increasing
faster along α at p than along any other curve passing through p (not
essentially with image in SA) with the same speed.

The following example shows that the converse of Theorem 4.5 is not
true.

Example 4.6. Let A be the (n+1)×(n+1) identity matrix, p ∈ Rn+1−{0}
and the smooth map f : Rn+1 − {0} → R be defined by

f(x1, . . . , xn+1) =
1

2
Σi=n+1
i=1 x2

i .

Let t0 > 0, I be an enough small interval about t0, β : I → Rn+1 be an
arbitrary smooth parametric curve and the curves α, γ : I → Rn+1 are
defined by

α(t) = p · exp(t− t0), γ(t) = p · exp2(t− t0).
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Then α is an integral curve of (∇f)A−1 through p at t0, γ(t0) = p and

d

dt
(f ◦ γ)(t) = 4exp4(t− t0)θA(pA−1, p)(4.2)

> exp(t− t0)θA(pA−1, p)(4.3)

=
d

dt
(f ◦ α)(t) ≥ d

dt
(f ◦ β)(t).(4.4)

Therefore (4.1) is hold for γ instead of α by (4.2) and etc., not only for
a single point but for all points of an interval, but γ is not an integral
curve of ∇f .

5. Imbeddings, Isometries and Submersions

In this section we are going to investigate the properties of the image
of a hypersurface under an imbedding, or an isometry and its inverse
image under a submersion.
Let G : U → V be an imbedding. It follows from the inverse mapping
theorem that G maps a neighborhood of a point in U diffeomorphically
onto an open set in V . If f : U → R be a smooth map, and JG−1((G(q))
denotes the Jacobian of G−1 at G(q), then a computation yields ∇(f ◦
G−1)(G(q)) = ∇f(q)JG−1(G(q)) for all q ∈ U . As a result of above
discussion and Theorem 2.2 we have the following corollaries.

Corollary 5.1. Let A,B are two symmetric positive definite (n+ 1)×
(n + 1) real matrices, G : (U, θA) → (V, θB) be an imbedding, and
SA = f−1(c) be a hypersurface in U , then G(SA) is a hypersurface in
V . Moreover, TG(p)G(SA) = (∇(f ◦G−1)B−1)⊥B .

Corollary 5.2. Let U ⊆ Rn+1 be an open set and SA ⊆ U . Then SA is
a hypersurface if and only if it is the image of a hypersurface under an
imbedding. Let (p, v) ∈ TpSA, then (G(p), vG′(p)) ∈ TG(p)G(SA) if and
only if

θB(∇f(p)JG−1(G(p))B−1, vJG(p)) = 0.

Corollary 5.3. If (p, v) ∈ TpSA and JG−1(G(p)(JG(p))t = I (In partic-
ular if G′(p) is a symmetric linear map), then

(G(p), vG′(p)) ∈ TG(p)G(SA).

Corollary 5.4. Let A,B are two symmetric positive definite (n+ 1)×
(n + 1) real matrices. Let HU (res. HV ) be the set of all hypersurfaces
in U (res. V ). Then, there is a one to one correspondence between
HU and HV . Moreover, if D be any nonsingular symmetric matrix,
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Ĝ : (Rn+1, θA) → (Rn+1, θB) be defined by Ĝ(x) = xD and G = Ĝ|U
be its restriction to U , then (p, v) ∈ TpSA if and only if (G(p), Ĝ(v)) ∈
TG(p)G(SA).

Example 5.5. Let A,B are two symmetric positive definite 2 × 2 real
matrices. Let U = {(x, y)|x > 0, y > 0}, f : U → R be defined by
f(x, y) = x2 + y2 and c = 1. Then SA = {(x, y)|x2 + y2 = 1, x >
0, y > 0} and G : U → U which is defined by G(x, y) = (2xy, x2)
is a nonlinear surjective imbedding with symmetric Jacobian matrix.
Moreover, T(a,b)SA = {λ(−b, a)|λ ∈ R} for (a, b) ∈ SA, G(SA) =

{(x, y)|x2 + (2y − 1)2 = 1, x > 0, y > 0}, TG(a,b)G(SA) = {(x, y)|abx +

(2a2 − 1)y = 0}. On the other hand, (x, y)G′(a, b) = (2bx + 2ay, 2ax).
Thus, if (x, y) ∈ T(a,b)SA, then x = −λb, y = λa for some λ, and

ab(2bx+2ay)+(2a2−1)(2ax) = ab(−2λb2+2λa2)+(2a2−1)(−2λab) = 0,
i.e., (G(a, b), vG′(a, b)) ∈ TG(a,b)G(SA) as indicated in Corollary 5.3.

Due to investigating the image of a hypersurface under an isometry,
at first, we characterize the structure of an isometry in a special case.

Theorem 5.6. If F is an isometry of Rn+1 such that F (0) = 0, then
F is an orthogonal transformation.

Proof. By hypothesis, F preserves norm, and F (0) = 0; hence ‖ F (p) ‖B=
dB(0, F (p)) = dB(F (0), F (p)) = dA(0, p) =‖ p ‖A. Since F is an isome-
try, dB(F (p), F (q)) = dA(p, q) for any pair of points. Hence θB(F (p)−
F (q), F (p) − F (q)) = θA(p − q, p − q). Since F preserves norms, we
have θB(F (p), F (q)) = θA(p, q), as required. It remains to prove that F
is linear. Let u1, · · · , un+1 be some orthonormal vectors in (Rn+1, θA).
Then p =

∑
piui and θA(ui, uj) = δij , where δij is the Kronecker delta.

Since F preserves inner products, so F (u1), · · · , F (un+1) must also be or-
thonormal. Thus F (p) =

∑
θB(F (p), F (ui))F (ui) =

∑
θA(p, ui)F (ui).

Using this identity, it is a simple matter to check the linearity condi-
tion. �

We now give a concrete description of an arbitrary isometry.

Theorem 5.7. Every isometry of Rn+1 can be uniquely described as an
orthogonal transformation followed by a translation.

Proof. Let T be translation by F (0). Then, (T−1◦F )(0) = T−1(F (0)) =
F (0) − F (0) = 0. Thus by Theorem 5.6, T−1 ◦ F is an orthogonal
transformation, say T−1 ◦ F = C, and so F = T ◦ C. The proof of
uniqueness is straightforward. �
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As a result of Theorem 5.7 we have the following Theorem.

Theorem 5.8. Every isometry of Rn+1 is a smooth imbedding. More-
over, SA is a hypersurface if and only if it is the image of a hypersurface
under an isometry.

An imbedding as defined above (res. an isometry) is a submer-
sion. So by an argument using ∇(f ◦ G)(q) = ∇f(G(q))JG(q) and
(rank G′)(q) = n+ 1 for all q ∈ U one can generalize the Corollary 5.1
and Theorem 5.8 as the following Theorem.

Theorem 5.9. Let A,(res. B) be a symmetric positive definite (m +
1)× (m+ 1), (res. (n+ 1)× (n+ 1)) real matrix. Let U ⊆ Rm+1, V ⊆
Rn+1, G : U → V be a submersion, and f : V → R be a smooth map.
Let c ∈ R, and SB = f−1(c) be a hypersurface in V , then G−1(SB) is a
hypersurface in U .

Example 5.10. Let A,B are two symmetric positive definite 3 × 3, real
matrices. The simplest construction of one-eighth of Steiner hypersur-
face is as the image of hypersurface SA = {(x, y, z)|x2 + y2 + z2 =
1, x > 0, y > 0, z > 0} under the map G(x, y, z) = (yz, xz, xy). Let
U = {(x, y, z)|xyz 6= 0}, then G : U → U is an imbedding, and
the image of SA under G is the one-eighth of the Steiner hypersur-
face SB = {(x, y, z)|x2y2 + y2z2 + z2x2 − xyz = 0, x > 0, y > 0, z > 0}.
Moreover, G : U → U is also a submersion, and the inverse image of
one-eighth of Steiner hypersurface under G is the hypersurface SA.
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