Journal of Hyperstructures 6 (1) (2017), 10-16. ISSN: 2322-1666 print/2251-8436 online

(n-1,n)-WEAKLY PRIME SUBMODULES IN DIRECT PRODUCT OF MODULES

MAHDIEH EBRAHIMPOUR

ABSTRACT. Let $n \geq 2$ be a positive integer, R be a commutative ring with identity and M be a unitary R-module. In this paper we study the (n-1, n)-weakly prime submodules of direct product of modules. Also, we show that for some special cases, every proper submodule is (n-1, n)-weakly prime.

Key Words: Prime submodule, Weakly prime submodule, Quasi-local ring, (n - 1, n)-weakly prime submodule.

2010 Mathematics Subject Classification: Primary: 13C05; Secondary: 13C13.

1. INTRODUCTION

We assume throughout that all rings are commutative with $1 \neq 0$ and all modules are unital. Let R be a ring, M be an R-module and N be a submodule of M. This is easy to show that $(N :_R M) = \{r \in R | rM \subseteq N\}$ is an ideal of R. M is called faithful if $Ann_R(M) = (0 :_R M) = 0$.

The concept of weakly prime submodule, i.e., a proper submodule P of M with the property that $r \in R$ and $x \in M$ together with $0 \neq rx \in P$ imply $x \in P$ or $r \in (P :_R M)$ has been introduced by Nekooei in [12]. In [1],[2] and [3], Ebrahimpour and Nekooei have introduced the concept of (n-1, n)-prime.

In [2], Ebrahimpour and Nekooei have said that a proper submodule P of M is (n-1,n)-prime if $a_1...a_{n-1}x \in P$ implies $a_1...a_{n-1} \in (P:_R M)$ or $a_1...a_{i-1}a_{i+1}...a_{n-1}x \in P$, for some $i \in \{1,...,n-1\}$, where

Received: 1 November 2016, Accepted: 11 December 2016. Communicated by Ahmad Youse-fian Darani;

^{*}Address correspondence to M. Ebrahimpour; E-mail: m.ebrahimpour@vru.ac.ir.

^{© 2017} University of Mohaghegh Ardabili.

¹⁰

 $a_1, ..., a_{n-1} \in R$ and $x \in M$. Note that a (1, 2)-prime submodule is just a prime submodule. Also, a proper ideal P of R is said to be (n-1, n)-weakly prime if $a_1, ..., a_n \in R$ together with $0 \neq a_1 ... a_n \in P$ imply $a_1 ... a_{i-1}a_{i+1} ... a_n \in P$, for some $i \in \{1, ..., n\}$, [3]. Other generalizations of prime submodules have been studied in [4],[5],...,[13] and [14].

In this paper we study (n-1, n)-weakly prime submodules. We say that a proper submodule P of M is (n-1, n)-weakly prime if $0 \neq a_1...a_{n-1}x \in P$ imply $a_1...a_{n-1} \in (P:_R M)$ or $a_1...a_{i-1}a_{i+1}...a_{n-1}x \in P$, for some $i \in \{1, ..., n-1\}$, where $a_1, ..., a_{n-1} \in R$ and $x \in M$. So a (1, 2)weakly prime submodule is just a weakly prime submodule.

Let (R, Q) be a quasi-local ring and M be an R-module. If t is the smallest positive integer such that $Q^t M = 0$, then we say that the associated degree of M is t. If $Q^t M \neq 0$, for all $t \geq 1$, then we say that the associated degree of M is ∞ .

Let $R = R_1 \times \cdots \times R_m$ and $M = M_1 \times \cdots \times M_m$ be an R-module, where (R_i, Q_i) is a quasi-local ring and M_i is a non-zero R_i -module and the associated degree of M_i is t_i , for all $i \in \{1, \ldots, m\}$.

In Theorem 1.4, we show that if every proper submodule of M is (n-1,n)-weakly prime, then $Q_i^{n-m}M_i = 0$, for all $i \in \{1,\ldots,m\}$ and some m, n.

In Theorem 1.6, we show that if $\sum_{i=1}^{m} t_i \leq n-1$, then every proper submodule of M is (n-1,n)-weakly prime with $n \geq 2$ and $m \geq 1$.

2. MAIN RESULTES

Let $R = R_1 \times \cdots \times R_m$, $M = M_1 \times \cdots \times M_m$, where R_i is a ring and M_i is an R_i -module, for i = 1, ..., m. Then every submodule of the *R*-module *M* is of the form $N_1 \times \cdots \times N_m$, where N_i is an R_i -submodule of M_i .

Theorem 2.1. Let $R = R_1 \times \cdots \times R_m$, $M = M_1 \times \cdots \times M_m$, where R_i is a ring and M_i is a non-zero torsionfree R_i -module, for i = 1, ..., m. Let $P = P_1 \times \cdots \times P_m$ be an (n-1, n)-weakly prime submodule of M together with $(P_i :_{R_i} M_i) \neq 0$, for all $i \in \{1, ..., m\}$. Then either P is (n-1, n)prime submodule of M or P_i is a (n-2, n-1)-prime submodule of M_i , for all $i \in \{1, ..., m\}$ with $m \geq 2$ and $n \geq 3$.

Proof. If there exists $j \in \{1, ..., m\}$ such that $P_j = M_j$, then $(P : M)^{n-1}P \neq 0$. We claim that P is (n-1, n)-prime. Assume that P is not

(n-1,n)-prime. So there exist $a_1, \ldots, a_{n-1} \in R$, $x \in M$ together with $a_1 \ldots a_{n-1}x = 0$, $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \notin P$, for all $i \in \{1, \ldots, n-1\}$ and $a_1 \ldots a_{n-1} \notin (P :_R M)$ where $n \geq 2$. We show that $a_1 \ldots a_{n-k}(P :_R M)^{k-1}P = 0$, for all $k \in \{1, 2, \ldots, n-1\}$. If $a_1 \ldots a_{n-k}(P :_R M)^{k-1}P \neq 0$, then $a_1 \ldots a_{n-k}p_1 \ldots p_{k-1}y \neq 0$, for some $p_1, \ldots, p_{k-1} \in (P :_R M)$ and $y \in P$. Hence

$$a_1 \dots a_{n-k}(a_{n-k+1}+p_1)(a_{n-k+2}+p_2) \dots (a_{n-1}+p_{k-1})(x+y) \in P \setminus \{0\}.$$

Since P is (n-1, n)-weakly prime, we have $a_1 \ldots a_{i-1}a_{i+1} \ldots a_{n-1}x \in P$, for some $i \in \{1, \ldots, n-1\}$ or $a_1 \ldots a_{n-1} \in (P :_R M)$, which is a contradiction. So $a_1 \ldots a_{n-k}(P :_R M)^{k-1}P = 0$.

By a same argument, we can prove that for all $\{i_1 \dots i_{n-k}\} \subseteq \{1, \dots, n-1\}, a_{i_1} \dots a_{i_{n-k}} (P :_R M)^{k-1} P = 0.$

Suppose $(P:_R M)^{n-1}P \neq 0$. According to the above discussion, we have $0 \neq (a_1 + p_1) \dots (a_{n-1} + p_{n-1})(x + y) \in P$. Since P is (n-1, n)-weakly prime, $a_1 \dots a_{i-1}a_{i+1} \dots a_{n-1}x \in P$, for some $i \in \{1, \dots, n-1\}$ or $a_1 \dots a_{n-1} \in (P:_R M)$, which is a contradiction. Therefore, $(P:_R M)^{n-1}P = 0$, which is a contradiction.

So we can assume that $P_j \neq M_j$, for all $j \in \{1, \ldots, m\}$. We show that P_j is a (n-2, n-1)-prime submodule of M_j .

Let $a_1, \ldots, a_{n-2}x \in P_j$ where $a_1, \ldots, a_{n-2} \in R_j$, $x \in M_j$ and $i \in \{1, \ldots, m\}$ such that $i \neq j$. Let $0 \neq a \in (P_i :_{R_i} M_i)$ and $y \in M_i \setminus P_i$. Since M_i is torsionfree, $0 \neq ay \in P_i$. Without loss of generality we can assume that j < i. We have

$$\begin{array}{rcl}
0 & \neq & (0, \dots, 0, a_1 \dots a_{n-2}x, 0, \dots, 0, ay, 0, \dots, 0) \\
& = & (a_{11}, \dots, a_{1m})(a_{21}, \dots, a_{2m}) \dots (a_{(n-1)1}, \dots, a_{(n-1)m})(x_1, \dots, x_m) \in P
\end{array}$$

where $a_{kj} = a_k$ and $a_{ki} = a_{(n-1)j} = 1$, for all $k \in \{1, \ldots, n-2\}$. Let $a_{(n-1)i} = a$ and in other places $a_{hl} = 0$. Also $x_i = y, x_j = x$ and $x_t = 0$, for all $t \neq i, j$.

Since P is (n-1, n)-weakly prime, then $y \in P_i$, which is a contradiction or

$$a_1 \dots a_{k-1} a_{k+1} \dots a_{n-2} x \in P_i,$$

for some $k \in \{1, ..., n-2\}$ or $a_1...a_{n-2} \in (P_j :_{R_j} M_j)$. Therefore, P_j is (n-2, n-1)-prime.

Theorem 2.2. Let $n \ge 2$ be a positive integer, $R = R_1 \times R_2$ and $M = M_1 \times M_2$ where R_i is a ring and M_i is a non-zero R_i -module for i = 1, 2. suppose that P is a proper submodule of M_1 . Then $P \times M_2$

(n-1, n)-Weakly Prime Submodules

is an (n-1, n)-weakly prime ((n-1, n)-prime) submodule of M if and only if P is an (n-1, n)-prime submodule of M_1 .

Proof. (\Rightarrow) Since $(P \times M_2 :_R M)^{n-1}(P \times M_2) \neq 0$, $P \times M_2$ is (n-1, n)-prime, similar to the proof of Theorem 1.2. It is easy to show that P is an (n-1, n)-prime submodule of M_1 .

(\Leftarrow) If P be an (n-1, n)-prime submodule of M_1 , then it is easy to show that $P \times M_2$ is an (n-1, n)-prime submodule of M and thus $P \times M_2$ is an (n-1, n)-weakly prime submodule of M.

Theorem 2.3. Let $R = R_1 \times ... \times R_n$ be a ring and $M = M_1 \times ... \times M_n$ be an R-module, where M_i is an R_i -module, for all $i \in \{1, ..., n\}$. If every proper submodule of M is (n - 1, n)-weakly prime, then M_i is a simple R_i -module, for all $i \in \{1, ..., n\}$ where $n \geq 2$.

Proof. Let M_1 is not a simple R_1 -module. So there exists a non-zero proper submodule P_1 of M_1 . By hypothesis, the submodule $P = P_1 \times \{0\} \times ... \times \{0\}$ is an (n-1,n)-weakly prime submodule of M. Let $0 \neq x \in P_1$ and $0 \neq y_j \in M_j$ for all $j \in \{2, ..., n\}$. Then

$$(0, ..., 0) \neq (x, 0, ..., 0) = (1, a_{12}, ..., a_{1n})(1, a_{22}, ..., a_{2n})$$
$$...(1, a_{(n-1)2}, ..., a_{(n-1)n})(x, y_2, ..., y_n) \in P,$$

where $a_{i(i+1)} = 0$, for all $i \in \{1, ..., n-1\}$ and otherwise $a_{ij} = 1$.

Since P is (n-1,n)-weakly prime, $P_1 = M_1$ or $y_j = 0$, for some $j \in \{2, ..., n\}$, which are contradictions. So M_1 is a simple R_1 -module. By a same argument, M_j is a simple R_j -module for all $j \in \{2, ..., n\}$. \Box

Theorem 2.4. Let m, n be two positive integers such that $3 \le m < n$, $R = R_1 \times \cdots \times R_m$ and $M = M_1 \times \ldots \times M_m$ be an R-module, where (R_i, Q_i) is a quasi-local ring and M_i is a non-zero R_i -module, for all $i \in \{1, \ldots, m\}$. If every proper submodule of M is (n - 1, n)-weakly prime, then $Q_i^{n-m}M_i = 0$, for all $i \in \{1, \ldots, m\}$.

Proof. Let $Q_1^{n-m}M_1 \neq 0$. So there exist $a_1, \ldots, a_{n-m} \in Q_1$ and $x_1 \in M_1$ such that $a_1 \ldots a_{n-m}x_1 \neq 0$. By hypothesis, the submodule $P = (a_1 \ldots a_{n-m}x_1) \times \{0\} \times \cdots \times \{0\}$ is an (n-1, n)-weakly prime submodule of M. Let $0 \neq x_j \in M_j$ for all $j \in \{2, \ldots, m-1\}$. We have

$$(0, ..., 0) \neq (a_1 ... a_{n-m} x_1, 0, ..., 0) = (a_{11}, ..., a_{1m})$$
$$...(a_{(n-1)1}, ..., a_{(n-1)m})(x_{n1}, ..., x_{nm}) \in P,$$

for $a_{k1} = a_k$, where $1 \le k \le n - m$ and $a_{(n-m+t)(t+1)} = 0$, where $1 \leq t \leq (m-2)$. In other places, let $a_{ij} = 1$. $x_{nj} = x_j$, where $1 \leq j \leq m-1$ and $x_{nm} = 0$.

Since P is (n-1, n)-weakly prime, $M_m = 0$ or $x_{nj} = 0$, for some $2 \leq j \leq m-1$, which are contradictions, or $a_1 \dots a_{j-1} a_{j+1} \dots a_{n-m} x_1 \in a_{j-1}$ $(a_1 \dots a_{n-m} x_1)$, for some $j \in \{1, \dots, n-m\}$. So there exists an $r \in R$ such that

$$a_1 \dots a_{j-1} a_{j+1} \dots a_{n-m} x_1 (1 - ra_j) = 0.$$

Since $a_i \in Q_1, 1 - ra_i$ is a unit in R_1 . So $a_1 \dots a_{j-1} a_{j+1} \dots a_{n-m} x_1 = 0$ which is a contradiction. Therefore $Q_1^{n-m}M_1 = 0$. By a same argument, $Q_i^{n-m} M_i = 0$, for all $i \in \{2, \dots, m\}$.

Let (R, Q) be a quasi-local ring and M be an R-module. If t is the smallest positive integer such that $Q^t M = 0$, then we say that the associated degree of M is t. If $Q^t M \neq 0$, for all $t \geq 1$, then we say that the associated degree of M is ∞ .

Corollary 2.5. Let m, n be two positive integers such that $3 \le m < n$ and $R = R_1 \times \cdots \times R_m$ and $M = M_1 \times \cdots \times M_m$ be an *R*-module, where (R_i, Q_i) is a quasi-local ring and M_i is a non-zero R_i -module, where the associated degree of M_i is t_i , for all $i \in \{1, \ldots, m\}$. If every proper submodule of M is (n-1,n)-weakly prime, then $t_i \leq n-m$, for all $i \in \{1, ..., m\}$.

Theorem 2.6. Let $R = R_1 \times \cdots \times R_m$ and $M = M_1 \times \ldots \times M_m$ be an R-module, where (R_i, Q_i) is a quasi-local ring, M_i is an R_i -module and the associated degree of M_i is t_i , for all $i \in \{1, \ldots, m\}$. If $\sum_{i=1}^{m} t_i \leq n-1$, then every proper submodule of M is (n-1, n)-weakly prime with $n \geq 2$

and $m \geq 1$.

Proof. Let $P = P_1 \times \cdots \times P_m$ be a proper submodule of M and $(0,\ldots,0)\neq$

 $(a_{11}, \ldots, a_{1m})(a_{21}, \ldots, a_{2m}) \ldots (a_{(n-1)1}, \ldots, a_{(n-1)m})(x_1, \ldots, x_m) \in P.$

So there exists a $j \in \{1, \dots, n-1\}$ such that $(\prod_{k=1}^{n-1} a_{kj})x_j \neq 0$. Since

 $Q_j^{i_j} M_j = 0$, there exist at most $t_j - 1$ elements of $\{a_{1j}, \ldots, a_{(n-1)j}\}$ that are nonunits in R_i . So we need at most $t_i - 1$ parentheses such that the product of their j'th elements product in x_j is in P_j .

14

(n-1, n)-Weakly Prime Submodules

For $i \neq j$ we have $Q_i^{t_i} M_i = 0$. If there exist t_i elements of $\{a_{1i},\ldots,a_{(n-1)i}\}$ that are nonunits in R_i , then the product of these t_i elements is zero and we need t_i parentheses such that the product of their *i'th* elements product in x_i is in P_i .

If there exist less than t_i elements of $\{a_{1i}, \ldots, a_{(n-1)i}\}$ that are nonunits in R_i , then we need less than t_i parentheses that the product of their

In R_i , then we need to t_i i'th elements product in x_i is in P_i . So we need at most $(t_j - 1 + \sum_{i \neq j, i=1}^m t_i) + 1 = \sum_{i=1}^m t_i$ parentheses such

that their product is in P. So P is (n-1, n)-weakly prime.

Corollary 2.7. Let m < n be two positive integers, $R = R_1 \times \cdots \times R_m$ and $M = M_1 \times \ldots \times M_m$ be an *R*-module, where R_i is a field and M_i is an R_i -vector space, for $i \in \{1, \ldots, m\}$. Then every proper submodule of M is (n-1, n)-weakly prime with $n \geq 2$.

Proof. Let t_i be the associated degree of M_i . So $t_i = 1$, for all $i \in$ $\{1, ..., m\}$. Thus $\sum_{i=1}^{m} t_i = m \leq n-1$. Therefore, every proper submodule of M is (n-1, n)-weakly prime, by Theorem 1.7.

Acknowledgments

The author would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

- [1] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Commun. Algebra, 40 (2012), 1268–1279.
- [2] M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iran. Math. Soc., **39(5)** (2013), 919–939.
- [3] M. Ebrahimpour, On generalisations of almost prime and weakly pime ideals, Bull. Iran. Math. Soc., 40(2) (2014), 531–540.
- [4] M. Ebrahimpour, Some remarks on generalizations of multiplicatively-closed subsets, J. Alg. Systems, 4(1) (2016), 15–27.
- [5] M. Ebrahimpour, Some generalizations of weakly prime submodules, to appear in Transactions on Algebra and its Applications.
- [6] S. Galovich, Unique factorization rings with zero divisors, Math. Mag., 51 (1978), 276 - 283.
- [7] C. P. Lu, Prime submodules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61–69.

- [8] R. L. Mc Casland and M. E. Moore, *Prime submodules*, Commun. Algebra, 20 (1992), 1803–1817.
- [9] R. L. Mc Casland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041–1062.
- [10] M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Commun. Algebra, 30 (2010), 5037–5064.
- [11] R. Moradi and M. Ebrahimpour, On ϕ -2-Absorbing primary submodules, to appear in Acta Math. Vietnam.
- [12] R. Nekooei, Weakly prime submodules, FJMS., 39(2) (2010), 185–192.
- [13] R.Y. Sharp, *Steps in commutative algebra*, Cambridge: Cambridge University Prees (2000).
- [14] N. Zamani, ϕ -prime submodules, Glasgow Math. J. Trust (2009), 1–7.

M. Ebrahimpour

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 518, Rafsanjan, Iran

Email: m.ebrahimpour@vru.ac.ir

16