$(n-1, n)$-WEAKLY PRIME SUBMODULES IN DIRECT PRODUCT OF MODULES

MAHDIEH EBRAHIMPOUR

Abstract

Let $n \geq 2$ be a positive integer, R be a commutative ring with identity and M be a unitary R-module. In this paper we study the $(n-1, n)$-weakly prime submodules of direct product of modules. Also, we show that for some special cases, every proper submodule is $(n-1, n)$-weakly prime.

Key Words: Prime submodule, Weakly prime submodule, Quasi-local ring, $(n-1, n)$ weakly prime submodule.
2010 Mathematics Subject Classification: Primary: 13C05; Secondary: 13C13.

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$ and all modules are unital. Let R be a ring, M be an R-module and N be a submodule of M. This is easy to show that $\left(N:_{R} M\right)=\{r \in R \mid r M \subseteq$ $N\}$ is an ideal of $R . M$ is called faithful if $A n n_{R}(M)=\left(0:_{R} M\right)=0$.

The concept of weakly prime submodule, i.e., a proper submodule P of M with the property that $r \in R$ and $x \in M$ together with $0 \neq r x \in P$ imply $x \in P$ or $r \in\left(P:_{R} M\right)$ has been introduced by Nekooei in [12]. In [1],[2] and [3], Ebrahimpour and Nekooei have introduced the concept of ($n-1, n$)-prime.

In [2], Ebrahimpour and Nekooei have said that a proper submodule P of M is $(n-1, n)$-prime if $a_{1} \ldots a_{n-1} x \in P$ implies $a_{1} \ldots a_{n-1} \in\left(P:_{R}\right.$ $M)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$, where

[^0]$a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$. Note that a (1,2)-prime submodule is just a prime submodule. Also, a proper ideal P of R is said to be $(n-1, n)$-weakly prime if $a_{1}, \ldots, a_{n} \in R$ together with $0 \neq a_{1} \ldots a_{n} \in P$ imply $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in P$, for some $i \in\{1, \ldots, n\},[3]$. Other generalizations of prime submodules have been studied in [4],[5],..., [13] and [14].

In this paper we study $(n-1, n)$-weakly prime submodules. We say that a proper submodule P of M is $(n-1, n)$-weakly prime if $0 \neq$ $a_{1} \ldots a_{n-1} x \in P$ imply $a_{1} \ldots a_{n-1} \in\left(P:_{R} M\right)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$, where $a_{1}, \ldots, a_{n-1} \in R$ and $x \in M$. So a (1,2)weakly prime submodule is just a weakly prime submodule.

Let (R, Q) be a quasi-local ring and M be an R-module. If t is the smallest positive integer such that $Q^{t} M=0$, then we say that the associated degree of M is t. If $Q^{t} M \neq 0$, for all $t \geq 1$, then we say that the associated degree of M is ∞.

Let $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ be an R-module, where $\left(R_{i}, Q_{i}\right)$ is a quasi-local ring and M_{i} is a non-zero $R_{i}-$ module and the associated degree of M_{i} is t_{i}, for all $i \in\{1, \ldots, m\}$.

In Theorem 1.4, we show that if every proper submodule of M is $(n-1, n)$-weakly prime, then $Q_{i}^{n-m} M_{i}=0$, for all $i \in\{1, \ldots, m\}$ and some m, n.

In Theorem 1.6, we show that if $\sum_{i=1}^{m} t_{i} \leq n-1$, then every proper submodule of M is $(n-1, n)$-weakly prime with $n \geq 2$ and $m \geq 1$.

2. MAIN RESULTES

Let $R=R_{1} \times \cdots \times R_{m}, M=M_{1} \times \ldots \times M_{m}$, where R_{i} is a ring and M_{i} is an R_{i}-module, for $i=1, \ldots, m$. Then every submodule of the R-module M is of the form $N_{1} \times \ldots \times N_{m}$, where N_{i} is an R_{i}-submodule of M_{i}.

Theorem 2.1. Let $R=R_{1} \times \cdots \times R_{m}, M=M_{1} \times \ldots \times M_{m}$, where R_{i} is a ring and M_{i} is a non-zero torsionfree R_{i}-module, for $i=1, \ldots, m$. Let $P=P_{1} \times \cdots \times P_{m}$ be an $(n-1, n)$-weakly prime submodule of M together with $\left(P_{i}:_{R_{i}} M_{i}\right) \neq 0$, for all $i \in\{1, \ldots, m\}$. Then either P is $(n-1, n)$ prime submodule of M or P_{i} is a $(n-2, n-1)$-prime submodule of M_{i}, for all $i \in\{1, \ldots, m\}$ with $m \geq 2$ and $n \geq 3$.
Proof. If there exists $j \in\{1, \ldots, m\}$ such that $P_{j}=M_{j}$, then $(P$: $M)^{n-1} P \neq 0$. We claim that P is $(n-1, n)$-prime. Assume that P is not
($n-1, n$)-prime. So there exist $a_{1}, \ldots, a_{n-1} \in R, x \in M$ together with $a_{1} \ldots a_{n-1} x=0, a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \notin P$, for all $i \in\{1, \ldots, n-1\}$ and $a_{1} \ldots a_{n-1} \notin\left(P:_{R} M\right)$ where $n \geq 2$. We show that $a_{1} \ldots a_{n-k}\left(P:_{R}\right.$ $M)^{k-1} P=0$, for all $k \in\{1,2, \ldots, n-1\}$. If $a_{1} \ldots a_{n-k}\left(P:_{R} M\right)^{k-1} P \neq 0$, then $a_{1} \ldots a_{n-k} p_{1} \ldots p_{k-1} y \neq 0$, for some $p_{1}, \ldots, p_{k-1} \in\left(P:_{R} M\right)$ and $y \in P$. Hence
$a_{1} \ldots a_{n-k}\left(a_{n-k+1}+p_{1}\right)\left(a_{n-k+2}+p_{2}\right) \ldots\left(a_{n-1}+p_{k-1}\right)(x+y) \in P \backslash\{0\}$.
Since P is $(n-1, n)$-weakly prime, we have $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in$ P, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in\left(P:_{R} M\right)$, which is a contradiction. So $a_{1} \ldots a_{n-k}\left(P:_{R} M\right)^{k-1} P=0$.

By a same argument, we can prove that for all $\left\{i_{1} \ldots i_{n-k}\right\} \subseteq\{1, \ldots, n-$ $1\}, a_{i_{1}} \ldots a_{i_{n-k}}\left(P:_{R} M\right)^{k-1} P=0$.

Suppose $\left(P:_{R} M\right)^{n-1} P \neq 0$. According to the above discussion, we have $0 \neq\left(a_{1}+p_{1}\right) \ldots\left(a_{n-1}+p_{n-1}\right)(x+y) \in P$. Since P is $(n-1, n)$ weakly prime, $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$, for some $i \in\{1, \ldots, n-1\}$ or $a_{1} \ldots a_{n-1} \in\left(P:_{R} M\right)$, which is a contradiction. Therefore, $\left(P:_{R}\right.$ $M)^{n-1} P=0$, which is a contradiction.

So we can assume that $P_{j} \neq M_{j}$, for all $j \in\{1, \ldots, m\}$. We show that P_{j} is a $(n-2, n-1)$-prime submodule of M_{j}.

Let $a_{1}, \ldots, a_{n-2} x \in P_{j}$ where $a_{1}, \ldots, a_{n-2} \in R_{j}, x \in M_{j}$ and $i \in$ $\{1, \ldots, m\}$ such that $i \neq j$. Let $0 \neq a \in\left(P_{i}:_{R_{i}} M_{i}\right)$ and $y \in M_{i} \backslash P_{i}$. Since M_{i} is torsionfree, $0 \neq a y \in P_{i}$. Without loss of generality we can assume that $j<i$. We have

$$
\begin{aligned}
0 & \neq\left(0, \ldots, 0, a_{1} \ldots a_{n-2} x, 0, \ldots, 0, a y, 0, \ldots, 0\right) \\
& =\left(a_{11}, \ldots, a_{1 m}\right)\left(a_{21}, \ldots, a_{2 m}\right) \ldots\left(a_{(n-1) 1}, \ldots, a_{(n-1) m}\right)\left(x_{1}, \ldots, x_{m}\right) \in P
\end{aligned}
$$

where $a_{k j}=a_{k}$ and $a_{k i}=a_{(n-1) j}=1$, for all $k \in\{1, \ldots, n-2\}$. Let $a_{(n-1) i}=a$ and in other places $a_{h l}=0$. Also $x_{i}=y, x_{j}=x$ and $x_{t}=0$, for all $t \neq i, j$.

Since P is $(n-1, n)$-weakly prime, then $y \in P_{i}$, which is a contradiction or

$$
a_{1} \ldots a_{k-1} a_{k+1} \ldots a_{n-2} x \in P_{j}
$$

for some $k \in\{1, \ldots, n-2\}$ or $a_{1} \ldots a_{n-2} \in\left(P_{j}:_{R_{j}} M_{j}\right)$. Therefore, P_{j} is ($n-2, n-1$)-prime.

Theorem 2.2. Let $n \geq 2$ be a positive integer, $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where R_{i} is a ring and M_{i} is a non-zero R_{i}-module for $i=1,2$. suppose that P is a proper submodule of M_{1}. Then $P \times M_{2}$
is an ($n-1, n$)-weakly prime ($(n-1, n)$-prime) submodule of M if and only if P is an $(n-1, n)$-prime submodule of M_{1}.

Proof. (\Rightarrow) Since $\left(P \times M_{2}:_{R} M\right)^{n-1}\left(P \times M_{2}\right) \neq 0, P \times M_{2}$ is $(n-1, n)$ prime, similar to the proof of Theorem 1.2. It is easy to show that P is an $(n-1, n)$-prime submodule of M_{1}.
(\Leftarrow) If P be an $(n-1, n)$-prime submodule of M_{1}, then it is easy to show that $P \times M_{2}$ is an $(n-1, n)$-prime submodule of M and thus $P \times M_{2}$ is an $(n-1, n)$-weakly prime submodule of M.

Theorem 2.3. Let $R=R_{1} \times \ldots \times R_{n}$ be a ring and $M=M_{1} \times \ldots \times M_{n}$ be an R-module, where M_{i} is an R_{i}-module, for all $i \in\{1, \ldots, n\}$. If every proper submodule of M is $(n-1, n)$-weakly prime, then M_{i} is a simple R_{i}-module, for all $i \in\{1, \ldots, n\}$ where $n \geq 2$.
Proof. Let M_{1} is not a simple R_{1}-module. So there exists a non-zero proper submodule P_{1} of M_{1}. By hypothesis, the submodule $P=P_{1} \times$ $\{0\} \times \ldots \times\{0\}$ is an $(n-1, n)$-weakly prime submodule of M. Let $0 \neq x \in P_{1}$ and $0 \neq y_{j} \in M_{j}$ for all $j \in\{2, \ldots, n\}$. Then

$$
\begin{gathered}
(0, \ldots, 0) \neq(x, 0, \ldots, 0)=\left(1, a_{12}, \ldots, a_{1 n}\right)\left(1, a_{22}, \ldots, a_{2 n}\right) \\
\ldots\left(1, a_{(n-1) 2}, \ldots, a_{(n-1) n}\right)\left(x, y_{2}, \ldots, y_{n}\right) \in P
\end{gathered}
$$

where $a_{i(i+1)}=0$, for all $i \in\{1, \ldots, n-1\}$ and otherwise $a_{i j}=1$.
Since P is $(n-1, n)$-weakly prime, $P_{1}=M_{1}$ or $y_{j}=0$, for some $j \in\{2, \ldots, n\}$, which are contradictions. So M_{1} is a simple R_{1}-module. By a same argument, M_{j} is a simple $R_{j}-$ module for all $j \in\{2, \ldots, n\}$.

Theorem 2.4. Let m, n be two positive integers such that $3 \leq m<n$, $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ be an $R-$ module, where $\left(R_{i}, Q_{i}\right)$ is a quasi-local ring and M_{i} is a non-zero R_{i}-module, for all $i \in\{1, \ldots, m\}$. If every proper submodule of M is $(n-1, n)$-weakly prime, then $Q_{i}^{n-m} M_{i}=0$, for all $i \in\{1, \ldots, m\}$.

Proof. Let $Q_{1}^{n-m} M_{1} \neq 0$. So there exist $a_{1}, \ldots, a_{n-m} \in Q_{1}$ and $x_{1} \in$ M_{1} such that $a_{1} \ldots a_{n-m} x_{1} \neq 0$. By hypothesis, the submodule $P=$ $\left(a_{1} \ldots a_{n-m} x_{1}\right) \times\{0\} \times \cdots \times\{0\}$ is an $(n-1, n)$-weakly prime submodule of M. Let $0 \neq x_{j} \in M_{j}$ for all $j \in\{2, \ldots, m-1\}$. We have

$$
\begin{gathered}
(0, \ldots, 0) \neq\left(a_{1} \ldots a_{n-m} x_{1}, 0, \ldots, 0\right)=\left(a_{11}, \ldots, a_{1 m}\right) \\
\ldots\left(a_{(n-1) 1}, \ldots, a_{(n-1) m}\right)\left(x_{n 1}, \ldots, x_{n m}\right) \in P,
\end{gathered}
$$

for $a_{k 1}=a_{k}$, where $1 \leq k \leq n-m$ and $a_{(n-m+t)(t+1)}=0$, where $1 \leq t \leq(m-2)$. In other places, let $a_{i j}=1 . x_{n j}=x_{j}$, where $1 \leq j \leq m-1$ and $x_{n m}=0$.

Since P is $(n-1, n)$-weakly prime, $M_{m}=0$ or $x_{n j}=0$, for some $2 \leq j \leq m-1$, which are contradictions, or $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m} x_{1} \in$ $\left(a_{1} \ldots a_{n-m} x_{1}\right)$, for some $j \in\{1, \ldots, n-m\}$. So there exists an $r \in R$ such that

$$
a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m} x_{1}\left(1-r a_{j}\right)=0
$$

Since $a_{j} \in Q_{1}, 1-r a_{j}$ is a unit in R_{1}. So $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m} x_{1}=0$ which is a contradiction. Therefore $Q_{1}^{n-m} M_{1}=0$. By a same argument, $Q_{i}^{n-m} M_{i}=0$, for all $i \in\{2, \ldots, m\}$.

Let (R, Q) be a quasi-local ring and M be an R-module. If t is the smallest positive integer such that $Q^{t} M=0$, then we say that the associated degree of M is t. If $Q^{t} M \neq 0$, for all $t \geq 1$, then we say that the associated degree of M is ∞.

Corollary 2.5. Let m, n be two positive integers such that $3 \leq m<n$ and $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ be an R-module, where $\left(R_{i}, Q_{i}\right)$ is a quasi-local ring and M_{i} is a non-zero R_{i}-module, where the associated degree of M_{i} is t_{i}, for all $i \in\{1, \ldots, m\}$. If every proper submodule of M is $(n-1, n)$-weakly prime, then $t_{i} \leq n-m$, for all $i \in\{1, \ldots, m\}$.

Theorem 2.6. Let $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ be an R-module, where $\left(R_{i}, Q_{i}\right)$ is a quasi-local ring, M_{i} is an $R_{i}-$ module and the associated degree of M_{i} is t_{i}, for all $i \in\{1, \ldots, m\}$. If $\sum_{i=1}^{m} t_{i} \leq n-1$, then every proper submodule of M is $(n-1, n)$-weakly prime with $n \geq 2$ and $m \geq 1$.

Proof. Let $P=P_{1} \times \cdots \times P_{m}$ be a proper submodule of M and $(0, \ldots, 0) \neq$
$\left(a_{11}, \ldots, a_{1 m}\right)\left(a_{21}, \ldots, a_{2 m}\right) \ldots\left(a_{(n-1) 1}, \ldots, a_{(n-1) m}\right)\left(x_{1}, \ldots, x_{m}\right) \in P$.
So there exists a $j \in\{1, \ldots, n-1\}$ such that $\left(\prod_{k=1}^{n-1} a_{k j}\right) x_{j} \neq 0$. Since $Q_{j}^{t_{j}} M_{j}=0$, there exist at most $t_{j}-1$ elements of $\left\{a_{1 j}, \ldots, a_{(n-1) j}\right\}$ that are nonunits in R_{j}. So we need at most $t_{j}-1$ parentheses such that the product of their j^{\prime} th elements product in x_{j} is in P_{j}.

For $i \neq j$ we have $Q_{i}^{t_{i}} M_{i}=0$. If there exist t_{i} elements of $\left\{a_{1 i}, \ldots, a_{(n-1) i}\right\}$ that are nonunits in R_{i}, then the product of these t_{i} elements is zero and we need t_{i} parentheses such that the product of their i^{\prime} th elements product in x_{i} is in P_{i}.

If there exist less than t_{i} elements of $\left\{a_{1 i}, \ldots, a_{(n-1) i}\right\}$ that are nonunits in R_{i}, then we need less than t_{i} parentheses that the product of their $i^{\prime} t h$ elements product in x_{i} is in P_{i}.

So we need at most $\left(t_{j}-1+\sum_{i \neq j, i=1}^{m} t_{i}\right)+1=\sum_{i=1}^{m} t_{i}$ parentheses such that their product is in P. So P is $(n-1, n)$-weakly prime.

Corollary 2.7. Let $m<n$ be two positive integers, $R=R_{1} \times \cdots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ be an R-module, where R_{i} is a field and M_{i} is an R_{i}-vector space, for $i \in\{1, \ldots, m\}$. Then every proper submodule of M is $(n-1, n)$-weakly prime with $n \geq 2$.

Proof. Let t_{i} be the associated degree of M_{i}. So $t_{i}=1$, for all $i \in$ $\{1, \ldots, m\}$. Thus $\Sigma_{i=1}^{m} t_{i}=m \leq n-1$. Therefore, every proper submodule of M is $(n-1, n)$-weakly prime, by Theorem 1.7.

Acknowledgments

The author would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Commun. Algebra, 40 (2012), 1268-1279.
[2] M. Ebrahimpour and R. Nekooei, On generalizations of prime submodules, Bull. Iran. Math. Soc., 39(5) (2013), 919-939.
[3] M. Ebrahimpour, On generalisations of almost prime and weakly pime ideals, Bull. Iran. Math. Soc., 40(2) (2014), 531-540.
[4] M. Ebrahimpour, Some remarks on generalizations of multiplicatively-closed subsets, J. Alg. Systems, 4(1) (2016), 15-27.
[5] M. Ebrahimpour, Some generalizations of weakly prime submodules, to appear in Transactions on Algebra and its Applications.
[6] S. Galovich, Unique factorization rings with zero divisors, Math. Mag., 51 (1978), 276-283.
[7] C. P. Lu, Prime submodules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
[8] R. L. Mc Casland and M. E. Moore, Prime submodules, Commun. Algebra, 20 (1992), 1803-1817.
[9] R. L. Mc Casland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
[10] M. E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Commun. Algebra, 30 (2010), 5037-5064.
[11] R. Moradi and M. Ebrahimpour, On ϕ-2-Absorbing primary submodules, to appear in Acta Math. Vietnam.
[12] R. Nekooei, Weakly prime submodules, FJMS., 39(2) (2010), 185-192.
[13] R.Y. Sharp, Steps in commutative algebra, Cambridge: Cambridge University Prees (2000).
[14] N. Zamani, ϕ-prime submodules, Glasgow Math. J. Trust (2009), 1-7.

M. Ebrahimpour

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 518, Rafsanjan, Iran
Email: m.ebrahimpour@vru.ac.ir

[^0]: Received: 1 November 2016, Accepted: 11 December 2016. Communicated by Ahmad Yousefian Darani;
 *Address correspondence to M. Ebrahimpour; E-mail: m.ebrahimpour@vru.ac.ir.
 (C) 2017 University of Mohaghegh Ardabili.

