ON THE FORMAL POWER SERIES ALGEBRAS GENERATED BY A VECTOR SPACE AND A LINEAR FUNCTIONAL

ALI REZA KHODDAMI

Abstract

Let \mathscr{R} be a vector space (on \mathbb{C}) and φ be an element of \mathscr{R}^{*} (the dual space of \mathscr{R}), the product $r \cdot s=\varphi(r) s$ converts \mathscr{R} into an associative algebra that we denote it by \mathscr{R}_{φ}. We characterize the nilpotent, idempotent and the left and right zero divisor elements of $\mathscr{R}_{\varphi}[[x]]$. Also we show that the set of all nilpotent elements and also the set of all left zero divisor elements of $\mathscr{R}_{\varphi}[[x]]$ are ideals of $\mathscr{R}_{\varphi}[[x]]$.

Key Words: Vector space, Formal power series algebra, Nilpotent, Idempotent, Algebraic homomorphism.
2010 Mathematics Subject Classification: Primary: 13J05, 15A03; Secondary: 16N40, 16W60.

1. Introduction

Let A be an associative algebra (on \mathbb{C}) and

$$
A[[x]]=\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \quad \mid \quad a_{i} \in A\right\},
$$

be the set of all formal power series with coefficients in A. It is well known that the set $A[[x]]$ by the following operations of addition, multiplication and scalar multiplication is an associative algebra that is called

[^0]the formal power series algebra over A.
\[

$$
\begin{gathered}
\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} b_{i} x^{i}=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}, \\
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)=\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right) x^{i} \\
\alpha\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=\sum_{i=0}^{\infty} \alpha a_{i} x^{i}, \quad \alpha \in \mathbb{C} \quad \text { and } \sum_{i=0}^{\infty} a_{i} x^{i}, \quad \sum_{i=0}^{\infty} b_{i} x^{i} \in A[[x]] .
\end{gathered}
$$
\]

Similarly if R is a ring then $R[[x]]$ is the formal power series ring over R.

We recall some terminology. An element r of a ring R is called a right zero divisor, if there exists a nonzero y such that $y r=0$. Similarly an element r is called a left zero divisor, if there exists a nonzero x such that $r x=0$. An element r that is both a left and a right zero divisor is called a two-sided zero divisor. Also an element $r \in R$ is nilpotent if $r^{n}=0$ for some $n>0$. Finally $r \in R$ is idempotent if $r^{2}=r$.

Let \mathscr{R} be a non-zero vector space and φ be a non-zero element in \mathscr{R}^{*} (the dual space of \mathscr{R}). The product $r \cdot s=\varphi(r) s$, where $r, s \in \mathscr{R}$ converts \mathscr{R} into an associative algebra that we denote it by \mathscr{R}_{φ}. Endomorphisms and also automorphisms on \mathscr{R}_{φ} are investigated in [3]. And also in the case where \mathscr{R} is a normed vector space and $\|\varphi\| \leq 1$,

- Arens regularity and also n-weak amenability of \mathscr{R}_{φ} are investigated in [1].
- Strongly zero-product preserving maps, strongly Jordan zeroproduct preserving maps on \mathscr{R}_{φ} and also polynomial equations with coefficients in \mathscr{R}_{φ} are investigated in [2].
- Strongly Lie zero-product preserving maps on \mathscr{R}_{φ} and $\mathscr{R}_{\varphi}^{*}$ are investigated in [4].
In the case where \mathscr{R} is a vector space, we recall some properties of \mathscr{R}_{φ} [1]. Let $\operatorname{Hom}\left(\mathscr{R}_{\varphi}, \mathbb{C}\right)$ be the set of all algebraic homomorphisms from \mathscr{R}_{φ} into \mathbb{C}. Then $\operatorname{Hom}\left(\mathscr{R}_{\varphi}, \mathbb{C}\right)=\{0, \varphi\} . \mathscr{R}_{\varphi}$ is commutative if and only if $\operatorname{dim}(\mathscr{R}) \leq 1$. Also in the case where $\operatorname{dim} \mathscr{R}>1$ then $Z\left(\mathscr{R}_{\varphi}\right)=\{0\}$, where $Z\left(\mathscr{R}_{\varphi}\right)$ is the algebraic center of \mathscr{R}_{φ}.
The aim of the present paper is to show that although \mathscr{R}_{φ} is not commutative and unital in general, the set of all nilpotent elements and also the set of all left zero divisor elements of $\mathscr{R}_{\varphi}[[x]]$ are ideals of $\mathscr{R}_{\varphi}[[x]]$. Also the set of all idempotent elements of $\mathscr{R}_{\varphi}[[x]]$ is multiplicative. These
facts reveal that $\mathscr{R}_{\varphi}[[x]]$ is a source of example or counterexample in the field of algebraic theory.

2. Main Results

In this section we characterize the idempotent and also the nilpotent elements of $\mathscr{R}_{\varphi}[[x]]$.

Theorem 2.1. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Then an element $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in \mathscr{R}_{\varphi}[[x]]$ is nilpotent if and only if $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$.

Proof. Let $P=\sum_{i=0}^{\infty} a_{i} x^{i}$ be nilpotent. Then there exists $n>0$ such that $P^{n}=0$. It follows that $a_{0}^{n}=0$. So $\varphi\left(a_{0}^{n}\right)=\left(\varphi\left(a_{0}\right)\right)^{n}=0$, that implies $a_{0} \in \operatorname{ker}(\varphi)$. As $a_{0}^{2}=a_{0} P=0$, we can conclude that

$$
\begin{aligned}
\left(P-a_{0}\right)^{2} & =P^{2}-P a_{0}-a_{0} P+a_{0}^{2} \\
& =P^{2}-P a_{0} .
\end{aligned}
$$

So by induction we have

$$
\begin{aligned}
\left(P-a_{0}\right)^{n+1} & =P^{n+1}-P^{n} a_{0} \\
& =0 .
\end{aligned}
$$

This shows that $Q=P-a_{0}=\sum_{i=1}^{\infty} a_{i} x^{i}$ is nilpotent and $a_{1}^{n+1}=0$, that implies $a_{1} \in \operatorname{ker}(\varphi)$. Similarly by induction one can shows that

$$
\begin{aligned}
\left(Q-a_{1} x\right)^{n+2} & =Q^{n+2}-Q^{n+1}\left(a_{1} x\right) \\
& =0 .
\end{aligned}
$$

So $a_{2}^{n+2}=0$, that implies $a_{2} \in \operatorname{ker}(\varphi)$. Applying induction on i, we can conclude that $a_{i}^{n+i}=0$, that implies $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$.
For the converse let $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$. So

$$
\begin{aligned}
P^{2} & =\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} a_{k} a_{i-k}\right) x^{i} \\
& =\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} \varphi\left(a_{k}\right) a_{i-k}\right) x^{i} \\
& =\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} 0\right) x^{i}=0 .
\end{aligned}
$$

This shows that P is nilpotent.

As the condition $a_{i} \in \operatorname{ker}(\varphi)$ is equivalent to $a_{i}^{2}=0$, by applying Theorem 2.1 we can present the following results.

Corollary 2.2. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Then an element $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in \mathscr{R}_{\varphi}[[x]]$ is nilpotent if and only if $a_{i}^{2}=0$ for all $i \geq 0$.

It is well known that for a commutative ring R with an identity element, if $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x]]$ is nilpotent, then a_{i} is nilpotent for all $i \geq 0$. But the converse is not the case in general. It is true whenever R is Noetherian. We recall that in the case where $\operatorname{dim} \mathscr{R}>1, \mathscr{R}_{\varphi}$ is neither commutative nor unital. But Theorem 2.3 shows that the set of all nilpotent elements of $\mathscr{R}_{\varphi}[[x]]$ is an ideal that is worthy of consideration.

Theorem 2.3. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Also let \mathscr{N} be the set of all nilpotent elements in $\mathscr{R}_{\varphi}[[x]]$. Then \mathscr{N} is an ideal.

Proof. Let $\sum_{i=0}^{\infty} a_{i} x^{i}, \quad \sum_{i=0}^{\infty} b_{i} x^{i} \in \mathscr{N}$ and $\sum_{i=0}^{\infty} c_{i} x^{i} \in \mathscr{R}_{\varphi}[[x]]$. So by Theorem $2.1 a_{i}, b_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$. As

$$
\begin{aligned}
\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} b_{i} x^{i} & =\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}, \\
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} c_{i} x^{i}\right) & =\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} a_{k} c_{i-k}\right) x^{i}, \\
\left(\sum_{i=0}^{\infty} c_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right) & =\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} c_{k} a_{i-k}\right) x^{i},
\end{aligned}
$$

and $\operatorname{ker}(\varphi)$ is an ideal, so

$$
a_{i}+b_{i}, \quad \sum_{k=0}^{i} a_{k} c_{i-k}, \quad \sum_{k=0}^{i} c_{k} a_{i-k} \in \operatorname{ker}(\varphi),
$$

for all $i \geq 0$. Hence by Theorem $2.1 \mathscr{N}$ is an ideal.
Theorem 2.4. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Then an element $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in \mathscr{R}_{\varphi}[[x]]$ is idempotent if and only if one of the following statements holds.
(1) $P=0$.
(2) $\varphi\left(a_{0}\right)=1$ and $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 1$.

Proof. Let $P=\sum_{i=0}^{\infty} a_{i} x^{i}$ be idempotent. So $P^{2}=P$. It follows that

$$
\begin{equation*}
a_{i}=\sum_{k=0}^{i} a_{k} a_{i-k}, \quad i \geq 0 \tag{2.1}
\end{equation*}
$$

So $a_{0}=a_{0}^{2}$, that implies $a_{0}=\varphi\left(a_{0}\right) a_{0}$. Equivalently $\left(\varphi\left(a_{0}\right)-1\right) a_{0}=0$. If $a_{0}=0$, then by (2.1) $a_{i}=0$ inductively. So $P=0$. In the case where $\varphi\left(a_{0}\right)=1$ since $a_{1}=a_{0} a_{1}+a_{1} a_{0}$, we can conclude that

$$
\begin{aligned}
a_{1} & =\varphi\left(a_{0}\right) a_{1}+\varphi\left(a_{1}\right) a_{0} \\
& =a_{1}+\varphi\left(a_{1}\right) a_{0} .
\end{aligned}
$$

Hence $\varphi\left(a_{1}\right)=0$. Also

$$
\begin{aligned}
a_{2} & =a_{0} a_{2}+a_{1} a_{1}+a_{2} a_{0} \\
& =\varphi\left(a_{0}\right) a_{2}+\varphi\left(a_{1}\right) a_{1}+\varphi\left(a_{2}\right) a_{0} \\
& =a_{2}+0+\varphi\left(a_{2}\right) a_{0} .
\end{aligned}
$$

So $\varphi\left(a_{2}\right)=0$. Applying (2.1) inductively, we can conclude that for all $i \geq 1, \varphi\left(a_{i}\right)=0$.
For the converse if $P=0$ then obviously P is idempotent. Let $\varphi\left(a_{0}\right)=1$ and $\varphi\left(a_{i}\right)=0$ for all $i \geq 1$. Then

$$
\sum_{k=0}^{i} a_{k} a_{i-k}=\sum_{k=0}^{i} \varphi\left(a_{k}\right) a_{i-k}=a_{i} .
$$

It follows that $P^{2}=P$.
Theorem 2.4 shows that in spite of $\mathscr{R}_{\varphi}[[x]]$ is not commutative, the set of all idempotent elements of $\mathscr{R}_{\varphi}[[x]]$ is multiplicative.

Theorem 2.5. Let \mathscr{R} be a vector space and $\operatorname{dim} \mathscr{R}>1$. Also let φ be a non-zero element of \mathscr{R}^{*}. Then each element of $\mathscr{R}_{\varphi}[[x]]$ is a right zero divisor.

Proof. Let $P=\sum_{i=0}^{\infty} a_{i} x^{i}$ be an arbitrary element of $\mathscr{R}_{\varphi}[[x]]$. As $\operatorname{dim} \mathscr{R}>$ 1 so $\operatorname{ker}(\varphi) \neq\{0\}$. Let $0 \neq a \in \operatorname{ker}(\varphi)$. Obviously $a P=0$. This shows that P is a right zero divisor.

Note that in the case where $\operatorname{dim} \mathscr{R}=1$, the only two-sided zero divisor in $\mathscr{R}_{\varphi}[[x]]$ is $P=0$.
Theorem 2.6. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Then an element $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in \mathscr{R}_{\varphi}[[x]]$ is a left zero divisor if and only if $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$.

Proof. Let $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in \mathscr{R}_{\varphi}[[x]]$ be a left zero divisor. Then there exists an element $0 \neq Q=\sum_{i=0}^{\infty} b_{i} x^{i}$ such that

$$
\begin{align*}
P Q & =\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right) \\
& =\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right) x^{i} \\
& =0 . \tag{2.2}
\end{align*}
$$

As $Q \neq 0$, let j be the smallest index such that $b_{j} \neq 0$. The equation (2.2) implies that $0=\sum_{k=0}^{j} a_{k} b_{j-k}=a_{0} b_{j}$. So $\varphi\left(a_{0}\right) b_{j}=0$. This shows that $a_{0} \in \operatorname{ker}(\varphi)$. Similarly

$$
\begin{aligned}
0 & =\sum_{k=0}^{j+1} a_{k} b_{j+1-k} \\
& =a_{0} b_{j+1}+a_{1} b_{j} \\
& =\varphi\left(a_{0}\right) b_{j+1}+\varphi\left(a_{1}\right) b_{j} \\
& =\varphi\left(a_{1}\right) b_{j}
\end{aligned}
$$

So $a_{1} \in \operatorname{ker}(\varphi)$. Applying (2.2) inductively, we can conclude that $a_{i} \in$ $\operatorname{ker}(\varphi)$ for all $i \geq 0$.
For the converse let $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$. Choose $0 \neq b \in \mathscr{R}_{\varphi}$. Clearly $P b=0$. This shows that P is a left zero divisor.

Applying Theorems 2.5 and 2.6, we can conclude the following results.
Corollary 2.7. Let \mathscr{R} be a non-zero vector space and $\operatorname{dim} \mathscr{R}>1$. Also let φ be a non-zero element of \mathscr{R}^{*}. Then an element $P=\sum_{i=0}^{\infty} a_{i} x^{i} \in$ $\mathscr{R}_{\varphi}[[x]]$ is a two-sided zero divisor if and only if $a_{i} \in \operatorname{ker}(\varphi)$ for all $i \geq 0$.

Corollary 2.8. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Then the set of all left zero divisor elements in $\mathscr{R}_{\varphi}[[x]]$ is an ideal.

Proof. Let \mathscr{L} be the set of all left zero divisor elements of $\mathscr{R}_{\varphi}[[x]]$. Because $\operatorname{ker}(\varphi)$ is an ideal, an argument similar to the proof of Theorem 2.3 can be applied to show that \mathscr{L} is an ideal.

In the sequel let $e \in \varphi^{-1}(\{1\})$ and $\mathscr{R}_{\varphi}[x]$ be the polynomial algebra over \mathscr{R}_{φ}. Also set $x^{0}=e$.

Theorem 2.9. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Also let $\psi: \mathscr{R}_{\varphi}[x] \longrightarrow \mathbb{C}$ be a linear mapping and $e \in \varphi^{-1}(\{1\})$. Then $\psi \in \operatorname{Hom}\left(\mathscr{R}_{\varphi}[x], \mathbb{C}\right)$ if and only if

$$
\psi(\operatorname{ker}(\varphi)[x])=0 \quad \text { and } \quad \psi\left(e x^{m}\right)=(\psi(e x))^{m}
$$

for all $m \geq 0$.
Proof. If $\psi=0$, then the proof is clear. Let $0 \neq \psi \in \operatorname{Hom}\left(\mathscr{R}_{\varphi}[x], \mathbb{C}\right)$, $P \in \operatorname{ker}(\varphi)[x]$ and $Q \in \mathscr{R}_{\varphi}[x]$. As $P Q=0$, so $\psi(P) \psi(Q)=\psi(P Q)=0$. It follows that $\psi(P)=0$. Also the equality $(e x)^{m}=e x^{m}$ implies,

$$
\begin{aligned}
\psi\left(e x^{m}\right) & =\psi\left((e x)^{m}\right) \\
& =(\psi(e x))^{m}, m \geq 0 .
\end{aligned}
$$

For the converse let $\psi(\operatorname{ker}(\varphi)[x])=0$ and $\psi\left(e x^{m}\right)=(\psi(e x))^{m}$ for all $m \geq 0$. Clearly for all $a \in \mathscr{R}_{\varphi}$ we have

$$
\begin{equation*}
a=\varphi(a) e+K(a), \tag{2.3}
\end{equation*}
$$

where $K(a)=a-\varphi(a) e \in \operatorname{ker}(\varphi)$. Let $P=\sum_{i=0}^{n} a_{i} x^{i}$ be an arbitrary element of $\mathscr{R}_{\varphi}[x]$. So by (2.3)

$$
\begin{aligned}
P & =\sum_{i=0}^{n}\left(\varphi\left(a_{i}\right) e+K\left(a_{i}\right)\right) x^{i} \\
& =\sum_{i=0}^{n} \varphi\left(a_{i}\right) e x^{i}+\sum_{i=0}^{n} K\left(a_{i}\right) x^{i} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\psi(P) & =\psi\left(\sum_{i=0}^{n} \varphi\left(a_{i}\right) e x^{i}+\sum_{i=0}^{n} K\left(a_{i}\right) x^{i}\right) \\
& =\psi\left(\sum_{i=0}^{n} \varphi\left(a_{i}\right) e x^{i}\right)+0 \\
& =\sum_{i=0}^{n} \varphi\left(a_{i}\right) \psi\left(e x^{i}\right) \\
& =\sum_{i=0}^{n} \varphi\left(a_{i}\right)(\psi(e x))^{i} .
\end{aligned}
$$

Hence for $P=\sum_{i=1}^{n} a_{i} x^{i}$ and $Q=\sum_{i=1}^{m} b_{i} x^{i}$ we can conclude that

$$
\begin{aligned}
\psi(P Q) & =\psi\left(\sum_{i=0}^{m+n}\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right) x^{i}\right) \\
& =\sum_{i=0}^{m+n} \varphi\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right)(\psi(e x))^{i} \\
& =\sum_{i=0}^{m+n}\left(\sum_{k=0}^{i} \varphi\left(a_{k}\right) \varphi\left(b_{i-k}\right)\right)(\psi(e x))^{i} \\
& =\left(\sum_{i=0}^{n} \varphi\left(a_{i}\right)(\psi(e x))^{i}\right)\left(\sum_{i=0}^{m} \varphi\left(b_{i}\right)\left(\psi((e x))^{i}\right)\right. \\
& =\psi(P) \psi(Q) .
\end{aligned}
$$

This shows that $\psi \in \operatorname{Hom}\left(\mathscr{R}_{\varphi}[x], \mathbb{C}\right)$.
Applying Theorem 2.9, we can present the following result.
Corollary 2.10. Let \mathscr{R} be a non-zero vector space and φ be a non-zero element of \mathscr{R}^{*}. Also let $\psi: \mathscr{R}_{\varphi}[[x]] \longrightarrow \mathbb{C}$ be a linear mapping and $e \in \varphi^{-1}(\{1\})$. If $\psi \in \operatorname{Hom}\left(\mathscr{R}_{\varphi}[[x]], \mathbb{C}\right)$ then

$$
\psi(\operatorname{ker}(\varphi)[[x]])=0 \quad \text { and } \quad \psi\left(e x^{m}\right)=(\psi(e x))^{m}
$$

for all $m \geq 0$.
Remark 2.11. It is clear that the map $\widehat{\varphi}: \mathscr{R}_{\varphi}[[x]] \longrightarrow \mathbb{C}$ defined by,

$$
\widehat{\varphi}\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=\varphi\left(a_{0}\right),
$$

is an algebraic homomorphism.

References

[1] A. R. Khoddami and H. R. E. Vishki, The higher duals of a Banach algebra induced by a bounded linear functional, Bull. Math. Anal. Appl., 3 (2011), 118122.
[2] A. R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), no. 1, 107114.
[3] A. R. Khoddami and M. Hasani, Endomorphisms and automorphisms of certain semigroups, J. Semigroup Theory Appl., available online at http://scik.org.
[4] A. R. Khoddami, The second dual of strongly zero product preserving maps, to appear.

A. R. Khoddami

Department of Pure Mathematics, Shahrood University of Technology, P.O.Box 3619995161-316, Shahrood, Iran.

Email: khoddami.alireza@shahroodut.ac.ir

[^0]: Received: 14 July 2016, Accepted: 03 May 2017. Communicated by Yuming Feng;
 *Address correspondence to A. R. Khoddami; E-mail: khoddami.alireza@shahroodut.ac.ir
 (C) 2017 University of Mohaghegh Ardabili.

