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ON THE FORMAL POWER SERIES ALGEBRAS

GENERATED BY A VECTOR SPACE AND A LINEAR

FUNCTIONAL

ALI REZA KHODDAMI

Abstract. Let R be a vector space ( on C) and ϕ be an element of
R∗ (the dual space of R), the product r ·s = ϕ(r)s converts R into
an associative algebra that we denote it by Rϕ. We characterize the
nilpotent, idempotent and the left and right zero divisor elements
of Rϕ[[x]]. Also we show that the set of all nilpotent elements and
also the set of all left zero divisor elements of Rϕ[[x]] are ideals of
Rϕ[[x]].
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1. Introduction

Let A be an associative algebra (on C) and

A[[x]] =
{ ∞∑

i=0

aix
i | ai ∈ A

}
,

be the set of all formal power series with coefficients in A. It is well
known that the set A[[x]] by the following operations of addition, multi-
plication and scalar multiplication is an associative algebra that is called
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the formal power series algebra over A.
∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)x
i,

(
∞∑
i=0

aix
i)(
∞∑
i=0

bix
i) =

∞∑
i=0

(
i∑

k=0

akbi−k)xi,

α(
∞∑
i=0

aix
i) =

∞∑
i=0

αaix
i, α ∈ C and

∞∑
i=0

aix
i,

∞∑
i=0

bix
i ∈ A[[x]].

Similarly if R is a ring then R[[x]] is the formal power series ring over
R.

We recall some terminology. An element r of a ring R is called a right
zero divisor, if there exists a nonzero y such that yr = 0. Similarly an
element r is called a left zero divisor, if there exists a nonzero x such
that rx = 0. An element r that is both a left and a right zero divisor
is called a two-sided zero divisor. Also an element r ∈ R is nilpotent if
rn = 0 for some n > 0. Finally r ∈ R is idempotent if r2 = r.

Let R be a non-zero vector space and ϕ be a non-zero element in R∗

(the dual space of R). The product r ·s = ϕ(r)s, where r, s ∈ R converts
R into an associative algebra that we denote it by Rϕ. Endomorphisms
and also automorphisms on Rϕ are investigated in [3]. And also in the
case where R is a normed vector space and ‖ϕ‖ ≤ 1,

• Arens regularity and also n−weak amenability of Rϕ are inves-
tigated in [1].
• Strongly zero-product preserving maps, strongly Jordan zero-

product preserving maps on Rϕ and also polynomial equations
with coefficients in Rϕ are investigated in [2].
• Strongly Lie zero-product preserving maps on Rϕ and R∗ϕ are

investigated in [4].

In the case where R is a vector space, we recall some properties of Rϕ

[1]. Let Hom(Rϕ,C) be the set of all algebraic homomorphisms from
Rϕ into C. Then Hom(Rϕ,C) = {0, ϕ}. Rϕ is commutative if and only
if dim(R) ≤ 1. Also in the case where dim R > 1 then Z(Rϕ) = {0},
where Z(Rϕ) is the algebraic center of Rϕ.
The aim of the present paper is to show that although Rϕ is not commu-
tative and unital in general, the set of all nilpotent elements and also the
set of all left zero divisor elements of Rϕ[[x]] are ideals of Rϕ[[x]]. Also
the set of all idempotent elements of Rϕ[[x]] is multiplicative. These
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facts reveal that Rϕ[[x]] is a source of example or counterexample in the
field of algebraic theory.

2. Main Results

In this section we characterize the idempotent and also the nilpotent
elements of Rϕ[[x]].

Theorem 2.1. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Then an element P =

∑∞
i=0 aix

i ∈ Rϕ[[x]] is nilpotent
if and only if ai ∈ ker(ϕ) for all i ≥ 0.

Proof. Let P =
∑∞

i=0 aix
i be nilpotent. Then there exists n > 0 such

that Pn = 0. It follows that an0 = 0. So ϕ(an0 ) = (ϕ(a0))
n = 0, that

implies a0 ∈ ker(ϕ). As a20 = a0P = 0, we can conclude that

(P − a0)2 = P 2 − Pa0 − a0P + a20

= P 2 − Pa0.
So by induction we have

(P − a0)n+1 = Pn+1 − Pna0

= 0.

This shows that Q = P − a0 =
∑∞

i=1 aix
i is nilpotent and an+1

1 = 0,
that implies a1 ∈ ker(ϕ). Similarly by induction one can shows that

(Q− a1x)n+2 = Qn+2 −Qn+1(a1x)

= 0.

So an+2
2 = 0, that implies a2 ∈ ker(ϕ). Applying induction on i, we can

conclude that an+i
i = 0, that implies ai ∈ ker(ϕ) for all i ≥ 0.

For the converse let ai ∈ ker(ϕ) for all i ≥ 0. So

P 2 =

∞∑
i=0

(

i∑
k=0

akai−k)xi

=
∞∑
i=0

(
i∑

k=0

ϕ(ak)ai−k)xi

=

∞∑
i=0

(

i∑
k=0

0)xi = 0.

This shows that P is nilpotent. �
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As the condition ai ∈ ker(ϕ) is equivalent to a2i = 0, by applying
Theorem 2.1 we can present the following results.

Corollary 2.2. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Then an element P =

∑∞
i=0 aix

i ∈ Rϕ[[x]] is nilpotent
if and only if a2i = 0 for all i ≥ 0.

It is well known that for a commutative ring R with an identity ele-
ment, if P =

∑∞
i=0 aix

i ∈ R[[x]] is nilpotent, then ai is nilpotent for all
i ≥ 0. But the converse is not the case in general. It is true whenever R
is Noetherian. We recall that in the case where dim R > 1, Rϕ is nei-
ther commutative nor unital. But Theorem 2.3 shows that the set of all
nilpotent elements of Rϕ[[x]] is an ideal that is worthy of consideration.

Theorem 2.3. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Also let N be the set of all nilpotent elements in Rϕ[[x]].
Then N is an ideal.

Proof. Let
∑∞

i=0 aix
i,

∑∞
i=0 bix

i ∈ N and
∑∞

i=0 cix
i ∈ Rϕ[[x]]. So by

Theorem 2.1 ai, bi ∈ ker(ϕ) for all i ≥ 0. As

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)x
i,

(
∞∑
i=0

aix
i)(
∞∑
i=0

cix
i) =

∞∑
i=0

(
i∑

k=0

akci−k)xi,

(
∞∑
i=0

cix
i)(
∞∑
i=0

aix
i) =

∞∑
i=0

(
i∑

k=0

ckai−k)xi,

and ker(ϕ) is an ideal, so

ai + bi,

i∑
k=0

akci−k,

i∑
k=0

ckai−k ∈ ker(ϕ),

for all i ≥ 0. Hence by Theorem 2.1 N is an ideal. �

Theorem 2.4. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Then an element P =

∑∞
i=0 aix

i ∈ Rϕ[[x]] is idempotent
if and only if one of the following statements holds.

(1) P = 0.
(2) ϕ(a0) = 1 and ai ∈ ker(ϕ) for all i ≥ 1.
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Proof. Let P =
∑∞

i=0 aix
i be idempotent. So P 2 = P. It follows that

(2.1) ai =
i∑

k=0

akai−k, i ≥ 0.

So a0 = a20, that implies a0 = ϕ(a0)a0. Equivalently (ϕ(a0) − 1)a0 = 0.
If a0 = 0, then by (2.1) ai = 0 inductively. So P = 0. In the case where
ϕ(a0) = 1 since a1 = a0a1 + a1a0, we can conclude that

a1 = ϕ(a0)a1 + ϕ(a1)a0

= a1 + ϕ(a1)a0.

Hence ϕ(a1) = 0. Also

a2 = a0a2 + a1a1 + a2a0

= ϕ(a0)a2 + ϕ(a1)a1 + ϕ(a2)a0

= a2 + 0 + ϕ(a2)a0.

So ϕ(a2) = 0. Applying (2.1) inductively, we can conclude that for all
i ≥ 1, ϕ(ai) = 0.
For the converse if P = 0 then obviously P is idempotent. Let ϕ(a0) = 1
and ϕ(ai) = 0 for all i ≥ 1. Then

i∑
k=0

akai−k =
i∑

k=0

ϕ(ak)ai−k = ai.

It follows that P 2 = P . �

Theorem 2.4 shows that in spite of Rϕ[[x]] is not commutative, the
set of all idempotent elements of Rϕ[[x]] is multiplicative.

Theorem 2.5. Let R be a vector space and dim R > 1. Also let ϕ be
a non-zero element of R∗. Then each element of Rϕ[[x]] is a right zero
divisor.

Proof. Let P =
∑∞

i=0 aix
i be an arbitrary element of Rϕ[[x]]. As dim R >

1 so ker(ϕ) 6= {0}. Let 0 6= a ∈ ker(ϕ). Obviously aP = 0. This shows
that P is a right zero divisor. �

Note that in the case where dim R = 1, the only two-sided zero divisor
in Rϕ[[x]] is P = 0.

Theorem 2.6. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Then an element P =

∑∞
i=0 aix

i ∈ Rϕ[[x]] is a left zero
divisor if and only if ai ∈ ker(ϕ) for all i ≥ 0.
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Proof. Let P =
∑∞

i=0 aix
i ∈ Rϕ[[x]] be a left zero divisor. Then there

exists an element 0 6= Q =
∑∞

i=0 bix
i such that

PQ = (
∞∑
i=0

aix
i)(
∞∑
i=0

bix
i)

=

∞∑
i=0

(

i∑
k=0

akbi−k)xi

= 0.(2.2)

As Q 6= 0, let j be the smallest index such that bj 6= 0. The equation

(2.2) implies that 0 =
∑j

k=0 akbj−k = a0bj . So ϕ(a0)bj = 0. This shows
that a0 ∈ ker(ϕ). Similarly

0 =

j+1∑
k=0

akbj+1−k

= a0bj+1 + a1bj

= ϕ(a0)bj+1 + ϕ(a1)bj

= ϕ(a1)bj .

So a1 ∈ ker(ϕ). Applying (2.2) inductively, we can conclude that ai ∈
ker(ϕ) for all i ≥ 0.
For the converse let ai ∈ ker(ϕ) for all i ≥ 0. Choose 0 6= b ∈ Rϕ.
Clearly Pb = 0. This shows that P is a left zero divisor. �

Applying Theorems 2.5 and 2.6, we can conclude the following results.

Corollary 2.7. Let R be a non-zero vector space and dim R > 1. Also
let ϕ be a non-zero element of R∗. Then an element P =

∑∞
i=0 aix

i ∈
Rϕ[[x]] is a two-sided zero divisor if and only if ai ∈ ker(ϕ) for all i ≥ 0.

Corollary 2.8. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Then the set of all left zero divisor elements in Rϕ[[x]]
is an ideal.

Proof. Let L be the set of all left zero divisor elements of Rϕ[[x]]. Be-
cause ker(ϕ) is an ideal, an argument similar to the proof of Theorem
2.3 can be applied to show that L is an ideal. �

In the sequel let e ∈ ϕ−1({1}) and Rϕ[x] be the polynomial algebra
over Rϕ. Also set x0 = e.
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Theorem 2.9. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Also let ψ : Rϕ[x] −→ C be a linear mapping and
e ∈ ϕ−1({1}). Then ψ ∈ Hom(Rϕ[x],C) if and only if

ψ(ker(ϕ)[x]) = 0 and ψ(exm) = (ψ(ex))m

for all m ≥ 0.

Proof. If ψ = 0, then the proof is clear. Let 0 6= ψ ∈ Hom(Rϕ[x],C),
P ∈ ker(ϕ)[x] and Q ∈ Rϕ[x]. As PQ = 0, so ψ(P )ψ(Q) = ψ(PQ) = 0.
It follows that ψ(P ) = 0. Also the equality (ex)m = exm implies,

ψ(exm) = ψ((ex)m)

= (ψ(ex))m,m ≥ 0.

For the converse let ψ(ker(ϕ)[x]) = 0 and ψ(exm) = (ψ(ex))m for all
m ≥ 0. Clearly for all a ∈ Rϕ we have

(2.3) a = ϕ(a)e+K(a),

where K(a) = a − ϕ(a)e ∈ ker(ϕ). Let P =
∑n

i=0 aix
i be an arbitrary

element of Rϕ[x]. So by (2.3)

P =

n∑
i=0

(ϕ(ai)e+K(ai))x
i

=
n∑

i=0

ϕ(ai)ex
i +

n∑
i=0

K(ai)x
i.

It follows that

ψ(P ) = ψ(

n∑
i=0

ϕ(ai)ex
i +

n∑
i=0

K(ai)x
i)

= ψ(

n∑
i=0

ϕ(ai)ex
i) + 0

=

n∑
i=0

ϕ(ai)ψ(exi)

=
n∑

i=0

ϕ(ai)(ψ(ex))i.
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Hence for P =
∑n

i=1 aix
i and Q =

∑m
i=1 bix

i we can conclude that

ψ(PQ) = ψ(
m+n∑
i=0

(
i∑

k=0

akbi−k)xi)

=

m+n∑
i=0

ϕ(

i∑
k=0

akbi−k)(ψ(ex))i

=

m+n∑
i=0

(

i∑
k=0

ϕ(ak)ϕ(bi−k))(ψ(ex))i

= (

n∑
i=0

ϕ(ai)(ψ(ex))i)(

m∑
i=0

ϕ(bi)(ψ((ex))i)

= ψ(P )ψ(Q).

This shows that ψ ∈ Hom(Rϕ[x],C). �

Applying Theorem 2.9, we can present the following result.

Corollary 2.10. Let R be a non-zero vector space and ϕ be a non-zero
element of R∗. Also let ψ : Rϕ[[x]] −→ C be a linear mapping and
e ∈ ϕ−1({1}). If ψ ∈ Hom(Rϕ[[x]],C) then

ψ(ker(ϕ)[[x]]) = 0 and ψ(exm) = (ψ(ex))m

for all m ≥ 0.

Remark 2.11. It is clear that the map ϕ̂ : Rϕ[[x]] −→ C defined by,

ϕ̂(
∞∑
i=0

aix
i) = ϕ(a0),

is an algebraic homomorphism.
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