A NOTE ON THE LOCATION OF POLES OF MEROMORPHIC FUNCTIONS

SANJIB KUMAR DATTA AND TANCHAR MOLLA

ABSTRACT. A meromorphic function on an open set D contained in the finite complex plane \mathbb{C} is of the form of the ratio between two analytic functions defined on D with denominator not identically zero. Poles of meromorphic functions are those zeros of the denominator where numerator does not vanish. Finding all poles of a meromorphic function is too much difficult. So, it is desirable to know a region where these poles lie. In the paper we derive a region containing all the poles of some meromorphic functions. A few examples with related figures are given here to validate the results obtained.

Key Words: Meromorphic function, poles, order.

2010 Mathematics Subject Classification: Primary: 30D30; Secondary: 30A10, 30B10, 30C15.

1. INTRODUCTION.

Problems involving location of zeros of polynomials have a long history [12]. In 1829, Cauchy [12] proved the following classical result.

Theorem A. [12] If $P(z) = \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree n with complex coefficients, then all the zeros of P(z) lie in $|z| \le 1 + \max_{0 \le j \le (n-1)} \left| \frac{a_j}{a_n} \right|$.

In a different manner, G. Enström and S. Kakeya [8] introduced following result known as Enström-Kakeya theorem.

Received: 29 April 2020, Accepted: 22 November 2021. Communicated by Nasrin Eghbali; *Address correspondence to S. J. Datta; E-mail: sanjibdatta05@gmail.com.

^{© 2021} University of Mohaghegh Ardabili.

¹³⁷

Theorem B. [8] If $P(z) = \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree n with real coefficients satisfying $0 \le a_0 \le a_1 \le \dots \le a_n$, then all the zeros of P(z) lie in $|z| \le 1$.

There are so many improvements and generalizations of Theorem A for polynomials in the existing literature [6, 11]. Also, a lots of results on generalization of Theorem B for polynomials and analytic functions are found in [1,2,4,5,7-10]. Though, such type of results for poles of a meromorphic function are not available in the literature.

Generally the poles of a meromorphic function $f: D \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ are the zeros of $\frac{1}{f}$ in D. A meromorphic function f in a domain $D \subseteq \mathbb{C}$ analytic in the annulus $R_1 < |z| < R_2$ in D can be represented by Laurent's series as $f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$ for any z in $R_1 < |z| < R_2$ where $a_n = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta^{n+1}} d\zeta, n \in \mathbb{Z}$ with $C = \{\zeta : |\zeta| = r\}$ and $R_1 < r < R_2$.

The main aim of this paper is to establish some results about the region of the poles of meromorphic functions under various conditions on the above coefficients a_n 's. We do not explain the standard theories, notations and definitions of entire and meromorphic functions as those are available in [13] & [14].

The following definition is well known:

Definition 1.1. The order ρ of a meromorphic function f is defined as

$$\rho = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

In this paper we first prove the following result:

Theorem 1.2. Let f(z) be a meromorphic function of finite order ρ in a domain $D \subseteq \mathbb{C}$ such that $f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=-1}^{-\infty} a_n z^n$ be analytic in the annulus $R_1 \leq |z| \leq R_2$ in D. Also let $t_1(< R_1)$ & $t_2(> R_2)$ be any two positive real numbers such that f(z) is analytic in $t_1 < |z| < t_2$ contained in D with

$$0 < a_0 + \rho \ge t_2 a_1 \ge t_2^2 a_2 \ge \dots$$

and

$$0 < a_{-1} \ge \frac{a_{-2}}{t_1} \ge \frac{a_{-3}}{t_1^2} \ge \dots$$

Then the poles of f(z) lie in the region $D_1 \cup D_2$ where

$$D_{1} = \left\{ z \in D : \min\left(t_{2}, \frac{(a_{0} + \rho)R_{2}}{a_{0} + \rho - t_{2}a_{1}}\right) \leq |z| \leq \max\left(t_{2}, \frac{(a_{0} + \rho)R_{2}}{a_{0} + \rho - t_{2}a_{1}}\right) \right\}$$

and
$$D_{2} = \{z \in D : |z| \leq t_{1}\}.$$

Remark 1.3. The following example with related figure ensures the validity of Theorem 1.2.

Example 1.4. Let $f(z) = \frac{1}{(z-1)(z-2)(z-3)}$.

Then f(z) is meromorphic in \mathbb{C} and the poles are at z = 1, 2 & 3.

Now for $1 < |z| < \frac{3}{2}$, the Laurent's series expansion of f(z) is

$$f(z) = \frac{1}{3} + \frac{7}{36}z + \frac{23}{216}z^2 + \dots + \frac{1}{2z} + \frac{1}{2z^2} + \frac{1}{2z^3} + \dots$$

Here, $\rho = 0$, $t_1 = 1$, $t_2 = \frac{3}{2}$, $a_0 = \frac{1}{3}$ and $a_1 = \frac{7}{36}$.

Now for $\rho = 0$ and $R_2 = \frac{7}{5}$,

 $\min(t_2, \frac{(a_0+\rho)R_2}{a_0+\rho-t_2a_1}) = \frac{3}{2}$ and $\max(t_2, \frac{(a_0+\rho)R_2}{a_0+\rho-t_2a_1}) = 4.8.$

Hence by Theorem 1.2, the poles of f(z) lie in

$$\{z \in \mathbb{C} : |z| \le 1\} U\{z \in \mathbb{C} : \frac{3}{2} \le |z| \le 4.8\}$$
.

Remark 1.5. Considering $\rho = (k-1)a_0$ where $k \ge 1$, the following result is an immediate consequence of Theorem 1.2.

Corollary 1.6. Let f(z) be a meromorphic function of finite order in a domain $D \subseteq \mathbb{C}$ such that $f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=-1}^{-\infty} a_n z^n$ be analytic in the annulus $R_1 \leq |z| \leq R_2$ in D. Also let $t_1(< R_1)$ & $t_2(> R_2)$ be any two positive real numbers such that f(z) is analytic in $t_1 < |z| < t_2$ contained in D with for some $k \geq 1$,

$$0 < ka_0 \ge t_2 a_1 \ge t_2^2 a_2 \ge \dots$$

and

$$0 < a_{-1} \ge \frac{a_{-2}}{t_1} \ge \frac{a_{-3}}{t_1^2} \ge \dots$$

FIGURE 1. Distribution of poles of $f(z) = \frac{1}{3} + \frac{7}{36}z + \frac{23}{216}z^2 + \ldots + \frac{1}{2z} + \frac{1}{2z^2} + \frac{1}{2z^3} + \ldots$

Then the poles of f(z) lie in the region $D_1' \cup D_2'$ where

$$D_1' = \left\{ z \in D : \min\left(t_2, \frac{ka_0R_2}{ka_0 - t_2a_1}\right) \le |z| \le \max\left(t_2, \frac{ka_0R_2}{ka_0 - t_2a_1}\right) \right\} \text{ and } \\ D_2' = \{z \in D : |z| \le t_1\}.$$

Remark 1.7. The following example with related figure justifies the validity of Corollary 1.6.

Example 1.8. Let $f(z) = \frac{1}{(z-1)(z-2)(3-z)}$.

Then f(z) is meromorphic in \mathbb{C} and the poles are at z = 1, 2 & 3.

Now for 2 < |z| < 3, the Laurent's series expansion of f(z) is

$$f(z) = \frac{1}{16} + \frac{1}{18}z + \frac{1}{54}z^2 + \dots + \frac{1}{2z} + \frac{3}{2z^2} + \dots$$

Here, $t_1 = 2$, $t_2 = 3$, $a_0 = \frac{1}{16}$ and $a_1 = \frac{1}{18}$.

Now for k = 4 and $R_2 = \frac{14}{5}$,

$$\min\left(t_2, \frac{ka_0R_2}{ka_0 - t_2a_1}\right) = 3 \text{ and } \max\left(t_2, \frac{ka_0R_2}{ka_0 - t_2a_1}\right) = 8.4$$

Hence by Corollary 1.6, the poles of f(z) lie in

$$\{z \in \mathbb{C} : \mid z \mid \le 2\} U\{z \in \mathbb{C} : 3 \le \mid z \mid \le 8.4\} \ .$$

FIGURE 2. Distribution of poles of $f(z) = \frac{1}{16} + \frac{1}{18}z + \frac{1}{54}z^2 + ... + \frac{1}{2z} + \frac{3}{2z^2} + ...$

Finally, we establish following result without imposing any restrictions on the coefficients of the negative power of z.

Theorem 1.9. Let f(z) be a meromorphic function in a domain $D \subseteq \mathbb{C}$ and $f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$ be analytic in the annulus $R_1 \leq |z| \leq R_2$. Also let $t_1(< R_1)$ & $t_2(> R_2)$ be any two positive real numbers such that f(z)is analytic in $t_1 < |z| < t_2$ contained in D with

$$\underset{|z|=R_2}{Max} \mid \sum_{n=1}^{\infty} (a_{n-1} - t_2 a_n) z^n \mid \leq M.$$

Then the poles of f(z) lie in the region $D_3 \cup D_4$ where

$$D_3 = \left\{ z \in D : \min\left(t_2, \frac{M}{|a_0 - t_2 a_1|}\right) \le |z| \le \max\left(t_2, \frac{M}{|a_0 - t_2 a_1|}\right) \right\} \text{ and }$$

 $D_4 = \{ z \in D : | z | \le t_1 \}.$

Remark 1.10. The following example with related figure ensures the validity of Theorem 1.9.

Example 1.11. Let $f(z) = \frac{1}{(z+i)(z-2)(z+3)}$.

Then f(z) is meromorphic in \mathbb{C} and the poles of f(z) are at z = -i, 2 & -3.

Now for 2 < |z| < 3, the Laurent's series expansion of f(z) is

$$f(z) = \{\frac{1}{30} - \frac{1}{90}z + \frac{1}{270}z^2 - \ldots\} + \{-\frac{1}{10z} + (\frac{2}{15} + \frac{i}{6})\frac{1}{z^2} + \ldots\}$$

Here, $t_1 = 2$, $t_2 = 3$ and $a_n = (-1)^n \frac{1}{30.3^n}$, n = 0, 1, 2, ...

Taking $R_2 = \frac{5}{2}$, we see that

$$Max_{|z|=\frac{5}{2}} \mid \sum_{n=1}^{\infty} (a_{n-1} - 3a_n)z^n \mid \le 1$$
.

Also $\min(t_2, \frac{M}{|a_0 - t_2 a_1|}) = 3$ and $\max(t_2, \frac{M}{|a_0 - t_2 a_1|}) = 15$.

Hence by Theorem 1.9, the poles of f(z) lie in the region

$$\{z \in \mathbb{C} : |z| \le 2\} U\{z \in \mathbb{C} : 3 \le |z| \le 15\}.$$

2. Lemmas.

In this section we present a lemma which will be needed in the sequel

Lemma 2.1. [3] If f(z) is analytic in $|z| \le R$, f(0) = 0, f'(0) = b and $|f(z)| \le M$ for |z| = R, then for $|z| \le R$,

$$|f(z)| \le \frac{M |z|}{R^2} \cdot \frac{M |z| + R^2 |b|}{M + |b||z|}.$$

FIGURE 3. Distribution of poles of $f(z) = \frac{1}{30} - \frac{1}{90}z + \frac{1}{270}z^2 - \ldots\} + \{-\frac{1}{10z} + (\frac{2}{15} + \frac{i}{6})\frac{1}{z^2} + \ldots\}$

3. PROOFS OF THE THEOREMS.

Proof of Theorem 1.2. For $R_1 \leq |z| \leq R_2$, it follows that

(3.1)
$$|f(z)| \le |\sum_{n=0}^{\infty} a_n z^n| + |\sum_{n=-1}^{-\infty} a_n z^n|.$$

Clearly, $\lim_{n\to\infty} a_n R_2^n = 0$ and $\lim_{n\to-\infty} a_n R_1^n = 0$.

Now for $|z| \leq R_2 < t_2$, we get that

$$|(z - t_2)\sum_{n=0}^{\infty} a_n z^n| = |\sum_{n=0}^{\infty} a_n z^{n+1} - t_2 \sum_{n=0}^{\infty} a_n z^n|$$

$$= |-a_0 t_2 + (a_0 - t_2 a_1)z + \sum_{n=2}^{\infty} (a_{n-1} - t_2 a_n)z^n|$$

$$= |-a_0 t_2 - \rho z + (a_0 + \rho - t_2 a_1)z + \sum_{n=2}^{\infty} (a_{n-1} - t_2 a_n)z^n|$$

$$\leq |a_0| t_2 + \rho |z| + |(a_0 + \rho - t_2 a_1)z + \sum_{n=2}^{\infty} (a_{n-1} - t_2 a_n)z^n$$

(3.2)

$$= |a_0| t_2 + \rho |z| + |G(z)|.$$

For $|z| = R_2$, we have

$$|G(z)| = |(a_0 + \rho - t_2 a_1)z + \sum_{n=2}^{\infty} (a_{n-1} - t_2 a_n)z^n |$$

$$\leq |a_0 + \rho - t_2 a_1| |z| + |\sum_{n=2}^{\infty} |(a_{n-1} - t_2 a_n)| |z^n|$$

$$= (a_0 + \rho - t_2 a_1)R_2 + \sum_{n=2}^{\infty} (a_{n-1} - t_2 a_n)R_2^n$$

$$\leq (a_0 + \rho - R_2 a_1) + \sum_{n=2}^{\infty} (a_{n-1} - R_2 a_n)R_2^n$$

$$= (a_0 + \rho)R_2.$$

Clearly G(z) is analytic in $|z| \leq R_2$, G(0) = 0, $G'(0) = (a_0 + \rho - t_2a_1)$ and $|G(z)| \leq (a_0 + \rho)R_2$ for $|z| = R_2$. Hence by Lemma 2.1, it follows that

$$\begin{split} \mid G(z) \mid \leq & \frac{(a_0 + \rho)R_2 \mid z \mid}{R_2^2} \cdot \frac{(a_0 + \rho)R_2 \mid z \mid + R_2^2 \mid a_0 + \rho - t_2 a_1 \mid |z \mid}{(a_0 + \rho)R_2 + \mid a_0 + \rho - t_2 a_1 \mid |z \mid} \\ = & \frac{(a_0 + \rho) \mid z \mid \{(a_0 + \rho) \mid z \mid + R_2 \mid a_0 + \rho - t_2 a_1 \mid |z \mid}{(a_0 + \rho)R_2 + \mid a_0 + \rho - t_2 a_1 \mid |z \mid} \\ \leq & \frac{(a_0 + \rho) \mid z \mid \{(a_0 + \rho) \mid z \mid + R_2 \mid a_0 + \rho - t_2 a_1 \mid |z \mid}{(a_0 + \rho)R_2 - \mid a_0 + \rho - t_2 a_1 \mid |z \mid} \,. \end{split}$$

Therefore from (3.2), we obtain for $|z| \leq R_2 < t_2$ that

$$\begin{split} |\sum_{n=0}^{\infty} a_n z^n| &\leq \frac{1}{|z-t_2|} \left[|a_0| t_2 + \rho |z| + \frac{(a_0+\rho) |z| \{(a_0+\rho) |z| + R_2 |a_0+\rho-t_2a_1|\}}{(a_0+\rho)R_2 - |a_0+\rho-t_2a_1||z|} \right] \\ &\leq \frac{\left[(|a_0| t_2+\rho |z|) \{(a_0+\rho)R_2 - |a_0+\rho-t_2a_1||z|\} + (a_0+\rho) |z| + R_2 |a_0+\rho-t_2a_1||z|\}}{(t_2-|z|) \{(a_0+\rho)R_2 - |a_0+\rho-t_2a_1||z|\}}. \end{split}$$

Now for $|z| \ge R_1 > t_1$, it follows that

$$\begin{split} |\left(\frac{1}{z} - \frac{1}{t_{1}}\right) \sum_{n=-1}^{-\infty} a_{n} z^{n} |=| \sum_{n=-1}^{-\infty} a_{n} z^{n-1} - \frac{1}{t_{1}} \sum_{n=-1}^{-\infty} a_{n} z^{n} \\ = |-\frac{a_{-1}}{t_{1} z} + \sum_{n=-1}^{-\infty} (a_{n} - \frac{a_{n-1}}{t_{1}}) z^{n-1} | \\ \leq \frac{a_{-1}}{t_{1} |z|} + \sum_{n=-1}^{-\infty} |a_{n} - \frac{a_{n-1}}{t_{1}}| |z|^{n-1} \\ \leq \frac{a_{-1}}{t_{1} |z|} + \sum_{n=-1}^{-\infty} (a_{n} - \frac{a_{n-1}}{t_{1}}) R_{1}^{n-1} \\ \leq \frac{a_{-1}}{t_{1} |z|} + \sum_{n=-1}^{-\infty} (a_{n} - \frac{a_{n-1}}{R_{1}}) R_{1}^{n-1} \\ = \frac{a_{-1}}{t_{1} |z|} + \frac{a_{-1}}{R_{1}^{2}}. \end{split}$$

Therefore $|\sum_{n=-1}^{-\infty} a_n z^n| \le \frac{1}{|\frac{1}{z} - \frac{1}{t_1}|} \left(\frac{a_{-1}}{t_1 |z|} + \frac{a_{-1}}{R_1^2}\right)$ $= \frac{a_{-1}(R_1^2 + t_1 |z|)}{|t_1 - z|R_1^2}$ $\le \frac{a_{-1}(R_1^2 + t_1 |z|)}{||z| - t_1|R_1^2}.$

Hence from (3.1), we get that

$$\begin{split} |f(z)| &\leq \frac{\left[\left(\mid a_{0}\mid t_{2}+\rho\mid z\mid\right) \{(a_{0}+\rho)R_{2}-\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid\}\right]}{(t_{2}-\mid z\mid) \{(a_{0}+\rho)\mid z\mid+R_{2}\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid\}} + \frac{a_{-1}(R_{1}^{2}+t_{1}\mid z\mid)}{(\mid z\mid-t_{1})R_{1}^{2}} \\ &= \frac{\left[\left(\mid z\mid-t_{1})R_{1}^{2} [(\mid a_{0}\mid t_{2}+\rho\mid z\mid) \} \{(a_{0}+\rho)R_{2}-\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid\}\right]}{(|z\mid-t_{1})R_{1}^{2}} \right]}{R_{1}^{2}(t_{2}-\mid z\mid) [(t_{2}-\mid z\mid)](a_{0}+\rho)R_{2}-\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid] } \\ &= \frac{\left[\left(\mid z\mid-t_{1})R_{1}^{2} [(\mid a_{0}\mid t_{2}+\rho\mid z\mid)] \{(a_{0}+\rho)R_{2}-\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid] \right]}{R_{1}^{2}(t_{2}-\mid z\mid) [(t_{2}-\mid z\mid)](a_{0}+\rho)R_{2}-\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid] } \right]}{R_{1}^{2}(t_{2}-\mid z\mid) (|z\mid-t_{1}) \{(a_{0}+\rho)R_{2}-\mid a_{0}+\rho-t_{2}a_{1}\mid\mid z\mid] } \end{split}$$

Therefore $\frac{1}{|f(z)|} > 0$ if $(t_2 - |z|)(|z| - t_1)\{(a_0 + \rho)R_2 - |a_0 + \rho - t_2a_1||$ $z \mid \} > 0.$

Now for $|z| > t_2$, it follows that

$$\frac{1}{|f(z)|} > 0 \text{ if } (a_0 + \rho)R_2 - |a_0 + \rho - t_2a_1||z| < 0$$

i.e, $\frac{1}{|f(z)|} > 0 \text{ if } |z| > \frac{(a_0 + \rho)R_2}{a_0 + \rho - t_2a_1}.$

Hence the zeros of $\frac{1}{f(z)}$ lie in the annular region

$$\min\left(t_2, \frac{(a_0+\rho)R_2}{a_0+\rho-t_2a_1}\right) \le |z| \le \max\left(t_2, \frac{(a_0+\rho)R_2}{a_0+\rho-t_2a_1}\right).$$

Consequently, the poles of f(z) lie in

$$D_1 = \left\{ z \in D : \min\left(t_2, \frac{(a_0 + \rho)R_2}{a_0 + \rho - t_2a_1}\right) \le \mid z \mid \le \max\left(t_2, \frac{(a_0 + \rho)R_2}{a_0 + \rho - t_2a_1}\right) \right\}$$

Also for $|z| < t_1 < t_2$, we see that

$$\frac{1}{|f(z)|} > 0$$
 if $|z| > \frac{(a_0 + \rho)R_2}{a_0 + \rho - t_2 a_1}$.

Hence the zeros of $\frac{1}{f(z)}$ lie in $|z| \le t_1$.

Therefore the poles of f(z) lie in $D_2 = \{z \in D : | z | \le t_1\}.$

Thus all the poles of f(z) lie in the region $D_1 \cup D_2$.

This proves the theorem.

Proof of Theorem 1.9. For $R_1 \leq |z| \leq R_2$,

(3.3)
$$|f(z)| \leq |\sum_{n=0}^{\infty} a_n z^n| + |\sum_{n=-1}^{-\infty} a_n z^n|, R_1 \leq |z| \leq R_2.$$

Now for $|z| \leq R_2 < t_2$, it follows that

$$|(z - t_2) \sum_{n=0}^{\infty} a_n z^n| = |-a_0 t_2 + \sum_{n=1}^{\infty} (a_{n-1} - t_2 a_n) z^n|$$

$$\leq |a_0 t_2| + |\sum_{n=1}^{\infty} (a_{n-1} - t_2 a_n) z^n|$$

$$(3.4) = |a_0 t_2| + |G(z)|.$$

Also for $|z| = R_2$,

$$|G(z)| = |\sum_{n=1}^{\infty} (a_{n-1} - t_2 a_n) z^n| \le \max_{|z|=R_2} |\sum_{n=1}^{\infty} (a_{n-1} - t_2 a_n) z^n| \le M$$

and G(z) being analytic in $|z| \leq R_2$, G(0) = 0, $G'(0) = (a_0 - t_2 a_1)$, applying Lemma 2.1 we obtain that

$$|G(z)| \leq \frac{M |z|}{R_2^2} \frac{M |z| + R_2^2 |a_0 - t_2 a_1|}{M + |a_0 - t_2 a_1||z|}$$

$$\leq \frac{M |z| (M |z| + R_2^2 |a_0 - t_2 a_1|)}{R_2^2 (M - |a_0 - t_2 a_1||z|)} \text{ for } |z| \leq R_2.$$

Therefore for $|z| \leq R_2 < t_2$, it follows from (3.4) that

$$\begin{split} \mid \sum_{n=0}^{\infty} a_n z^n \mid &\leq \frac{1}{\mid z - t_2 \mid} \frac{R_2^2 \mid a_0 \mid t_2(M - \mid a_0 - t_2a_1 \mid \mid z \mid) + M \mid z \mid (M \mid z \mid + R_2^2 \mid a_0 - t_2a_1 \mid))}{R_2^2(M - \mid a_0 - t_2a_1 \mid \mid z \mid)} \\ &\leq \frac{\mid a_0 \mid t_2(M - \mid a_0 - t_2a_1 \mid \mid z \mid) + M \mid z \mid (M \mid z \mid + R_2^2 \mid a_0 - t_2a_1 \mid))}{R_2^2(t_2 - \mid z \mid)(M - \mid a_0 - t_2a_1 \mid \mid z \mid)}. \end{split}$$

Now for $|z| \ge R_1 > t_1$,

$$\begin{split} |\left(\frac{1}{z} - \frac{1}{t_{1}}\right) \sum_{n=-1}^{-\infty} a_{n} z^{n} | = |-\frac{a_{-1}}{t_{1} z} + \sum_{n=-1}^{-\infty} (a_{n} - \frac{1}{t_{1}} a_{n-1}) z^{n-1} | \\ & \leq \frac{|a_{-1}|}{t_{1} |z|} + |\sum_{n=-1}^{-\infty} (a_{n} - \frac{1}{t_{1}} a_{n-1}) z^{n-1} \\ & \leq \frac{|a_{-1}|}{t_{1} |z|} + M_{1} \end{split}$$
where $M_{1} = \max_{|z|=R_{1}} |\sum_{n=-1}^{-\infty} (a_{n} - \frac{1}{t_{1}} a_{n-1}) z^{n-1} |$.

Therefore

$$|\sum_{n=-1}^{-\infty} a_n z^n| \le \frac{1}{|t_1 - z|} \{ |a_{-1}| + t_1 M_1 | z| \}$$

$$\le \frac{1}{|z| - t_1} \{ |a_{-1}| + t_1 M_1 | z| \} \text{ for } |z| \ge R_1 > t_1.$$

Hence for $R_1 \leq |z| \leq R_2$, we get from (3.3) that $|f(z)| \leq \frac{R_2^2 |a_0| t_2(M-|a_0-t_2a_1||z|) + M |z| (M |z| + R_2^2 |a_0-t_2a_1|)}{R_2^2(t_2-|z|)(M-|a_0-t_2a_1||z|)} + \frac{|a_{-1}| + t_1M_1 |z|}{|z| - t_1}$

$$= \frac{\left[(|z|-t_1) \{R_2^2 \mid a_0 \mid t_2(M-\mid a_0-t_2a_1 \mid \mid z \mid) + M \mid z \mid (M \mid z \mid +R_2^2 \mid a_0-t_2a_1 \mid)\} + (t_2-\mid z \mid)(M-\mid a_0-t_2a_1 \mid \mid z \mid)(\mid a_{-1} \mid +t_1M_1 \mid z \mid)) \right]}{R_2^2(|z|-t_1)(t_2-\mid z \mid)(M-\mid a_0-t_2a_1 \mid \mid z \mid)}.$$

Therefore $\frac{1}{16(N)} > 0$ if $(|z|-t_1)(t_2-\mid z \mid)(M-\mid a_0-t_2a_1 \mid \mid z \mid) > 0.$

Inerefore $\frac{1}{|f(z)|} > 0$ if $(|z| - t_1)(t_2 - |z|)(M - |a_0 - t_2a_1||z|) > 0$.

In a like manner as in the proof of Theorem 1.2, the poles of f(z) lie in the region $D_3 \cup D_4$ where

$$D_{3} = \left\{ z \in D : \min\left(t_{2}, \frac{M}{|a_{0} - t_{2}a_{1}|}\right) \le |z| \le \max\left(t_{2}, \frac{M}{|a_{0} - t_{2}a_{1}|}\right) \right\} \text{ and } D_{4} = \{z \in D : |z| \le t_{1}\}.$$

Thus the theorem is established.

Future prospect. In the line of the works as carried out in the paper one may think of proving the results in case of meromorphic functions of infinite order.

References

- A. Aziz and Q.G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. Appl., 1980; 75 (1980), 495502.
- [2] A. Aziz and Q.G. Mohammad, Zero-free regions for polynomials and some generalizations of Eneström-Kakeya theorem, Can. Math. Bull., 27(3) (1984), 265272.
- [3] A. Aziz and W.M. Shah, On the zeros of polynomials and related analytic functions, Glasnik Matematicki, 33(53) (1998), 173-184.
- [4] A. Aziz and B.A. Zargar, Bounds for the zeros of a polynomial with restricted coefficients, Applied Mathematics, 3(2012), 30-33.
- [5] A. Chattopadhyay, S. Das, V.K. Jain and H. Konwar, Certain generalizations of Eneströn-Kakeya theorem, Journal of Indian Mathematical Society, 72(1-4) (2005), 147-156.
- [6] Y. Choo, Contributions to the zeros of a polynomial, Int. J. Math. Anal., 9 (2015), 15711577.
- [7] N.K. Govil and Q.I. Rahaman, On the Eneström-Kakeya theorem, Tohoku Math. J., 20(1968), 126-136.
- [8] R. Gardner and N.K. Govil, Enestrom- Kakeya theorem and some of its generalization, Birkhauser, New Delhi, 2014.

- [9] A. Joyal, G. Labelle and Q.I. Rahaman, On the location of zeros of polynomials, Canad. Math.Bull., 10 (1967), 53-63.
- [10] V.K. Jain, On the location of zeros of polynomials, Ann. Univ. Mariae Curie-Sklodowska, Lublin-Polonia Sect. A, 30 (1976), 43-48.
- [11] V.K. Jain, On Cauchy's bound for zeros of a polynomial, Turk. J. Math., 30(1) (2006), 95-100.
- [12] M. Marden, Geometry of polynomials, Math. Surveys. no. 3. Amer. Math. Society., Providence, 1966.
- [13] W.K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.
- [14] V. Valiron, Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.

Sanjib Kumar Datta

Department of Mathematics, University of Kalyani, P.O.:Kalyani, Dist.:Nadia, Pin:741235 West Bengal, India. Email:sanjibdatta05@gmail.com

Tanchar Molla

Department of Mathematics, Dumkal College, P.O: Basantapur, P.S: Dumkal, Dist.: Murshidabad, Pin: 742406, West Bengal, India. Email:tanumath786@gmail.com