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ON DOMINATION IN AN EDGE PRODUCT

HYPERGRAPHS

KISHOR F. PAWAR AND MEGHA M. JADHAV

Abstract. In this paper, we study domination in an edge product
hypergraphs and found some results on it. It is proved that the
unit edge in a unit edge product hypergraph is a dominating set of
hypergraph H. Later, we obtained some results which are relatives
of the Nordhaus-Gaddum theorem, regarding the sums and prod-
ucts of domination parameters in an edge product hypergraph and
their compliments.

Key Words: Edge Product Hypergraph, Unit Edge Product Hypergraph, Nordhaus-Gaddum

Theorem, Domination.

2010 Mathematics Subject Classification: Primary: 05C65.

1. Introduction

The concept of domination in graphs was originated with the queen
problem during 1850. The problem states, What is the minimum num-
ber of queens needed on an 8 × 8 chessboard such that all squares are
either occupied or can be attacked by a queen. The rule of chess tells
us that a queen can move horizontally, vertically or diagonally on the
chessboard as long as there are no other pieces in its way. The correct
answer to the above problem is five and the minimum number in this
problem is nothing but the domination number of that graph G formed
from 8× 8 chessboard. The set of queens who dominate all the squares
gives one dominating set of G. Claude Berge [3] in 1958 and Oystein

Received: 12 September 2021, Accepted: 15 November 2021. Communicated by Ahmad

Yousefian Darani;

∗Address correspondence to Kishor F. Pawar; E-mail: kfpawar@nmu.ac.in.

c© 2021 University of Mohaghegh Ardabili.

108



On Domination in Edge Product Hypergraphs 109

Ore [12] in 1962 introduced the idea of domination in graphs. Berge
named domination as an external stability and domination number as
a coefficient of external stability while Ore used the words domination
and domination number for the same idea.

The domination in graphs caught much attention in graph theory with
its applications in many fields like design and analysis of communica-
tion networks, optimization, social sciences, linear algebra and military
surveillance etc. For more details about domination and its related pa-
rameters, reader may refer to the books [7], [8] written by Haynes et.
al . A huge body of literature has developed around domination in
graphs, however much less is done about domination in hypergraphs.
The domination in hypergraphs was introduced by Acharya in [1] and
[2]. Hypergraph is a generalization of a graph in which any subset of a
given set may be an edge rather than two element subset. In [9] Jad-
hav and Pawar introduced a special kind of hypergraph, called an edge
product hypergraphs. A hypergraph H is said to be an edge product hy-
pergraph if the edges of hypergraph can be labeled with distinct positive
integers such that the product of all the labels of the edges incident to
a vertex is again an edge label of H and if the product of any collection
of edges is a label of an edge in H then they are incident to a vertex.

In the present paper, we study domination in an edge product hyper-
graphs. Also several important properties are studied and some results
are found. Further, we obtained some Nordhaus-Gaddum [10], [11] type
results for a unit edge product hypergraphs and edge product hyper-
graphs.

2. Preliminaries

We begin with recalling some basic definitions from [4]-[6] and some
results from [9] required for our purpose.

Definition 2.1. A hypergraph H is a pair H(V,E) where V is a finite
nonempty set and E is a collection of subsets of V . The elements of V
are called vertices and the elements of E are called edges or hyperedges.
And ∪ei∈Eei = V and ei 6= φ are required, for all ei ∈ E. The number
of vertices in H is called the order of the hypergraph and is denoted by
|V |. The number of edges in H is called the size of H and is denoted by
|E|. A hypergraph of order n and size m is called a (n,m) hypergraph.
The number |ei| is called the degree (cardinality) of the edges ei. The
rank of a hypergraph H is r(H) = maxei∈E |ei|.
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Definition 2.2. For any vertex v in a hypergraph H(V,E), the set
N [v] = {u ∈ V : u is adjacent to v} ∪ {v} is called the closed neighbor-
hood of v in H and each vertex in the set N [v]− {v} is called neighbor
of v. The open neighborhood of the vertex v is the set N [v] \ {v}. If
S ⊆ V then N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.

Definition 2.3. A simple hypergraph (or Sperner family) is a hyper-
graph H(V,E) where E = {e1, e2, · · · , em} such that ei ⊂ ej implies
i = j.

Definition 2.4. For any hypergraph H(V,E), two vertices v and u are
said to be adjacent if there exists an edge e ∈ E that contains both v
and u and non-adjacent otherwise.

Definition 2.5. For any hypergraph H(V,E), two edges are said to be
adjacent if their intersection is nonempty. If a vertex vi ∈ V belongs to
an edge ej ∈ E then we say that they are incident to each other.

Definition 2.6. An edge in a hypergraph H is called a pure hyperedge
if it contains at least three vertices; otherwise it is called ordinary, and
H is called a pure hypergraph if each edge of H is a pure hyperedge.

Definition 2.7. The vertex degree of a vertex v is the number of vertices
adjacent to the vertex v in H. It is denoted by d(v). The maximum
(minimum) vertex degree of a hypergraph is denoted by ∆(H)(δ(H)).

Definition 2.8. The edge degree of a vertex v is the number of edges
containing the vertex v. It is denoted by dE(v). The maximum (min-
imum) edge degree of a hypergraph is denoted by ∆E(H)(δE(H)). A
vertex of a hypergraph which is incident to no edge is called an isolated
vertex. The edge degree (or vertex degree) of an isolated vertex is triv-
ially 0. An edge of cardinality one is called a singleton (loop), a vertex
of edge degree one is called a pendant vertex.

Definition 2.9. The hypergraph H(V,E) is called connected if for any
pair of its vertices, there is a path connecting them. IfH is not connected
then it consists of two or more connected components, each of which is
a connected hypergraph.

Definition 2.10. A hypergraph is said to be of rank k if each of its
edge contains at most k vertices.

Definition 2.11. The complement H̄ of a hypergraphH(V,E) is defined
as H̄(V, Ē) where Ē = {ē|e ∈ E} with ē ∈ Ē, ē = {v /∈ e|e ∈ E}.
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Definition 2.12. For a hypergraph H(V,E), a set D ⊆ V is called a
dominating set of H if for every v ∈ V \D there exists u ∈ D such that
u and v are adjacent in H, that is there exists e ∈ E such that u, v ∈ e.

Definition 2.13. A dominating set D of a hypergraph H is called a
minimal dominating set, if no proper subset of D is a dominating set
of H. The minimum cardinality of a minimal dominating set in a hy-
pergraph H is called the domination number of H and is denoted by
γ(H).

Definition 2.14. Let D ∈ D0(H), the set of all minimum dominating
sets (of cardinality γ(H)). An inverse dominating set with respect to
D is any dominating set D′ of H such that D′ ⊆ V \ D. The inverse
domination number of H is defined as

γ
−1

(H) = min{|D′| | D ∈ D
0
(H), D

′
is an inverse dominating set with respect to D}

Definition 2.15. Let H(V,E) be a simple and connected hypergraph.
Let V (H) be the vertex set of H and E(H) be the edge set of H. Let
P be a set of positive integers such that |E| = |P |. Then any bijection
f : E → P is called an edge function of the hypergraph H.

Definition 2.16. The function

F (v) =
∏
{f(e)| edge e is incident to the vertex v}

on V (H) is called an edge product function of the edge function f .

Definition 2.17. The hypergraphH(V,E) is said to be an edge product
hypergraph if there exists an edge function f : E → P such that the
edge function f and the corresponding edge product function F of f on
V (H) have the following two conditions:

(1) F (v) ∈ P , for every v ∈ V .
(2) If f(e1)×f(e2)×. . .×f(ep) ∈ P , for some edges e1, e2, . . . , ep ∈ E

then the edges e1, e2, . . . , ep are all incident to a vertex v ∈ V .

Example 2.18. LetH(V,E) be a hypergraph, where V = {v1, v2, . . . , v20}
and E = {e1, e2, . . . , e7}. In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9}, e2 = {v1, v2, v3, v10},
e3 = {v1, v2, v3, v11, v12}, e4 = {v4, v5, v13},
e5 = {v4, v5, v14, v15, v16}, e6 = {v4, v5, v17, v18}, and

e7 = {v19, v20}.
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Now define the edge function f : E → P by

f(e1) = 11, f(e2) = 30, f(e3) = 4, f(e4) = 3,

f(e5) = 20, f(e6) = 2, f(e7) = 1320.

The edge product function F of f is defined by,
F (v1) = 1320, F (v2) = 1320, F (v3) = 1320, F (v4) = 1320, F (v5) = 1320,

F (v6) = 11, F (v7) = 11, F (v8) = 11, F (v9) = 11, F (v10) = 30,

F (v11) = 4, F (v12) = 4, F (v13) = 3, F (v14) = 20, F (v15) = 20,

F (v16) = 20, F (v17) = 2, F (v18) = 2, F (v19) = 1320, F (v20) = 1320.

Hence the given hypergraph is an edge product hypergraph.

Definition 2.19. For an edge product hypergraph H(V,E) there exists
an edge function f : E → P such that an element 1 ∈ P then the
hypergraph H is called a unit edge product hypergraph.

Theorem 2.20. Let H be a unit edge product hypergraph with an edge
e∗ ∈ E and f(e∗) = 1. Then e∗ must adjacent to all the edges of H.

Theorem 2.21. Let H(V,E) be a unit edge product hypergraph and
e∗ ∈ E such that f(e∗) = 1. Then H contains at least one edge which is
adjacent to only e∗.

Lemma 2.22. Let H(V,E) be an edge product hypergraph. Then γ(H̄) =
γ−1(H̄) = 1.

Here the edge in a unit edge product hypergraph whose label is one is
called a unit edge of that hypergraph and the edge which is not a unit
edge is called a non-unit edge of that hypergraph.

3. Domination in Unit Edge Product Hypergraph

In this section, we obtained the dominating sets for some edge product
hypergraphs and unit edge product hypergraphs. Also the properties of a
unit edge product hypergraph are studied when the domination number
of that hypergraph is known.

Theorem 3.1. If H is a unit edge product hypergraph, then the unit
edge of H is a dominating set of H.

Proof. LetH(V,E) be a unit edge product hypergraph and e∗ be the unit
edge of H . Since it is a unit edge product hypergraph, the intersection
of any edge and the unit edge is non-empty. Hence for every u ∈ V \ e∗
we have, a vertex v ∈ e∗ such that v is adjacent to u. Hence the unit
edge e∗ forms a dominating set of H. �
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Theorem 3.2. Let H be a unit edge product hypergraph. Then any
dominating set contains a vertex from unit edge or a pendant vertex.

Proof. Let H(V,E) be a unit edge product hypergraph with an unit
edge e∗. Let D be a dominating set of H. Now in a unit edge product
hypergraph there exists at least one edge which is adjacent to e∗ only.
Let e be the edge in H which is adjacent to e∗ only. Then for any v ∈ e,
we have a vertex u ∈ D such that the vertex v is adjacent to u. Therefore
the vertex u can be either belongs to the intersection of e∗ and e or the
pendant vertex in e∗. Hence the proof. �

Theorem 3.3. If H is a unit edge product hypergraph, then the vertex
with maximum edge degree ∆E(H) must belongs to the unit edge of H.

Proof. Let H be a unit edge product hypergraph with an unit edge e∗.
The mapping f : E → P is an edge function and F is an edge product
function of f in H. Let u be the vertex in H with maximum edge
degree ∆E(H) = k, where k is a positive integer. Suppose the vertex u
is not in the unit edge e∗. Now let e1, e2, . . . , ek be the edges incident
to the vertex u. Then F (u) = f(e1)× f(e2)× . . .× f(ek) ∈ P . But
F (u) = F (u) ·1 ∈ P ⇒ F (u) = f(e1)× f(e2)× . . .× f(ek)× f(e∗) ∈ P .
Hence the edges e1, e2, . . . , ek, e

∗ are incident to a vertex v ∈ V with the
edge degree k + 1 > ∆E(H) which is a contradiction. Hence the vertex
u must be in e∗. �

Theorem 3.4. Let H be a unit edge product hypergraph with γ(H) +
∆(H) = |V | and let v be a vertex of degree ∆(H). Then the unit edge of
H contains at least |H \N [v]| number of vertices.

Proof. Let H be a hypergraph following the given conditions of the the-
orem. Let e∗ be the unit edge of H. Since it is a unit edge product
hypergraph, it follows the edge containing the vertex u ∈ H\N [v] is ad-
jacent to the unit edge in H.(the edge containing the vertex u ∈ H\N [v]
cannot be the unit edge otherwise it would not be an edge product hy-
pergraph) Hence for every u ∈ H\N [v] we have, a vertex y ∈ e∗, adjacent
to u and belongs to the intersection of the unit edge and the edge con-
taining the vertex u. Now we assume contrary that the cardinality of
the unit edge is less than |H \ N [v]|. This implies that there does not
exist a distinct vertex y ∈ e∗ for each u ∈ H \N [v].

Let for u1, u2 ∈ H \N [v], we have a single vertex y ∈ e∗ then

D = {{v, y} ∪ (V \ (N [v] ∪ (N(y) ∩ (V \N [v]))))}
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is a dominating set of H with cardinality |D| = 2 + |V | −∆(H)− 1− 2
= |V |−∆(H)−1 which is a contradiction. Hence the unit edge contains
at least |H \N [v]| number of vertices. �

Theorem 3.5. Let H be a unit edge product hypergraph with i(H) +
∆(H) = |V | and let u be a vertex of degree ∆(H). Then there exists at
least |V \N [u]| non-unit edges in H.

Proof. Let H be a hypergraph with the given conditions of the theorem.
Since it is a unit edge product hypergraph, the edge containing the
vertex w ∈ V \ N [u] is adjacent to the unit edge in H. Now suppose
there are p non-unit edges in H and p < |V \ N [u]| . Then there exist
two vertices x, y ∈ V \N [u] such that x and y are adjacent. Hence the
cardinality of any strongly independent dominating set of V \N [u] is at
most |V \N [u]|−1. Hence i(H) ≤ |V \N [u]|−1 + |u| = |V |−∆(H)−1,
which is a contradiction. Hence there exist at least |V \N [u]| non-unit
edges in H. �

Theorem 3.6. Let H be a unit edge product hypergraph with γ(H) =
m− 1. Then any two non-unit edges are non-adjacent.

Proof. Let e∗ be the unit edge of the given hypergraph. Let e and e
be the two non-unit edges in H. Suppose the edge e is adjacent to the
edge e. Then the intersection of the edges e and e is non-empty. Let
v ∈ e ∩ e. Now since it is a unit edge product hypergraph, for every
ei ∈ E, we have a vertex vi ∈ e∗ ∩ ei, for 1 ≤ i ≤ m − 1. Thus the set
containing the vertices v1, v2, . . . , vm−3 and v forms a dominating set of
H with cardinality |D| = m− 3 + 1 < m− 1 a contradiction. Hence no
two non-unit edges are adjacent in H. �

Theorem 3.7. If H is an unit edge product hypergraph with γ(H) = m−
1 and unit edge contains at least one pendant vertex then any dominating
set contains at least one element from unit edge.

Proof. Let e∗ be the unit edge of H and v ∈ V \ e∗. Then the vertex v
is a pendant vertex in H, by Theorem 3.6. Hence any subset of V \ e∗
cannot be a dominating set of H unless it contains a vertex from an unit
edge. Hence the proof. �

4. Nordhaus-Gaddum Theorem

In this section, we obtained some results similar to Nordhaus-Gaddum
theorem, relevant to the sums and products of domination parameters
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in an edge product hypergraph and their compliments. Also in order
to avoid the trivial anomalies, whenever we talk about H̄, we restrict
ourselves to those hypergraphs which satisfies the condition that, every
vertex v ofH is incident with some edge e of cardinality, 2 ≤ |e| ≤ |v|−2,
and avoiding v and dE(v) < |E| and |V | ≥ 4.

Theorem 4.1. For a unit edge product hypergraph of size m > 2,

(1) 2 ≤ γ(H) + γ(H̄) ≤ |e∗|+ 1.
(2) 1 ≤ γ(H) · γ(H̄) ≤ |e∗| and the bounds are sharp. Where e∗ is

the unit edge of H.

Proof. We know for any hypergraph H, we have γ(H) ≥ 1. Hence the
lower bounds in 1) and 2) are obvious. Now we proceed to prove for
upper bounds. The unit edge e∗ of H forms a dominating set of H, by
Theorem 3.1. Hence we have, γ(H) ≤ |e∗|. Now since it is a unit edge
product hypergraph, there exist an edge which is adjacent to e∗ only.
Let ej be the edge in H which is adjacent to e∗ only. Let ek be any edge
in H. Then the edges ej and ek are two independent edges in H. Now
if we take w ∈ V |ej∪ek then for any v ∈ V , we have a vertex w adjacent

to v in H̄. Therefore γ(H̄) = 1. Hence the upper bound follows. �

Remark 4.2. The bounds given in the Theorem 4.1 are sharp:
For, consider the hypergraph with the vertex set

V = {v1, v2, v3, u1, u2, u3, w1, w2, w3, x1, x2, x3}
and the edge set

E = {e1, e2, e3, e4, e5}.
In which the edges of H are defined as follows:

e1 = {v1, u1, w1, x1}, e2 = {v1, v2, v3},
e3 = {u1, u2, u3}, e4 = {w1, w2, w3}, and

e5 = {x1, x2, x3}.
We define the edge function f : E → P by

f(e1) = 1, f(e2) = 2, f(e3) = 3,

f(e4) = 5, f(e5) = 7,

where P = {1, 2, 3, 5, 7}. Then edge product function F of f will be,

F (v1) = F (v2) = F (v3) = 2, F (u1) = F (u2) = F (u3) = 3,

F (w1) = F (w2) = F (w3) = 5, F (x1) = F (x2) = F (x3) = 7.
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Thus,H(V,E) is a unit edge product hypergraph. Here the set {v1, u1, w1, x1}
forms a minimum dominating set of H whereas any vertex of H forms
a dominating set of H̄. Hence in this case, γ(H) + γ(H̄) = |e∗|+ 1 and
γ(H) · γ(H̄) = |e∗|.

Observation: If H is an edge product hypergraph with edge product
number EPn(H) = r then any dominating set of H contains at least r
pendant vertices.

Theorem 4.3. For an edge product hypergraph with edge product num-
ber EPn(H) = r,

(1) 2 + r ≤ γ(H) + γ(H̄) ≤ bn2 c+ r + 1.

(2) 1 + r ≤ γ(H) · γ(H̄) ≤ bn2 c+ r and the bounds are sharp.

Proof. The lower bounds in 1) and 2) are obvious. Now consider the
upper bounds of 1) and 2). Since H is an edge product hypergraph with
edge product number r, it follows γ(H) ≤ bn2 c + r and γ(H̄) = 1, by

Lemma 2.22. Hence γ(H) + γ(H̄) ≤ bn2 c + r + 1 and γ(H) · γ(H̄) ≤
bn2 c+ r. �

Remark 4.4. Here the bounds are sharp:
Now consider the hypergraph H ∪K2 with vertex set

V = {v1, v2, v3, v4} ∪ {w1, w2}.
E = {e1, e2, e3} ∪ {e4} where

e1 = {v1, v2}, e2 = {v2, v3},
e3 = {v3, v4} e4 = {w1, w2}.

Define the edge function f : E → P by

f(e1) = 5, f(e2) = 2,

f(e3) = 10, f(e4) = 20.

Then edge product function F of f will be,

F (v1) = 5, F (v2) = 10, F (v3) = 20,

F (v4) = 10, F (w1) = F (w2) = 20.

Hence H is an edge product hypergraph and EPn(H) = 1. And here in
this case, γ(H)+γ(H̄) = bn2 c+r+1 = 4 and γ(H) ·γ(H̄) = bn2 c+r = 3.
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