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PICTURE FUZZY HYPERSOFT TOPSIS METHOD

BASED ON CORRELATION COEFFICIENT

V. CHINNADURAI AND A. BOBIN

Abstract. Considering today’s complexity, we may have to deal
with numbers that are dependent, like those of positive, neutral
and negative values and require multi- attributes function. Also,
the most significant factor is to combine these numbers to generate
a single real number. When decision-makers come across such an
environment, the decisions are harder to make and decision makers
cannot use the soft set theory, a single attribute function. To over-
come this hindrance, we introduce the notion of picture fuzzy hyper-
soft set with technique of order of preference by similarity to ideal
solution (TOPSIS) method. This eventually helps the decision-
maker to collect the data without any misconceptions. We present
some properties of the correlation coefficient and aggregation oper-
ators on it. Also, we propose an algorithm for the TOPSIS method
based on correlation coefficients to identify a suitable leader, who
can bring changes to society in the socio-political context. Finally,
we present a comparative study with existing studies to show the
effectiveness of the proposed method.
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1. Introduction

Zadeh [27] defined the concept of fuzzy set (FS). The membership
value of each element in FS is specified by a real number from the closed
interval [0,1]. Atanassov [4] proposed the notion of intuitionistic fuzzy
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set (IFS), an extension of FS. In IFS, the elements possess both member-
ship and non-membership values such that their sum does not exceed
unity. Smarandache [9] presented the idea of neutrosophic set (NS),
characterized by the values of truth, indeterminacy, and falsity grades
for each element of the set. Later, Wang et al. [25] proposed the notion
of single-valued NS (SVNS) with a restricted condition for the member-
ship values to overcome the constraints faced in NS. Bui Cong Cuong
defined the concept of picture fuzzy sets (PFS), an extension of FS
and IFS. Molodtsov [16] introduced the concept of soft set (SS) to deal
with uncertainties. Smarandache [10] presented the idea of hypersoft set
(HSS) to overcome the restriction faced in soft set.

Khalil et al. [15] presented the notion of interval-valued PFS and
studied some of its properties. Wei [26] presented the concept to mea-
sure the similarity between PFS. Ganie et al. [11] introduced the idea
of correlation coefficient (CC) in PFS. Mohamed Abdel-Basset et al. [1]
presented the concept of type-2 neutrosophic numbers and presented a
real case study using the technique of order of preference by similarity
to ideal solution (TOPSIS). Mohamed Abdel-Basset et al. [2] com-
bined the neutrosophic analytical network process (ANP) method and
the ViseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)
method for solving supplier chain management problems. Arora and
Harish [3] studied the properties of aggregation operators on IFS. En-
dalkachew Teshome Ayele et al. [24] proposed a method for traffic sig-
nal control using interval-valued neutrosophic soft sets. Ejegwa et al.
[6] used intuitionistic fuzzy correlation measure and programming lan-
guage in the medical diagnosis field. Harish and Rishu [12] proposed
TOPSIS method based on correlation measures on IFS to solve multi-
criteria decision making (MCDM) problems. Jana and Pal [14] used the
concept of aggregation operators on SVNS for solving MCDM problems.
Rahman et al. [18] generalized the concept of complex fuzzy soft struc-
tures to hypersoft structure to handle MCDM problems. Rahman et
al. [19] established the properties of convex and concave HSS. Rahman
et al. [20] discussed the significance of neutrosophic parameterized HSS
(NPHSS) with decision making problems. Saeed et al. [23] studied the
fundamental concepts of HSS theory. Rahman et al. [21] introduced the
notion of bijective HSS and studied some of its properties. Rahman et
al. [22] conceptualized the properties of NPHSS with FS and IFS. Ihsan
et al. [13] generalized the concept of soft expert set to hypersoft expert
set to solve MCDM problems. Rana Muhammad Zulqarnain et al. [28]



88 V. Chinnadurai and A. Bobin

introduced the concept of intuitionistic fuzzy HSS and used the TOPSIS
method based on CC. Rana Muhammad Zulqarnain et al. [29] studied
the fundamental operations of interval-valued neutrosophic HSS. Saqlain
Muhammad et al. [17] defined aggregation operators on neutrosophic
HSS and studied some properties.

A single attribute function like SS does not handle today’s real-life
applications. HSS, an extension of SS, can overcome this limitation by
using the multi-attributes function. Also, HSS can be applied to any
multi-criteria decision-making (MCDM) problems with no limitations
to the attributes by the decision-makers (DMs). By combining HSS
with other hybrid fuzzy structures, DMs can collect the data without
loss of information. In PFS, the values of positive, neutral, and neg-
ative depend on each other, and the sum of these grades cannot be
greater than one. Therefore, this study aims to develop a new theory,
picture fuzzy HSS (PFHSS) by combining structures of PFS with HSS.
Also, helps to rank the alternatives using aggregation operators and the
TOPSIS method based on CC in PFHSS. To the best of our knowledge,
research on PFHSS is confined to its theory and related development
and applications. Here, we examine and provide a suitable solution to
the decision-making problem by ranking the alternatives. We discuss
an MCDM problem based on the TOPSIS method. We show the ef-
fectiveness of this method through the selection of a leader who can
influence society in a socio-political context. To prove the efficiency of
the proposed method, we illustrate a comparative analysis between the
proposed and existing method with examples. We show the PFHSS as
a robust tool to decide under uncertainties.

The manuscript consists of the following sections. Section 2 briefs on
existing definitions. Section 3 introduces the concept of PFHSS and dis-
cusses some properties of CC and weighted CC of PFHSS. Section 4 deals
with picture fuzzy hypersoft weighted average operator(PFHSWAO) and
picture fuzzy hypersoft weighted geometric operator (PFHSWGO). Sec-
tion 5 highlights the combination of CC with the TOPSIS method. The
paper ends with a conclusion in section 6.

2. Preliminaries

We present some of the basic definitions required for this study. Let us
consider the following notations throughout this study unless otherwise
specified. Let V be the universe and v ∈ V, P (V) the power set of V, N
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represents natural numbers, and PU the collection of Picture fuzzy sets
(PFS) over V.

Definition 2.1. [27] A fuzzy set (FS) is a set of the form F =
{

(v,PF (v)) :

v ∈ V
}

, where PF (v) : V → [0, 1] defines the degree of membership of
the element v ∈ V.

Definition 2.2. [4] An intuitionistic FS (IFS) is an object of the form
C =

{
(v,PC(v),NC(v)) : v ∈ V

}
, where PC(v) : V → [0, 1] and NC(v) :

V → [0, 1] define the degree of membership and degree of non-membership
of the element v ∈ V, respectively and for every v ∈ V, 0 ≤ PC(v) +
NC(v) ≤ 1, where πC(v) = 1− PC(v)−NC(v).

Definition 2.3. [5] A PFS in V is an object of the form Ω =
{〈
v,PΩ(v),

EΩ(v),NΩ(v)
〉}

, where PΩ(v), EΩ(v),NΩ(v) : V → [0, 1], are the mem-
bership values of positive, neutral and negative of the element v ∈ V
respectively, such that 0 ≤ PΩ(v) + EΩ(v) +NΩ(v) ≤ 1 and the degree
of refusal membership is 1− (PΩ(v) + EΩ(v) +NΩ(v)) ∀ v ∈ V.

Definition 2.4. [16] A pair (O, E) is called a soft set (SS) over V, if
O : E → P(V). Then for any p ∈ E , O(p) = 1 is equivalent to v ∈ O(p)
and O(p) = 0 is equivalent to v /∈ O(p). Thus a SS is not a set, but a
parameterized family of subsets of V.

Definition 2.5. [10] Let ∆1,∆2, ...,∆k, be distinct attribute sets, whose
corresponding sub-attributes are ∆1 = {λ11, λ12, ..., λ1f} ,∆2 =

{
λ21, λ22,

..., λ2g

}
, ...,∆k = {λk1, λk2, ..., λkh}, where 1 ≤ f ≤ p, 1 ≤ g ≤ q, 1 ≤

h ≤ r and p, q, r ∈ N, such that ∆i ∩∆j = ∅, for each i, j ∈ {1, 2, ..., k}
and i 6= j. Then the Cartesian product of the distinct attribute sets
∆1 × ∆2 × ... × ∆k = ∆̃ = {λ1f × λ2g × ...× λkh}, represent a col-

lection of multi- attributes. A pair (Ω, ∆̃) is called a hypersoft set

(HSS) over V, where Ω : ∆̃ → P (V). HSS can be represented as

(Ω, ∆̃) =
{

(λ̃,Ω(λ̃))|λ̃ ∈ ∆̃,Ω(λ̃) ∈ P (V)
}
.

3. Picture fuzzy hypersoft set

We now present the notion of picture fuzzy hypersoft set (PFHSS).
Also, we discuss some basic properties of correlation coefficient (CC)
and weighted CC (WCC) on PFHSS.

Definition 3.1. A pair (Ω, ∆̃) is called a PFHSS over V, where Ω : ∆̃→
PU . PFHSS can be represented as (Ω, ∆̃) =

{
(λ̃,Ω(λ̃))|λ̃ ∈ ∆̃,Ω(λ̃) ∈
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PU ∈ [0, 1]
}

, where Ω(λ̃) =
{〈
v,PΩ(λ̃)(v), EΩ(λ̃)(v),NΩ(λ̃)(v)

〉
|v ∈ V

}
,

PΩ(λ̃)(v), EΩ(λ̃)(v) andNΩ(λ̃)(v) represent the membership values of posi-

tive, neutral and negative, such that 0 ≤ PΩ(λ̃)(v)+EΩ(λ̃)(v)+NΩ(λ̃)(v) ≤
1 and degree of refusal membership is 1−(PΩ(λ̃)(v)+EΩ(λ̃)(v)+NΩ(λ̃)(v)).

Example 3.2. Let V = {v1, v2, v3} be a set of sociologists responsible to
evaluate a leader, the role of the leader is to bring socio-political changes
to society. Let ∆1, ∆2 and ∆3 be distinct attribute sets whose corre-
sponding sub-attributes are represented as ∆1 = leader attributes ={
λ11 = personality variables, λ12 = cognitive ability and skills,

λ13 = sense making
}

, ∆2 = leader behavior =
{
λ21 = setting sub culture,

λ22 = conflict management
}

, ∆3 = group behaviors ={
λ31 = living the sub culture

}
. Then ∆̃ = ∆1 ×∆2 ×∆3 is the distinct

attribute set given by

∆̃ = ∆1 ×∆2 ×∆3 = {λ11, λ12, λ13} × {λ21, λ22} × {λ31} .
=
{

(λ11, λ21, λ31), (λ11, λ22, λ31), (λ12, λ21, λ31), (λ12, λ22, λ31),

(λ13, λ21, λ31), (λ13, λ22, λ31)
}
.

=
{
λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6

}
.

A PFHSS (Ω, ∆̃) is a collection of subsets of V described by the sociol-
ogists for a leader and presented in tabular form below.

Table 1. Leadership skills of a leader in PFHSS (Ω, ∆̃) form.

V λ̃1 λ̃2 λ̃3 λ̃4 λ̃5 λ̃6

v1 〈0.4, 0.1, 0.5〉 〈0.2, 0.5, 0.1〉 〈0.8, 0.1, 0.1〉 〈0.7, 0.1, 0.2〉 〈0.1, 0.4, 0.3〉 〈0.7, 0.1, 0.1〉
v2 〈0.2, 0.2, 0.3〉 〈0.4, 0.1, 0.4〉 〈0.5, 0.3, 0.1〉 〈0.4, 0.2, 0.4〉 〈0.3, 0.4, 0.2〉 〈0.5, 0.2, 0.1〉
v3 〈0.4, 0.3, 0.3〉 〈0.3, 0.2, 0.4〉 〈0.2, 0.1, 0.7〉 〈0.3, 0.2, 0.5〉 〈0.2, 0.4, 0.3〉 〈0.3, 0.3, 0.2〉

3.1. Correlation coefficient for PFHSS. Let
(Ω1, ∆̃1) =

{
(vi,PΩ1(λ̃k)(vi), EΩ1(λ̃k)(vi),NΩ1(λ̃k)(vi))|vi ∈ V

}
and (Ω2, ∆̃2) ={

(vi,PΩ2(λ̃k)(vi), EΩ2(λ̃k)(vi),NΩ2(λ̃k)(vi))|vi ∈ V
}

be two PFHSS over V.

Definition 3.3. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then the

picture fuzzy informational energies of (Ω1, ∆̃1) and (Ω2, ∆̃2) are repre-
sented as

(3.1) Φ(Ω1, ∆̃1) =

m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

]
,
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(3.2) Φ(Ω2, ∆̃2) =
m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]
.

Definition 3.4. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then the

correlation measure between (Ω1, ∆̃1) and (Ω2, ∆̃2) is defined as

CM((Ω1, ∆̃1), (Ω2, ∆̃2)) =

m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi)) ∗ (PΩ2(λ̃k)(vi))

+ (EΩ1(λ̃k)(vi)) ∗ (EΩ2(λ̃k)(vi))(NΩ1(λ̃k)(vi)) ∗ (NΩ2(λ̃k)(vi))

]
.

(3.3)

Proposition 3.5. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then,

(i) CM((Ω1, ∆̃1), (Ω1, ∆̃1)) = Φ(Ω1, ∆̃1)

(ii) CM((Ω2, ∆̃2), (Ω2, ∆̃2)) = Φ(Ω2, ∆̃2).

Proof. Straight forward �

Definition 3.6. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the

CC between (Ω1, ∆̃1) and (Ω2, ∆̃2) is given by

(3.4) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))√

Φ(Ω1, ∆̃1)
√

Φ(Ω2, ∆̃2)

Proposition 3.7. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the
following CC properties hold:
(i) 0 ≤ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = CC((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. (i) Obviously, CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≥ 0. Now, we present the

proof of CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

CM((Ω1, ∆̃1), (Ω2, ∆̃2)) =
m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi)) ∗ (PΩ2(λ̃k)(vi)) + (EΩ1(λ̃k)(vi))∗

(EΩ2(λ̃k)(vi)) + (NΩ1(λ̃k)(vi)) ∗ (NΩ2(λ̃k)(vi))

]
.
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=
m∑
k=1

[(
(PΩ1(λ̃k)(v1)) ∗ (PΩ2(λ̃k)(v1)) + (EΩ1(λ̃k)(v1)) ∗ (EΩ2(λ̃k)(v1))

+(NΩ1(λ̃k)(v1)) ∗ (NΩ2(λ̃k)(v1))

)
+

(
(PΩ1(λ̃k)(v2)) ∗ (PΩ2(λ̃k)(v2))

+(EΩ1(λ̃k)(v2)) ∗ (EΩ2(λ̃k)(v2)) + (NΩ1(λ̃k)(v2)) ∗ (NΩ2(λ̃k)(v2))

)
+ ...

+

(
(PΩ1(λ̃k)(vn)) ∗ (PΩ2(λ̃k)(vn)) + (EΩ1(λ̃k)(vn)) ∗ (EΩ2(λ̃k)(vn))

+(NΩ1(λ̃k)(vn)) ∗ (NΩ2(λ̃k)(vn))

)]
.

By applying Cauchy-Schwarz inequality, we get

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2 ≤
m∑
k=1

[{
(PΩ1(λ̃k)(v1))2 + (PΩ1(λ̃k)(v2))2 + ...+ (PΩ1(λ̃k)(vn))2

}

+

{
(EΩ1(λ̃k)(v1))2 + (EΩ1(λ̃k)(v2))2 + ...+ (EΩ1(λ̃k)(vn))2

}
+

{
(NΩ1(λ̃k)(v1))2 + (NΩ1(λ̃k)(v2))2 + ...+ (NΩ1(λ̃k)(vn))2

}]
×

m∑
k=1

[{
(PΩ2(λ̃k)(v1))2 + (PΩ2(λ̃k)(v2))2 + ...+ (PΩ2(λ̃k)(vn))2

}

+

{
(EΩ2(λ̃k)(v1))2 + (EΩ2(λ̃k)(v2))2 + ...+ (EΩ2(λ̃k)(vn))2

}
+

{
(NΩ2(λ̃k)(v1))2 + (NΩ2(λ̃k)(v2))2 + ...+ (NΩ2(λ̃k)(vn))2

}]
.

CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2 ≤
m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

]

×
m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]
.

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2))2 ≤ Φ(Ω1, ∆̃1)× Φ(Ω2, ∆̃2).

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤
√

Φ(Ω1, ∆̃1)×
√

Φ(Ω2, ∆̃2).

⇒ CM ((Ω1,∆̃1),(Ω2,∆̃2))√
Φ(Ω1,∆̃1)×

√
Φ(Ω2,∆̃2)

≤ 1.

By using Definition 3.5, we get CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Hence, 0 ≤ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1. �

Proof. (ii) Straight forward. �

Proof. (iii) CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = CM ((Ω1,∆̃1),(Ω2,∆̃2))√
Φ(Ω1,∆̃1)×

√
Φ(Ω2,∆̃2)

.

Since, (Ω1, ∆̃1) = (Ω2, ∆̃2).
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CC((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]
√√√√ m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]
×√√√√ m∑

k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]

⇒ CC((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.
�

Definition 3.8. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the

CC between (Ω1, ∆̃1) and (Ω2∆̃2) is defined as

(3.5) C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))

max
{

Φ(Ω1, ∆̃1),Φ(Ω2, ∆̃2)
} .

C̃C((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi)) ∗ (PΩ2(λ̃k)(vi)) + (EΩ1(λ̃k)(vi)) ∗ (EΩ2(λ̃k)(vi))

+ (NΩ1(λ̃k)(vi)) ∗ (NΩ2(λ̃k)(vi))

]
max

{ m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

]
,

m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]}
.

Proposition 3.9. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the
following CC properties hold:
(i) 0 ≤ C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) = C̃C((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. (i) Obviously, C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≥ 0. Now, we present the

proof of C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.
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CM((Ω1, ∆̃1), (Ω2, ∆̃2))

=
m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi)) ∗ (PΩ2(λ̃k)(vi)) + (EΩ1(λ̃k)(vi))∗

(EΩ2(λ̃k)(vi)) + (NΩ1(λ̃k)(vi)) ∗ (NΩ2(λ̃k)(vi))

]
.

=
m∑
k=1

[(
(PΩ1(λ̃k)(v1)) ∗ (PΩ2(λ̃k)(v1)) + (EΩ1(λ̃k)(v1))∗

(EΩ2(λ̃k)(v1)) + (NΩ1(λ̃k)(v1)) ∗ (NΩ2(λ̃k)(v1))

)
+(

(PΩ1(λ̃k)(v2)) ∗ (PΩ2(λ̃k)(v2)) + (EΩ1(λ̃k)(v2)) ∗ (EΩ2(λ̃k)(v2))+

(NΩ1(λ̃k)(v2)) ∗ (NΩ2(λ̃k)(v2))

)
+ ...

+

(
(PΩ1(λ̃k)(vn)) ∗ (PΩ2(λ̃k)(vn)) + (EΩ1(λ̃k)(vn)) ∗ (EΩ2(λ̃k)(vn))

+ (NΩ1(λ̃k)(vn)) ∗ (NΩ2(λ̃k)(vn))

)]
.

By applying Cauchy-Schwarz inequality, we get
CM ((Ω1, ∆̃1), (Ω2, ∆̃2))

≤
{ m∑
k=1

[{
(PΩ1(λ̃k)(v1))2 + (PΩ1(λ̃k)(v2))2 + ...+ (PΩ1(λ̃k)(vn))2

}
+

{
(EΩ1(λ̃k)(v1))2 + (EΩ1(λ̃k)(v2))2 + ...+ (EΩ1(λ̃k)(vn))2

}
+

{
(NΩ1(λ̃k)(v1))2 + (NΩ1(λ̃k)(v2))2 + ...+ (NΩ1(λ̃k)(vn))2

}]
×

m∑
k=1

[{
(PΩ2(λ̃k)(v1))2 + (PΩ2(λ̃k)(v2))2 + ...+ (PΩ2(λ̃k)(vn))2

}
+

{
(EΩ2(λ̃k)(v1))2 + (EΩ2(λ̃k)(v2))2 + ...+ (EΩ2(λ̃k)(vn))2

}
+

{
(NΩ2(λ̃k)(v1))2 + (NΩ2(λ̃k)(v2))2 + ...+ (NΩ2(λ̃k)(vn))2

}]} 1
2

.
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CM ((Ω1, ∆̃1), (Ω2, ∆̃2))

≤
{ m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]} 1
2

.

≤
{(

max

{ m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

]

×
m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]})2} 1
2

.

= max

{ m∑
k=1

n∑
i=1

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

]
×

m∑
k=1

n∑
i=1

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

]}
.

⇒ CM ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ max

{
Φ(Ω1, ∆̃1)× Φ(Ω2, ∆̃2)

}
.

⇒ CM ((Ω1,∆̃1),(Ω2,∆̃2))

max

{
Φ(Ω1,∆̃1)×Φ(Ω2,∆̃2)

} ≤ 1.

By using Definition 3.8, we get C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.

Hence, 0 ≤ C̃C((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1.
Proofs of (ii) and (iii) are same as in Proposition 3.6. �

3.2. Weighted correlation coefficient for PFHSS. We next present
the concept of weighted correlation coefficient (WCC) for PFHSS. WCC
facilitates decision-makers (DMs) to provide different weights for each of
the alternatives. Consider D = {D1,D2, ...,Dm} and W =

{
W1,W2, ...,

Wn

}
as weight vectors for alternatives and experts, respectively, such

that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1.

Definition 3.10. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the

WCC between (Ω1, ∆̃1) and (Ω2, ∆̃2) is defined as

(3.6) CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))√

Φ(Ω1, ∆̃1)
√

Φ(Ω2, ∆̃2)
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CCW ((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

Dk
( n∑
i=1

Wi

[
PΩ1(λ̃k)(vi) ∗ PΩ2(λ̃k)(vi) + EΩ1(λ̃k)(vi) ∗ EΩ2(λ̃k)(vi)+

NΩ1(λ̃k)(vi) ∗ NΩ2(λ̃k)(vi)

])
√√√√ m∑
k=1

Dk
( n∑
i=1

Wi

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

])
×√√√√ m∑

k=1

Dk
( n∑
i=1

Wi

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

])
.

If D =
{

1
m ,

1
m , ...,

1
m ,
}

and W =
{

1
n ,

1
n , ...,

1
n ,
}

, then WCC given in
Eq.(6) reduces to CC as in Eq.(4).

Proposition 3.11. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the
following WCC properties hold:
(i) 0 ≤ CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;

(ii) CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = CCW ((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. Similar to Proposition 3.6. �

Definition 3.12. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the

WCC between (Ω1, ∆̃1) and (Ω2∆̃2) is defined as

(3.7) ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) =
CM((Ω1, ∆̃1), (Ω2, ∆̃2))

max
{

Φ(Ω1, ∆̃1),Φ(Ω2, ∆̃2)
} .

˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2))

=

m∑
k=1

Dk
( n∑
i=1

Wi

[
(PΩ1(λ̃k)(vi)) ∗ (PΩ2(λ̃k)(vi)) + (EΩ1(λ̃k)(vi)) ∗ (EΩ2(λ̃k)(vi))

+ (NΩ1(λ̃k)(vi)) ∗ (NΩ2(λ̃k)(vi))

])
max

{ m∑
k=1

Dk
( n∑
i=1

Wi

[
(PΩ1(λ̃k)(vi))

2 + (EΩ1(λ̃k)(vi))
2 + (NΩ1(λ̃k)(vi))

2

])
,

m∑
k=1

Dk
( n∑
i=1

Wi

[
(PΩ2(λ̃k)(vi))

2 + (EΩ2(λ̃k)(vi))
2 + (NΩ2(λ̃k)(vi))

2

])}
.

If D =
{

1
m ,

1
m , ...,

1
m ,
}

and W =
{

1
n ,

1
n , ...,

1
n ,
}

, then WCC given in
Eq.(7) reduces to CC as in Eq.(5).

Proposition 3.13. Let (Ω1, ∆̃1) and (Ω2, ∆̃2) be two PFHSS. Then, the
following WCC properties hold:
(i) 0 ≤ ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) ≤ 1;
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(ii) ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = ˜CCW ((Ω2, ∆̃2), (Ω1, ∆̃1));

(iii) If (Ω1, ∆̃1) = (Ω2, ∆̃2), then ˜CCW ((Ω1, ∆̃1), (Ω2, ∆̃2)) = 1.

Proof. Similiar to Proposition 3.6. �

4. Aggregation operators for PFHSS

We now present the concept of picture fuzzy hypersoft weighted aver-
age operator(PFHSWAO) and picture fuzzy hypersoft weighted geomet-
ric operator (PFHSWGO) by using operational laws. Let κ represent
the collection of picture fuzzy hypersoft numbers (PFHSNs).

4.1. Operational laws for PFHSS.

Definition 4.1. Let Ωe11 = (P11, E11,N11) and Ωe12 = (P12, E12,N12)
be two PFHSS and β a positive integer. Then,
(i) Ωe11 ⊕ Ωe12 = 〈P11 + P12 − P11P12, E11 + E12 − E11E12,N11N12〉 ;
(ii) Ωe11 ⊗ Ωe12 = 〈P11P12, E11E12,N11 +N12 −N11N12〉 ;
(iii) βΩe11 =

〈[
(1− (1− P11)β, (1− (1− E11)β, (N11)β

]〉
;

(iv) (Ωe11)β =
〈[

(P11)β, (E11)β, (1− (1−N11)β
]〉

.

4.2. Picture fuzzy hypersoft weighted average operator.

Definition 4.2. Let Dk and Wi be weight vectors for alternatives and

experts, respectively, such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1

and Ωeik = (Pik, Eik,Nik) be a PFHSN, where i = {1, 2, ...n}, k =
{1, 2, ...m}. Then the PFHSWAO A : κn → κ is represented as

A(Ωe11 ,Ωe12 , ...,Ωenm ) =
m⊕
k=1

Dk
( n⊕
i=1

WiΩeik
)
.

Theorem 4.3. Let Ωeik = (Pik, Eik,Nik) be a PFHSN, where i =
{1, 2, ...n}, k = {1, 2, ...m}. Then, the aggregated value of PFHSWAO
is also a PFHSN is given by
A(Ωe11 ,Ωe12 , ...,Ωenm)

=

〈
1−

m∏
k=1

( n∏
i=1

(
1− Pik

)Wi
)Dk , 1−

m∏
k=1

( n∏
i=1

(
1− Eik

)Wi
)Dk ,

m∏
k=1

( n∏
i=1

(
Nik

)Wi
)Dk

〉
.

Proof. If n = 1, then W1 = 1, using Definition 4.1, we get
A(Ωe11 ,Ωe12 , ...,Ωe1m) =

⊕m
k=1DkΩe1k .

=

〈
1−

m∏
k=1

( 1∏
i=1

(
1− Pik

)Wi
)Dk , 1−

m∏
k=1

( 1∏
i=1

(
1− Eik

)Wi
)Dk ,

m∏
k=1

( 1∏
i=1

(
Nik

)Wi
)Dk

〉
.
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If m = 1, then D1 = 1, using Definition 4.2, we get
A(Ωe11 ,Ωe21 , ...,Ωen1) =

⊕n
i=1WiΩei1 .

=

〈
1−

1∏
k=1

( n∏
i=1

(
1− Pik

)Wi
)Dk , 1−

1∏
k=1

( n∏
i=1

(
1− Eik

)Wi
)Dk ,

1∏
k=1

( n∏
i=1

(
Nik

)Wi
)Dk

〉
.

Hence, the results hold for n = 1 and m = 1.
Now, if m = l1 + 1 and n = l2, then,

A(Ωe11 ,Ωe12 , ...,Ωel2(l1+1)
) =

⊕l1+1
k=1 Dk

(⊕l2
i=1WiΩeik

)
.

=

〈
1−

l1+1∏
k=1

( l2∏
i=1

(
1− Pik

)Wi
)Dk , 1−

l1+1∏
k=1

( l2∏
i=1

(
1− Eik

)Wi
)Dk ,

l1+1∏
k=1

( l2∏
i=1

(
Nik

)Wi
)Dk

〉
.

Similarly, if m = l1, n = l2 + 1, then,

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)l1
) =

⊕l1
k=1Dk

(⊕l2+1
i=1 WiΩeik

)
.

=

〈
1−

l1∏
k=1

( l2+1∏
i=1

(
1− Pik

)Wi
)Dk , 1−

l1∏
k=1

( l2+1∏
i=1

(
1− Eik

)Wi
)Dk ,

l1∏
k=1

( l2+1∏
i=1

(
Nik

)Wi
)Dk

〉
.

Now, if m = l1 + 1, n = l2 + 1, then,
A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)(l1+1)

)

=

l1+1⊕
k=1

Dk
( l2+1⊕
i=1

WiΩeik
)
.

=

l1+1⊕
k=1

Dk
( l2⊕
i=1

WiΩeik
) l1+1⊕
k=1

Dk
(
Wl2+1Ωe(l2+1)k

)
.

A(Ωe11 ,Ωe12 , ...,Ωe(l2+1)(l1+1)
)

=

〈
1−

l1+1∏
k=1

( l2∏
i=1

(
1− Pik

)Wi
)Dk ⊕ 1−

l1+1∏
k=1

((
1− P(l2+1)k

)W(l2+1)
)Dk ,

1−
l1+1∏
k=1

( l2∏
i=1

(
1− Eik

)Wi
)Dk ⊕ 1−

l1+1∏
k=1

((
1− E(l2+1)k

)W(l2+1)
)Dk ,

l1+1∏
k=1

( l2∏
i=1

(
Nik

)Wi
)Dk ⊕

l1+1∏
k=1

((
N(l2+1)k

)W(l2+1)
)Dk

〉
.

=

〈
1−

l1+1∏
k=1

( l2+1∏
i=1

(
1− Pik

)Wi
)Dk , 1−

l1+1∏
k=1

( l2+1∏
i=1

(
1− Eik

)Wi
)Dk ,

l1+1∏
k=1

( l2+1∏
i=1

(
Nik

)Wi
)Dk

〉
.

Hence, the results hold for n = l2 + 1 and m = l1 + 1.
Therefore, by induction method, the result is true ∀ m,n ≥ 1.
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Since,

0 ≤ Pik + Eik +Nik ≤ 1.

⇔ 1−
m∏
k=1

( n∏
i=1

(
1− Pik

)Wi
)Dk + 1−

m∏
k=1

( n∏
i=1

(
1− Eik

)Wi
)Dk +

((
Nik

)Wi
)Dk ≤ 1.

Therefore, the aggregated value given by PFHSWAO is also a PFHSN.
�

Example 4.4. Let us consider the same values as in Example 3.2. Also,
letWi = {0.50, 0.30, 0.20} and Dk = {0.14, 0.13, 0.23, 0.20, 0.18, 0.12} be
the weight of sociologists and attributes, respectively. Then,
A(Ωe11 ,Ωe12 , ...,Ωe36)

=

〈
1−

6∏
k=1

( 3∏
i=1

(
1− Pik

)Wi
)Dk , 1−

6∏
k=1

( 3∏
i=1

(
1− Eik

)Wi
)Dk ,

6∏
k=1

( 3∏
i=1

(
Nik

)Wi
)Dk

〉
.

= 〈0.48, 0.24, 0.22〉 .

4.3. Picture fuzzy hypersoft weighted geometric operator.

Definition 4.5. Let Dk and Wi be weight vectors for alternatives and

experts, respectively, such that Dk,Wi > 0 and
m∑
k=1

Dk = 1,
n∑
i=1
Wi = 1

and Ωeik = (Pik, Eik,Nik) be a PFHSN, where i = {1, 2, ...n}, k =
{1, 2, ...m}. Then the PFHSWGO G : κn → κ is defined as

G(Ωe11 ,Ωe12 , ...,Ωenm ) =
m⊗
k=1

( n⊗
i=1

(
Ωeik

)Wi
)Dk

.

Theorem 4.6. Let Ωeik = (Pik, Eik,Nik) be a PFHSN, where i =
{1, 2, ...n}, k = {1, 2, ...m}. Then, the aggregated value of PFHSWGO
is also a PFHSN is given by
G(Ωe11 ,Ωe12 , ...,Ωenm)

=

〈 m∏
k=1

( n∏
i=1

(
Pik
)Wi

)Dk ,

m∏
k=1

( n∏
i=1

(
Eik
)Wi

)Dk , 1−
m∏
k=1

( n∏
i=1

(
1−Nik

)Wi
)Dk

〉
.

Proof. Similar to Theorem 4.3. �

Example 4.7. Let us consider the same values given in Example 3.2 and
the weight of sociologists and attributes be as in Example 4.4. Then,
G(Ωe11 ,Ωe12 , ...,Ωe36)

=

〈 6∏
k=1

( 3∏
i=1

(
Pik
)Wi

)Dk ,
6∏
k=1

( 3∏
i=1

(
Eik
)Wi

)Dk , 1−
6∏
k=1

( 3∏
i=1

(
1−Nik

)Wi
)Dk

〉
.

= 〈0.36, 0.19, 0.30〉 .



100 V. Chinnadurai and A. Bobin

5. MCDM problems based on TOPSIS and CC method

TOPSIS method helps to find the best alternative based on minimum
and maximum distance from the picture fuzzy positive ideal solution
(PFPIS) and picture fuzzy negative ideal solution (PFNIS). Also, when
TOPSIS method is combined with CC instead of similarity measures,
it provides reliable results for evaluating the closeness coefficients. We
present an algorithm and a case study to illustrate the PFHSS TOPSIS
method based on CC.

5.1. Algorithm to solve MCDM problems with PFHSS data
based on TOPSIS and CC method. Let A =

{
A1,A2, ...,Ax

}
be

a set of selected leaders aspiring to bring in socio-political changes to
society and V = {v1, v2, ..., vn} be a set of sociologists responsible to eval-
uate the leaders with weights Wi = (W1,W2, ...,Wn), such that Wi > 0

and
n∑
i=1
Wi = 1. Let ∆̃ =

{
λ̃1, λ̃2, ..., λ̃m

}
be a set of multi-valued sub-

attributes with weights Dk = (D1,D2, ...,Dm), such that Dk > 0 and
m∑
k=1

Dk = 1. The evaluation of leaders At, (t = 1, 2, ..., x) is carried out

by the sociologists vi, (i = 1, 2, ..., n) based on the multi-valued sub-

attributes λ̃k, (k = 1, 2, ...,m) given in PFHSS form and represented as
Ωt
ik =

〈
Ptik, E tik,N t

ik

〉
, subject to the conditions 0 ≤ Ptik+E tik+N t

ik ≤ 1 ∀
i, k.
Step 1. Construct the matrix for each multi-valued sub-attributes in
PFHSS form as below:
[At, ∆̃]n×m = [At]n×m

=

λ̃1 λ̃2 . . . λ̃m


v1

〈
Pt11, Et11,N t11

〉 〈
Pt12, Et12,N t12

〉
. . .

〈
Pt1m, Et1m,N t1m

〉 〉
v2

〈
Pt21, Et21,N t21

〉 〈
Pt22, Et22,N t22

〉
. . .

〈
Pt2m, Et2m,N t2m

〉 〉
...

...
...

. . .
...

vn
〈
Ptn1, Etn1,N tn1

〉 〈
Ptn2, Etn2,N tn2

〉
. . .

〈
Ptnm, Etnm,N tnm

〉 〉
Step 2. Obtain the weighted decision matrix for each multi-valued sub-
attributes,
[Ãtik]n×m

=

〈
1−

m∏
k=1

( n∏
i=1

(
1− Pik

)Wi
)Dk , 1−

m∏
k=1

( n∏
i=1

(
1− Eik

)Wi
)Dk ,

m∏
k=1

( n∏
i=1

(
Nik

)Wi
)Dk

〉

=
〈
P̃ik, Ẽik, Ñik

〉
.
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Step 3. Determine the PFPIS and PFNIS for weighted PFHSS as below:

Ã+ =
〈
P̃+, Ẽ+, Ñ+

〉
n×m

=
〈
P̃(∨ij), Ẽ(∧ij), Ñ (∧ij)

〉
and

Ã− =
〈
P̃−, Ẽ−, Ñ−

〉
n×m

=
〈
P̃(∧ij), Ẽ(∧ij), Ñ (∨ij)

〉
,

where ∨ij = arg maxt

{
ϕtij

}
and ∧ij = arg mint

{
ϕtij

}
.

Step 4. Determine the CC for each alternative from PFPIS and PFNIS.

χt = CC(Ãt, Ã+) =
CM(Ãt, Ã+)√

Φ(Ãt) ∗
√

(ΦÃ+)
and

λt = CC(Ãt, Ã−) =
CM(Ãt, Ã−)√

Φ(Ãt) ∗
√

Φ(Ã−)

Step 5. Compute the closeness coefficient of picture fuzzy ideal solution
as:

εt =
1− λt

2− χt − λt
Step 6. Arrange the εt values in descending order and determine the
rank of the alternatives At, (t = 1, 2, ..., x). The one with the maximum
value is the best alternative.

5.2. Application based on TOPSIS and CC method. Let A ={
A1,A2,A3,A4

}
be a set of leaders aspiring to bring in socio-political

changes with their leadership skills and ∆1 and ∆2 be distinct attribute
sets whose corresponding sub-attributes are represented as

∆1 = leader attributes =
{
λ11 = personality variables,

λ12 = cognitive ability and skills
}
,∆2 = leader behaviors

= {λ21 = setting sub culture, λ22 = conflict management} .

Then ∆̃ = ∆1 ×∆2 is the distinct attribute set is given by

∆̃ = ∆1 ×∆2 = {λ11, λ12} × {λ21, λ22} .

=

{
(λ11, λ21), (λ11, λ22), (λ12, λ21), (λ12, λ21)

}
.

=

{
λ̃1, λ̃2, λ̃3, λ̃4

}
with weights Dk = (0.20, 0.25, 0.30, 0.25).

Let V = {v1, v2, v3, v4} be a set of sociologists responsible to evaluate
the leaders with weights Wi = (0.35, 0.15, 0.30, 0.20). The aim is to find
a leader who can bring major socio-political changes in a larger way to
society.
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Step 1. Construct A1, A2, A3 and A4 matrices for each multi-valued
sub-attributes in PFHSS form.

Table 2. Representation of values in PFHSS form for A1.

A1 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.42, 0.34, 0.21〉 〈0.23, 0.48, 0.25〉 〈0.17, 0.70, 0.10〉 〈0.23, 0.24, 0.35〉
v2 〈0.23, 0.31, 0.24〉 〈0.43, 0.30, 0.25〉 〈0.42, 0.29, 0.12〉 〈0.23, 0.13, 0.45〉
v3 〈0.13, 0.25, 0.35〉 〈0.45, 0.20, 0.35〉 〈0.67, 0.12, 0.19〉 〈0.41, 0.15, 0.34〉
v4 〈0.53, 0.11, 0.31〉 〈0.52, 0.23, 0.19〉 〈0.49, 0.34, 0.12〉 〈0.18, 0.23, 0.53〉

Table 3. Representation of values in PFHSS form for A2.

A2 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.48, 0.27, 0.24〉 〈0.23, 0.43, 0.25〉 〈0.54, 0.22, 0.12〉 〈0.32, 0.41, 0.24〉
v2 〈0.44, 0.23, 0.21〉 〈0.25, 0.56, 0.15〉 〈0.34, 0.33, 0.31〉 〈0.42, 0.23, 0.15〉
v3 〈0.35, 0.12, 0.45〉 〈0.37, 0.32, 0.25〉 〈0.45, 0.44, 0.11〉 〈0.45, 0.11, 0.43〉
v4 〈0.45, 0.13, 0.35〉 〈0.45, 0.23, 0.16〉 〈0.12, 0.55, 0.24〉 〈0.34, 0.12, 0.51〉

Table 4. Representation of values in PFHSS form for A3.

A3 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.32, 0.12, 0.34〉 〈0.51, 0.21, 0.21〉 〈0.21, 0.45, 0.23〉 〈0.63, 0.13, 0.19〉
v2 〈0.34, 0.42, 0.21〉 〈0.54, 0.14, 0.19〉 〈0.34, 0.41, 0.21〉 〈0.53, 0.12, 0.25〉
v3 〈0.29, 0.23, 0.35〉 〈0.49, 0.23, 0.24〉 〈0.21, 0.31, 0.45〉 〈0.23, 0.21, 0.34〉
v4 〈0.35, 0.40, 0.24〉 〈0.34, 0.41, 0.21〉 〈0.45, 0.25, 0.19〉 〈0.45, 0.31, 0.17〉

Table 5. Representation of values in PFHSS form for A4.

A4 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.18, 0.46, 0.12〉 〈0.35, 0.40, 0.24〉 〈0.23, 0.32, 0.42〉 〈0.21, 0.34, 0.45〉
v2 〈0.47, 0.14, 0.14〉 〈0.23, 0.40, 0.34〉 〈0.13, 0.34, 0.52〉 〈0.41, 0.23, 0.31〉
v3 〈0.54, 0.12, 0.23〉 〈0.36, 0.34, 0.26〉 〈0.12, 0.23, 0.43〉 〈0.23, 0.34, 0.41〉
v4 〈0.42, 0.40, 0.16〉 〈0.46, 0.23, 0.31〉 〈0.18, 0.32, 0.45〉 〈0.32, 0.50, 0.12〉

Step 2. Obtain Ã1, Ã2, Ã3 and Ã4, the weighted matrices for each
multi-valued sub-attributes.
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Table 6. Shows weighted values in PFHSS form for Ã1.

Ã1 λ̃1 λ̃2 λ̃3

v1 〈0.0375, 0.0287, 0.8966〉 〈0.0227, 0.0557, 0.8858〉 〈0.0194, 0.1188, 0.7853〉
v2 〈0.0079, 0.0111, 0.9581〉 〈0.0209, 0.0133, 0.9494〉 〈0.0243, 0.0153, 0.9090〉
v3 〈0.0084, 0.0172, 0.9390〉 〈0.0439, 0.0166, 0.9243〉 〈0.0950, 0.0115, 0.8612〉
v4 〈0.0298, 0.0047, 0.9543〉 〈0.0361, 0.0130, 0.9204〉 〈0.0396, 0.0247, 0.8806〉

Ã1 λ̃4

v1 〈0.0227, 0.0238, 0.9123〉
v2 〈0.0098, 0.0053, 0.9705〉
v3 〈0.0388, 0.0122, 0.9223〉
v4 〈0.0099, 0.0130, 0.9688〉

Table 7. Shows weighted values in PFHSS form for Ã2 .

Ã2 λ̃1 λ̃2 λ̃2

v1 〈0.0448, 0.0218, 0.9050〉 〈0.0227, 0.0480, 0.8858〉 〈0.0784, 0.0258, 0.8005〉
v2 〈0.0173, 0.0079, 0.9543〉 〈0.0108, 0.0304, 0.9314〉 〈0.0186, 0.0179, 0.9487〉
v3 〈0.0256, 0.0077, 0.9533〉 〈0.0341, 0.0286, 0.9013〉 〈0.0524, 0.0509, 0.8199〉
v4 〈0.0237, 0.0056, 0.9589〉 〈0.0295, 0.0130, 0.9125〉 〈0.0077, 0.0468, 0.9180〉

Ã2 λ̃4

v1 〈0.0332, 0.0452, 0.8827〉
v2 〈0.0203, 0.0098, 0.9314〉
v3 〈0.0439, 0.0088, 0.9387〉
v4 〈0.0206, 0.0064, 0.9669〉

Table 8. Shows weighted values in PFHSS form for Ã3 .

Ã3 λ̃1 λ̃2 λ̃3

v1 〈0.0267, 0.0090, 0.9273〉 〈0.0606, 0.0205, 0.8724〉 〈0.0245, 0.0609, 0.8571〉
v2 〈0.0124, 0.0163, 0.9543〉 〈0.0287, 0.0057, 0.9397〉 〈0.0186, 0.0235, 0.9322〉
v3 〈0.0204, 0.0156, 0.9390〉 〈0.0493, 0.0195, 0.8985〉 〈0.0210, 0.0329, 0.9307〉
v4 〈0.0171, 0.0203, 0.9446〉 〈0.0206, 0.0261, 0.9250〉 〈0.0353, 0.0172, 0.9052〉

Ã3 λ̃4

v1 〈0.0834, 0.0122, 0.8648〉
v2 〈0.0280, 0.0048, 0.9494〉
v3 〈0.0195, 0.0176, 0.9223〉
v4 〈0.0295, 0.0184, 0.9153〉
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Table 9. Shows weighted values in PFHSS form for Ã4 .

Ã4 λ̃1 λ̃2 λ̃3 λ̃4

v1 〈0.0138, 0.0423, 0.8621〉 〈0.0370, 0.0438, 0.8827〉 〈0.0271, 0.0397, 0.9130〉
v2 〈0.0189, 0.0046, 0.9428〉 〈0.0098, 0.0190, 0.9604〉 〈0.0063, 0.0186, 0.9711〉
v3 〈0.0456, 0.0077, 0.9156〉 〈0.0330, 0.0307, 0.9040〉 〈0.0115, 0.0233, 0.9269〉
v4 〈0.0216, 0.0203, 0.9294〉 〈0.0304, 0.0130, 0.9432〉 〈0.0119, 0.0229, 0.9533〉

Ã4 λ̃4

v1 〈0.0205, 0.0358, 0.9326〉
v2 〈0.0196, 0.0098, 0.9571〉
v3 〈0.0195, 0.0307, 0.9354〉
v4 〈0.0191, 0.0341, 0.8995〉

Step 3. Determine the PFPIS and PFNIS from the weighted matrices,
Ã1, Ã2 , Ã3 and Ã4.

Ã+ =


〈0.0448, 0.0090, 0.8621〉 〈0.0606, 0.0205, 0.8724〉 〈0.0784, 0.0258, 0.7853〉
〈0.0189, 0.0046, 0.9428〉 〈0.0287, 0.0057, 0.9314〉 〈0.0243, 0.0153, 0.9090〉
〈0.0456, 0.0077, 0.9156〉 〈0.0493, 0.0166, 0.8985〉 〈0.0950, 0.0115, 0.8199〉
〈0.0298, 0.0047, 0.9294〉 〈0.0361, 0.0130, 0.9125〉 〈0.0396, 0.0172, 0.8806〉

〈0.0834, 0.0122, 0.8648〉
〈0.0280, 0.0048, 0.9314〉
〈0.0439, 0.0088, 0.9223〉
〈0.0295, 0.0064, 0.8995〉



Ã− =


〈0.0138, 0.0090, 0.9273〉 〈0.0227, 0.0205, 0.8858〉 〈0.0194, 0.0258, 0.9130〉
〈0.0079, 0.0046, 0.9581〉 〈0.0098, 0.0057, 0.9604〉 〈0.0063, 0.0153, 0.9711〉
〈0.0084, 0.0046, 0.9533〉 〈0.0330, 0.0166, 0.9243〉 〈0.0115, 0.0115, 0.9307〉
〈0.0171, 0.0047, 0.9589〉 〈0.0206, 0.0130, 0.9432〉 〈0.0077, 0.0172, 0.9533〉

〈0.0205, 0.0122, 0.9326〉
〈0.0098, 0.0048, 0.9705〉
〈0.0195, 0.0088, 0.9387〉
〈0.0099, 0.0064, 0.9688〉


Step 4. Determine the CC for the alternatives by using the values of
PFPIS and PFNIS.

χ1 = 0.9989, χ2 = 0.9993, χ3 = 0.9989 and χ4 = 0.9982.

λ1 = 0.9985, λ2 = 0.9988, λ3 = 0.9993 and λ4 = 0.9995.

Step 5. Compute the closeness coefficients of picture fuzzy ideal solu-
tion as below.

ε1 = 0.5769, ε2 = 0.6316, ε3 = 0.3889 and ε4 = 0.2174.

Step 6. Arrange the values in descending order.

ε2 > ε1 > ε3 > ε4.
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⇒ A2 > A1 > A3 > A4.

Hence, A2 is the best leader among the group and can play a significant
role in bringing socio-political changes to society.

5.3. Comparative study. We compare the proposed method with ex-
isting methods.

Table 10. Comparing proposed method with existing methods

Authors Methods Remarks
Farooq and Saqlain [7] neutrosophic HSS TOPSIS method In this method, the values of truth,

indeterminacy, and falsity are independent.

Fatma and Cengiz [8] spherical fuzzy TOPSIS method Single attribute function is
defined to solve MCDM problems.

Proposed method picture fuzzy HSS TOPSIS method Dependent grades between positive,
neutral and negative and have used multi-attributes function.

6. Conclusions

In this study, we have introduced the notion of PFHSS and established
some of its properties. We have developed the concept of PFHSWAO
and PFHSWGO by using operational laws. Also, we have proposed a
real-life application using the TOPSIS method based on CC. We have
applied CC instead of the usual distance or similarity measures in the
TOPSIS method to evaluate the closeness coefficients. Finally, we have
discussed the merits of the proposed method with existing methods.
Future work may include the study of the proposed method with existing
hybrid structures like interval-valued PFHSS, cubic PFHSS, cubic HSS,
cubic intuitionistic fuzzy HSS, octahedron HSS, and cubic hesitant fuzzy
HSS.
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