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FUZZY SOFT BI-INTERIOR IDEALS OVER Γ−
SEMIRINGS
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Abstract. In this paper, we introduce the notion of fuzzy soft bi-
interior ideals over Γ−semirings and study some of their algebraical
properties.bi-interior ideal
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1. Introduction

The notion of Γ−ring was introduced by Nobusawa [42] as a general-
ization of ring in 1964. Sen [44] introduced the notion of Γ−semigroup
in 1981. The notion of ternary algebraic system was introduced by
Lehmer [12] in 1932, Lister [13] introduced ternary ring. The notion of
a Γ−semiring was introduced by Murali Krishna Rao [17-23] in 1995,
not only generalizes the notion of semiring and Γ−ring but also the
notion of ternary semiring. The notion of a semiring is an algebraic
structure with two associative binary operations where one distributes
over the other, was first introduced by Vandiver [47] in 1934 but semir-
ings had appeared earlier in studies on the theory of ideals of rings.
Herniksen [5] defined k−ideals in semirings to obtain analogous of ring
results for semiring. The notion of ideals was introduced by Dedekind
for the theory of algebraic numbers, was generalized by E. Noether for
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associative rings. The one and two sided ideals introduced by her, are
still central concepts in ring theory. We know that the notion of a one
sided ideal of any algebraic structure is a generalization of notion of an
ideal. The quasi ideals are generalization of left and right ideals whereas
the bi-ideals are generalization of quasi ideals. Iseki [6,7,8] introduced
the concept of quasi ideal for a semiring. Quasi ideals in Γ−semirings
studied by Jagtap and Pawar[9] studied ideals in semirings. As a fur-
ther generalization of ideals, Steinfeld [45] first introduced the notion of
quasi ideals for semigroups and then for rings. We know that the notion
of the bi-ideal in semirings is a special case of (m, n) ideal introduced
by S. Lajos.The concept of bi-ideals was first introduced by R.A. Good
and D.R. Hughes[4] for a semigroup. Lajos and Szasz [10,11] introduced
the concept of bi-ideals for rings. Semirings play an important role in
studying matrices and determinants. Murali Krishna Rao [24-31] in-
troduced the notion of left (right) bi-quasi ideal, bi-interior ideal and
bi- quasi-interior ideal of semiring, Γ-semiring,Γ-semigroup and studied
their properties. The theory of fuzzy sets introduced by Zadeh [48,49] is
the most appropriate theory for dealing with uncertainty. The concept
of fuzzy subgroup was introduced by Rosenfeld [43]. D. Mandal [15]
studied fuzzy ideals and fuzzy interior ideals in an ordered semiring. N.
Kuroki studied fuzzy interior ideals in semigroups. K.L. N. Swamy and
U. M. Swamy [46] studied fuzzy prime ideals in rings in 1988. Molodtsov
[16] was introduced the concept of soft set theory as a new mathematical
tool for dealing with uncertainties,only partially resolves the problem is
that objects in universal set often does not precisely satisfy the param-
eters associated to each of the elements in the set. Then Maji et al.
[14]extended soft set theory to fuzzy soft set theory. Aktas and Cagman
defined the soft set and soft groups. Majumdar and Samantha extended
soft sets to fuzzy soft set. Acar et al. [1], gave the basic concept of soft
ring. Jayanth Ghosh et al. [3] initiated the study of fuzzy soft rings and
fuzzy soft ideals. Feng et al. [2] studied soft semirings by using the soft
set theory. M.Murali Krishna Rao et al. [32-41] introduced and stud-
ied fuzzy ideal, fuzzy soft ideals, fuzzy soft ordered Γ−semiring, fuzzy
soft ideal,fuzzy soft bi-ideal,fuzzy soft quasi-ideal and fuzzy soft interior
ideal over ordered Γ−Semirings. In this paper, we introduce the notion
of fuzzy soft bi-interior ideals over Γ−semirings and study some of their
algebraical properties.
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2. Preliminaries

In this section, we recall some definitions introduced by the pioneers
in this field earlier.

Definition 2.1. Let (M,+) and (Γ,+) be commutative semigroups. Then
we call M as a Γ−semiring,if there exists a mapping M ×Γ×M → M ,
(x, α, y) is written as as xαy such that it satisfies the following axioms
for all x, y, z ∈M and α, β ∈ Γ

(i) xα(y + z) = xαy + xαz
(ii) (x+ y)αz = xαz + yαz
(iii) x(α+ β)y = xαy + xβy
(iv) xα(yβz) = (xαy)βz.

Definition 2.2. A Γ−semiring M is said to be commutative Γ−semiring
if xαy = yαx, for all x, y ∈M and α ∈ Γ.

Definition 2.3. Let M be a Γ−semiring. An element 1 ∈ M is said to
be unity if for each x ∈M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.4. A fuzzy subset µ : S → [0, 1] is non-empty if µ is not
the constant function.

Definition 2.5. For any two fuzzy subsets λ and µ of S, λ ⊆ µ means
λ(x) ≤ µ(x) for all x ∈ S.

Definition 2.6. Let f and g be fuzzy subsets of Γ−semiring M. Then
f ◦ g, f + g, f ∪ g, f ∩ g, are defined by

f ◦ g(z) =

{
sup
z=xαy

{min{f(x), g(y)}},

0, otherwise.
;

f + g(z) =

{
sup
z=x+y

{min{f(x), g(y)}},

0, otherwise

f ∪ g(z) = max{f(z), g(z)} ; f ∩ g(z) = min{f(z), g(z)}
x, y ∈M,α ∈ Γ, for all z ∈M .

Definition 2.7. Let M be a Γ−semiring.A fuzzy subset µ of M is said
to be fuzzy Γ−subsemiring of M if it satisfies the following conditions
(i) µ(x+ y) ≥ min {µ(x), µ(y)}
(ii) µ(xαy) ≥ min {µ(x), µ(y)}, for all x, y ∈M,α ∈ Γ.
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Definition 2.8. A function f : R→M where R and M are Γ−semirings
is said to be Γ−semiring homomorphism if f(a + b) = f(a) + f(b) and
f(aαb) = f(a)αf(b) for all a, b ∈ R,α ∈ Γ.

Definition 2.9. Let A be a non-empty subset of M. The characteristic
function of A is a fuzzy subset of M, defined by

χ
A

(x) =

{
1, if x ∈ A;
0, if x /∈ A.

Definition 2.10. A fuzzy subset µ of Γ−semiring M is called a fuzzy left
(right) ideal of M if for all x, y ∈ M,α ∈ Γ it satisfies the following
conditions
(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ µ(y) (µ(x)), for all x, y ∈M,α ∈ Γ.

Definition 2.11. A fuzzy subset µ of Γ−semiring M is called a fuzzy
ideal of M if it satisfies the following conditions
(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ max {µ(x), µ(y)}, for all x, y ∈M,α ∈ Γ.

Definition 2.12. Let U be an initial Universe set and E be the set of
parameters. Let P (U) denotes the power set of U. A pair (f,E) is called
soft set over U where f is a mapping given by f : E → P (U).

Definition 2.13. For a soft set (f,A), the set {x ∈ A | f(x) 6= ∅} is called
Support of (f,A) denoted by Supp(f,A). If Supp(f,A) 6= ∅ then (f,A)
is called non null soft set.

Definition 2.14. Let U be an initial Universe set and E be the set of
parameters. Let A ⊆ E. A pair (f,A) is called fuzzy soft set over U
where f is a mapping given by f : A → IU where IU denotes the
collection of all fuzzy subsets of U.

Definition 2.15. Let (f,A), (g,B) be fuzzy soft sets over U then (f,A)
is said to be a fuzzy soft subset of (g,B) denoted by (f,A) ⊆ (g,B) if
A ⊆ B and f(a) ⊆ g(a) for all a ∈ A.

Definition 2.16. Let (f,A), (g,B) be fuzzy soft sets. The intersection of
fuzzy soft sets (f,A) and (g,B) is denoted by (f,A) ∩ (g,B) = (h,C)
where C = A ∪B is defined as

hc =

 fc, if c ∈ A \B;
gc, if c ∈ B \A;
fc ∩ gc, if c ∈ A ∩B.
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Definition 2.17. Let (f,A), (g,B) be fuzzy soft sets over U . Then
“(f,A) and (g,B) is denoted by “(f,A) ∧ (g,B)” is defined by (f,A) ∧
(g,B) = (h,C) where C = A × B. hc(x) = min {fa(x), gb(x)} for all
c = (a, b) ∈ A×B and x ∈ U.
Definition 2.18. Let S be aΓ−semiring and E be a parameter set and
A ⊆ E. Let f be a mapping given by f : A → [0, 1]S where [0, 1]S

denotes the collection of all fuzzy subsets of S. Then (f,A) is called
a fuzzy soft left(right) ideal over S if and only if for each a ∈ A, the
corresponding fuzzy subset fa : S → [0, 1] is a fuzzy left(right) ideal of
S. i.e., (i) fa(x+y) ≥ min {fa(x), fa(y)} (ii) fa(xαy) ≥ fa(y)(fa(x)),for
all x, y ∈ S, α, β ∈ Γ.

Definition 2.19. Let S be a Γ−semiring and E be a parameter set and
A ⊆ E. Let f be a mapping given by f : A → [0, 1]S where [0, 1]S

denotes the collection of all fuzzy subsets of S. Then (f,A) is called a
fuzzy soft ideal over S if and only if for each a ∈ A, the corresponding
fuzzy subset fa : S → [0, 1] is a fuzzy ideal of S. i.e., (i) fa(x + y) ≥
min {fa(x), fa(y)} (ii) fa(xαy) ≥ max {fa(x), fa(y)},for all x, y ∈
S, α, β ∈ Γ.

Definition 2.20. Let S be a Γ−semiring and E be a parameter set and
A ⊆ E. Let f be a mapping given by f : A → [0, 1]S where [0, 1]S

denotes the collection of all fuzzy subsets of S. Then (f,A) is called a
fuzzy soft bi- ideal over S if and only if for each a ∈ A, the corresponding
fuzzy subset fa : S → [0, 1] is a fuzzy bi- ideal of S. i.e., (i) fa(x+ y) ≥
min {fa(x), fa(y)} (ii) fa(xαyβz) ≥ max {fa(x), fa(z)} for all x, y ∈
S, α, β ∈ Γ.,for all x, y ∈ S, α, β ∈ Γ.

Definition 2.21. Let S be a Γ−semiring and E be a parameter set and
A ⊆ E. Let f be a mapping given by f : A → [0, 1]S where [0, 1]S

denotes the collection of all fuzzy subsets of S. Then (f,A) is called a
fuzzy soft interor ideal over S if and only if for each a ∈ A, the corre-
sponding fuzzy subset fa : S → [0, 1] is a fuzzy interior ideal of S. i.e.,
(i) fa(x+y) ≥ min {fa(x), fa(y)} (ii) fa(xαyβz) ≥ max {fa(y)}for all
x, y ∈ S, α, β ∈ Γ.

Definition 2.22. Let S be a Γ−semiring and E be a parameter set and
A ⊆ E. Let f be a mapping given by f : A → [0, 1]S where [0, 1]S de-
notes the collection of all fuzzy subsets of S. Then (f,A) is called a fuzzy
soft quasi ideal over S if and only if for each a ∈ A, the corresponding
fuzzy subset fa : S → [0, 1] is a fuzzy quasi ideal of S. i.e.A fuzzy subset
fa of Γ−semiring S is called a fuzzy quasi ideal if
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(i) fa(x+ y) ≥ min(fa(x), fa(y)) (ii)fa ◦ χS ∧ χS ◦ fa ⊆ fa
Definition 2.23. Let (f,A), (g,B) be fuzzy soft ideals over a Γ−semiring
S. The product (f,A) and (g,B) is defined as ((f ◦ g), C) where C =
A ∪B and

(f ◦ g)c(x) =


fc(x), if c ∈ A \B;
gc(x), if c ∈ B \A;
Sup
x=aαb

{min{fc(a), gc(b)}}, if c ∈ A ∩B.

for all c ∈ A ∪B and x ∈ S, α ∈ Γ.

3. Fuzzy soft bi-interior ideal

In this section, the concept of fuzzy soft bi-interior ideal of Γ−semiring
and study somo of their properties.

Definition 3.1. A non-empty subset B of a Γ−semiring M is said to be
bi-interior ideal of M if B is a Γ−subsemiring of M and MΓBΓM ∩
BΓMΓB ⊆ B.

Definition 3.2. A Γ−semiringM is said to be bi-interior simple Γ−semiring
if M has no bi-interior ideals other than M itself.

In the following theorem, we mention some important properties and
we omit the proofs since proofs are straight forward.

Theorem 3.3. Let M be a Γ−semiring.Then the following are hold

(1) Every left ideal is a bi-interior ideal of M.
(2) Every right ideal is a bi-interior ideal of M.
(3) Every quasi ideal is a bi-interior ideal of M.
(4) If A and B are bi-interior ideals of M ,then AΓB and BΓA are

bi-interior ideals of M.
(5) Every ideal is a bi-interior ideal of M.
(6) If B is a bi-interior ideal of M , then BΓM and MΓB are bi-

interior ideals of M.

Definition 3.4. A fuzzy subset µ of a semiring M is called a fuzzy bi-
interior ideal if µ(x + y) ≥ min{µ(x), µ(y)} for all x, y ∈ M. χM ◦ µ ◦
χM ∩ µ ◦ χM ◦ µ ⊆ µ

Example 3.5. Let Q be the set of all rational numbers,

M =

{(
a b
0 c

)
| a, b, c ∈ Q

}
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and M = Γ. A ternary operation is defined as the usual matrix multipli-

cation and A =

{(
a 0
0 b

)
| a, 0 6= b ∈ Q

}
. Then M is a Γ− semigroup

and A is a bi-interior ideal but not a bi-ideal of semigroup M . Define
µ : M → [0, 1] by

µ(x) ==

{
1 if x ∈ A,
0, otherwise.

Then µ is a fuzzy bi-interior ideal of M.

Definition 3.6. Let S be Γ−semiring and E be a parameter set and A ⊆
E. Let µ be a mapping given by µ : A → [0, 1]S where [0, 1]S denotes
the collection of all fuzzy subsets of S. Then (µ,A) is called a fuzzy soft
bi-interiori ideal over S if and only if for each a ∈ A, the corresponding
fuzzy subset ideal of S. i.e.A fuzzy subset µa of Γ−semiring S is called
a fuzzy bi-interiori ideal if
(i)µa(x+ y) ≥ min(µa(x), µa(y))
(ii) χM ◦ µa ◦ χM ∩ µa ◦ χM ◦ µa ⊆ µa.

Theorem 3.7. Let M be a Γ−semiring, E be a parameterset and A ⊆
E. If (µ,A) is a fuzzy soft left ideal over M then (µ,A) is a fuzzy soft
bi-interior ideal over M

Proof. Suppose (µ,A) is a fuzzy soft left ideal over M. Then, for each
a ∈ A, µa is a fuzzy left ideal of M and x ∈M,α, β ∈ Γ. Then

χM ◦ µa(x) = sup
x=cαb

{min{χM (c), µa(b)}}

= sup
x=cαb

{min{1, µa(b)}}

= sup
x=cαb

{µa(b)}

≤ sup
x=cαb

{µa(cb)}

= sup
x=cαb

{µa(x)}

= µ(x)
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⇒ χM ◦ µa(x) ≤ µ(x).

µ ◦ χM ◦ µa(x) = sup
x=uαvβs

{min{µa(u), χM ◦ µa(vβs)}}

≤ sup
x=uαvβs

{min{µa(u), µa(vβs)}}

= µ(x).

Hence

χM ◦µa ◦χM ∩µa ◦χM ◦µa(x) = min{χM ◦µa ◦χM (x), µa ◦χM ◦µa(x)}

≤ min{χM ◦ µa ◦ χM (x), µa(x)} ≤ µa(x).

Therefore χM ◦ µa ◦ χM ∩ µa ◦ χM ◦ µa(x) ⊆ µa.
Therefore µa is a fuzzy soft bi-interior ideal of M. Hence(µ,A) is a fuzzy
soft bi-interior ideal over M �

Corollary 3.8. Let M be a Γ−semiring and E be a parameterset and
A ⊆ E. If (µ,A) is a fuzzy soft right ideal over M then (µ,A) is a fuzzy
soft bi-interior ideal over M

Theorem 3.9. Let M be a Γ−semiring and µ be a non-empty fuzzy sub-
set of M . A fuzzy subset µ is a fuzzy bi-interior ideal of a Γ−semiring M
if and only if the level subset µt of µ is a bi-interior ideal of a Γ−semiring
M for everyt ∈ [0, 1], where µt 6= φ.

Theorem 3.10. Let M be a Γ−semiring and µ be a non-empty fuzzy
subset of M . A fuzzy subset µ is a fuzzy bi-interior ideal of a Γ−semiring
M if and only if the level subset µt of µ is a bi-interior ideal of a
Γ−semiring M for every t ∈ [0, 1], where µt 6= φ.

Proof. Let M be a Γ−semiring and µ be a non-empty fuzzy subset of
M. Suppose µ is a fuzzy bi-interior ideal of the Γ−semiring M , µt 6=
φ, t ∈ [0, 1] and a, b ∈ µt, Then

µ(a) ≥ t, µ(b) ≥ t
⇒µ(a+ b) ≥ min{µ(a), µ(b)} ≥ t
⇒a+ b ∈ µt.

Let x ∈MΓµtΓM∩µtΓMΓµt. Then x = bαaβu = cγdδe, where b, u, d ∈
M,a, c, e ∈ µt.α, β, γ, δ ∈ Γ. Then χM◦µ◦χM (x) ≥ t and µ◦χM◦µ(x) ≥ t
⇒ µ(x) ≥ t
Therefore x ∈ µt. Hence µt is a bi-interior ideal ofM. Conversely suppose
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that µt is a bi-interior ideal of Γ−semiring M, for all t ∈ Im(µ).
Let x, y ∈M,µ(x) = t1, µ(y) = t2 and t1 ≥ t2. Then x, y ∈ µt2 .

⇒x+ y ∈ µt2 and xy ∈ µt2
⇒µ(x+ y) ≥ t2 = min{t1, t2} = min{µ(x), µ(y)}

Therefore µ(x+ y) ≥ t2 = min{µ(x), µ(y)}.

We have MΓµtΓM ∩ µtΓMΓµt ⊆ µt, for all t ∈ Im(µ).
Suppose t = min{Im(µ)}. Then MΓµtΓM ∩ µtΓMΓµt ⊆ µt.
Therefore χM ◦ µ ◦ χM ∩ µ ◦ χM ◦ µ ⊆ µ.
Hence µ is a fuzzy bi-interior ideal of the Γ−semiring M. �

Corollary 3.11. Let M be a Γ−semiring and A = [0, 1]. A fuzzy subset
µ is a fuzzy bi-interior ideal of a Γ−semiring M if and only if (µ,A) is a
fuzzy soft bi-interior ideal over M then (µ,A) is a fuzzy soft bi-interior
ideal over M

Theorem 3.12. Let I be a non-empty subset of a Γ-semiring M and
χI be the characteristic function of I. Then I is a bi-interior ideal of Γ-
semiring M if and only if χI is a fuzzy bi-interior ideal of a Γ-semiring
M.

Proof. Let I be a non-empty subset of the Γ-semiring M and χI be
the characteristic function of I. Suppose I is a bi-interior ideal of the
Γ−semiring M. Obviously χI is a fuzzy Γ−subsemiring of M. We have
MΓIΓM ∩ IΓMΓI ⊆ I. Then

χM ◦ χI ◦ χM ∩ χI ◦ χM ◦ χI ⊆ χI = χMΓIΓM∩IΓMΓI ⊆ χI .

Therefore χI is a fuzzy bi-interior ideal of the Γ−semiring M. Conversely
suppose that χI is a fuzzy bi-interior ideal of M.
Then I is a Γ− subsemiring ofM.We have χM◦χI◦χM∩χI◦χM◦χI ⊆ χI
⇒ χMΓIΓM ∩ χIΓMΓI ⊆ χI
⇒ χMΓIΓM∩IΓMΓI ⊆ χI

Therefore MΓIΓM ∩ IΓMΓI ⊆ I. Hence I is a bi-interior ideal of
the Γ-semiring M. �

Theorem 3.13. If µ and λ are fuzzy bi-interior ideals of a Γ−semiring
M , then µ ∩ λ is a fuzzy bi-interior ideal of a Γ−semiring M.
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Proof. Let µ and λ be fuzzy bi-interior ideals of the Γ−semiring M and
x, y ∈M,α, β ∈ Γ. Then

µ ∩ λ(x+ y) = min{µ(x+ y), λ(x+ y)}
≥ min{min{µ(x), µ(y)},min{λ(x), λ(y)}}
= min{min{µ(x), λ(x)},min{µ(y), λ(y)}}
= min{µ ∩ λ(x), µ ∩ λ(y)}

χM ◦ µ ∩ λ(x) = sup
x=aαb

{min{χM (a), µ ∩ λ(b)}}

= sup
x=aαb

{min{χM (a),min{µ(b), λ(b)}}

= sup
x=aαb

{min{min{χM (a), µ(b)},min{χM (a), λ(b)}}

= min{ sup
x=aαb

{min{χM (a), µ(b)}, sup
x=aαb

{min{χM (a), λ(b)}}

= min{χM ◦ µ(x).χM ◦ λ(x)}
= χM ◦ µ ∩ χM ◦ λ(x)

Therefore χM ◦ µ ∩ λ = χM ◦ µ ∩ χM ◦ λ.
µ ∩ λ ◦ χM ◦ µ ∩ λ(x) = sup

x=aαbβc
{min{µ ∩ λ(a), χM ◦ µ ∩ λ(bβc)}}

= sup
x=aαbβc

{min{µ ∩ λ(a), χM ◦ µ ∩ χM ◦ λ(bβc)}}

= sup
x=aαbβc

{min{min{µ(a), λ(a)},min{χM ◦ µ(bβc), χM ◦ λ(bβc)}}

= sup
x=aαbβc

{min{min{µ(a), χM ◦ µ(bβc)},min{λ(a), χM ◦ λ(bβc)}}

= min{µ ◦ χM ◦ µ(x), λ ◦ χM ◦ λ(x)}
= µ ◦ χM ◦ µ ∩ λ ◦ χM ◦ λ(x).

Therefore µ ∩ λ ◦ χM ◦ µ ∩ λ = µ ◦ χM ◦ µ ∩ λ ◦ χM ◦ λ.
Similarly χM ◦ µ ∩ λ ◦ χM = χM ◦ µ ◦ χM ∩ χM ◦ λ ◦ χM . Hence χM ◦
µ ∩ λ ◦ χM ∩ µ ∩ λ ◦ χM ◦ µ ∩ λ = (χM ◦ µ ◦ χM ) ∩ (µ ◦ χM ◦ µ) ∩ (χM ◦
λ ◦ χM ) ∩ (λ ◦ χM ◦ λ) ⊆ µ ∩ λ.
Hence µ ∩ λ is a fuzzy bi-interior ideal of M. �

Theorem 3.14. Let (f,A) and (g,B) be fuzzy soft bi-interiors over
Γ−semiring M. Then (f,A)∩ (g,B) is a fuzzy soft bi-interior ideal over
M.

Proof. By definition 2.20, we have (f,A) ∩ (g,B) = (h,C) where C =
A ∪B.
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Case (i) : hc = fc if c ∈ A \ B. Then hc is a fuzzy bi- ideal of S since
(f,A) is a fuzzy soft bi-interior ideal over M.
Case (ii) : If c ∈ B \A then hc = gc. Therefore hc is a fuzzy bi-interior
Ideal of M since (g,B)is a fuzzy soft bi-interior ideal over M.
Case (iii) : If c ∈ A ∩B, and x, y ∈M,α ∈ Γ then hc = fc ∩ gc and
Hence by Theorem [3.17],hc is a fuzzy bi-interior ideal of M. Thus
(f,A) ∩ (g,B) is a fuzzy soft bi- ideal over M. �

Theorem 3.15. If µ and λ are fuzzy bi-interior ideals of semiring M
then µ ∪ λ is a fuzzy bi-interior ideal of a Γ−semiring M.

Proof. Let µ and λ be fuzzy bi-interior ideals of Γ−semiring M . Then
(µ ∪ λ)(x+ y) = max{µ(x+ y), λ(x+ y)}

≥ max{max{µ(x), µ(y)},max{λ(x), λ(y)}}
= max{max{µ(x), λ(x)},max{µ(y), λ(y)}}

= max{µ ∪ λ(x), µ ∪ λ(y)}
χM ◦ µ ∪ λ(x)

= sup
x=aαb

max{χM (a), µ ∪ λ(b)}

= sup
x=aαb

max{χM (a),max{µ(b), λ(b)}}

= sup
x=aαb

max{max{χM (a), µ(b)},max{χM (a), λ(b)}}

= max{ sup
x=aαb

max{χM (a), µ(b)}, sup
x=aαb

max{χM (a), λ(b)}}

= max{χM ◦ µ(x).χM ◦ λ(x)}
= χM ◦ µ ∪ χM ◦ λ(x)

Thus
χM ◦ µ ∪ λ = χM ◦ µ ∪ χM ◦ λ.
µ ∪ λ ◦ χM ◦ µ ∪ λ(x) = sup

x=aαbβc
max{µ ∪ λ(a), χM ◦ µ ∪ λ(bβc)}

= sup
x=aαbβc

max{µ ∪ λ(a), χM ◦ µ ∪ χM ◦ λ(bβc)}

= sup
x=aαbβc

max{max{µ(a), λ(a)},

max{χM ◦ µ(bβc), χM ◦ λ(bβc)}}
= sup

x=aαbβc
max{max{µ(a), χM ◦ µ(bβc)},max{λ(a), χM ◦ λ(bβc)}} =

max{ sup
x=aαbβc

max{µ(a), χM ◦ µ(bβc)}, sup
x=aαbβc

max{λ(a), χM ◦ λ(bβc)}}

= max{µ ◦ χM ◦ µ(x), λ ◦ χM ◦ λ(x)} = µ ◦ χM ◦ µ ∪ λ ◦ χM ◦ λ(x).
Therefore
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µ∪λ◦χM ◦µ∪λ = µ◦χM ◦µ∪λ◦χM ◦λ. Similarly χM ◦µ∪λ◦χM =
χM ◦µ ◦χM ∪χM ◦λ ◦χM . Hence χM ◦µ∪λ ◦χM ∩µ∪λ ◦χM ◦µ∪λ =
(χM ◦ µ ◦ χM ) ∩ (µ ◦ χM ◦ µ) ∪ (χM ◦ λ ◦ χM ) ∩ (λ ◦ χM ◦ λ) ⊆ µ ∪ λ.

Hence µ ∪ λ is a fuzzy bi-interior ideal of M . �

Corollary 3.16. Let (f,A) and (g,B) be fuzzy soft bi-interiors over
Γ−semiring M. Then (f,A)∪ (g,B) is a fuzzy soft bi-interior ideal over
M.

Theorem 3.17. Let (f,A) and (g,B) be fuzzy soft bi-interior ideals
overΓ−semiring S. Then (f,A) ∧ (g,B) is a fuzzy soft bi-interior ideal
over S.

Proof. By Definition 2.22, (f,A) ∧ (g,B) = (h,C) where C = A×B.
Let c = (a, b) ∈ C = A×B and x, y ∈ S, α ∈ Γ. Then
hc(x+ y) = fa(x+ y) ∧ gb(x+ y)

= min{fa(x+ y), gb(x+ y)}
≥ min{min{fa(x), fa(y)},min{gb(x), gb(y)}}
= min{min{fa(x), gb(x)},min{fa(y), gb(y)}}
= min{fa ∧ gb(x), fa ∧ gb(y)}
= min{hc(x), hc(y)}

Hence by Theorem [3.17],hc is a fuzzy bi-interior ideal of M. Hence hc
is a fuzzy soft bi-interior ideal over S. Therefore (h,A × B) is a fuzzy
soft bi-interior ideal over S. �

Similarly, we can prove this following theorem.

Theorem 3.18. Let (f,A) and (g,B) be fuzzy soft bi-interiors over
Γ−semiring M. Then the product (f,A) and (g,B) is a fuzzy soft bi-
interior ideal over M.

Definition 3.19. A fuzzy set µ of an ordered Γ−semiring M is said to
be normal fuzzy ideal if µ is a fuzzy ideal of M and µ(0) = 1.

Definition 3.20. Let (f,A) be fuzzy soft ideal over a Γ−semiring S. Then
(f,A) is said to be normal fuzzy soft Γ−semiring if fa is normal fuzzy
ideal of ordered Γ−semiring over S, for all a ∈ A.

Theorem 3.21. If (f,A) is a fuzzy soft left ideal over Γ−semiring over
S and for each a ∈ A, f+

a is defined by f+
a (x) = fa(x) + 1 − fa(0) for

all x ∈ S then (f+, A) is a normal fuzzy soft bi-interior ideal over an
ordered Γ−semiring over S and (f,A) is subset of (f+, A).

Proof follows from Theorem 3.17
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Theorem 3.22. Let M be a regular Γ−semiring and E be a parame-
terset and A ⊆ E. Then (I, A) is a fuzzy soft bi-interior ideal over M
if and only if (f,A) is a fuzzy soft quasi ideal over M

Proof. Let M be a regular Γ− semiring. Suppose (µ,A) is a fuzzy soft
bi-interior ideal over M . Then, for each a ∈ A, µa is a fuzzy bi-interior
ideal of M. Let x ∈M,α, β ∈ Γ. Then
χM ◦ µa ◦ χM ∩ µM ◦ χM ◦ µa ⊆ µa. Suppose χM ◦ µa(x) > µa(x).

Since M is regular, there exist y ∈ M,α, β ∈ Γ such that x = xαyβx.
Then
µa ◦ χM ◦ µa(x) = sup

x=xαyβx
{min{µa(x), χM ◦ µa(yβx)} )

> sup
x=xαyβx

{min{µa(x), µa(yβx)}}

= µ(x)
Which is a contradiction.Therefore µa ◦ χM ∩ χM ◦ µa ⊆ µa.

Therefore µa is a fuzzy quasi ideal over M Hence(µ,A) is a fuzzy soft
quasi ideal over M By Theorem [3.10], converse is true. �
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