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EXISTENCE THEOREM OF FINITE KRASNER

HYPERFIELDS
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Abstract. The concern of this paper is to show that there always
exist Krasner hyperfields of order n, where n is an integer greater
than or equal to 2.
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1. Introduction

In classical algebra, notions of group, ring and field are very useful
and are studied for various reasons, most especially in the understand-
ing of our environment. Kasner, a French mathematician, introduced
a tool for the study of approximation of valued fields. He constructed
a hyperoperation in which composition of two elements yield a set. He
got a structure which was called canonical hypergroup [10]. Canoni-
cal hypergroups are to generalize the notion of group. Later, two of
Krasner’s students, Mittas and Stratigopoulos , studied hyperrings and
hyperfields [6, 7, 8, 3]. These structures introduced by Krasner and his
students have been extensively studied by many others who are inter-
ested in the characterization of finite Krasner hyperstructures because of
their increasingly growing applications in various directions [13, 11, 14].

There have been various approaches to the studies and constructions
of finite Krasner hyperfields as can be seen in [2, 12, 9]. However, it is
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clear that not all Krasner hyperfields can be constructed in these ways.
Some researchers were interested in finding all hyperfields for a given
number of elements [12, 9]. Also, by using some computer programs,
some other researchers just conjecture the existence of finite Krasner
hyperfields of a given order [12, 9]. Although, some algorithms claim to
have the capacity to construct finite Krasner hyperfields, but they do
not prove their existence. In this work, we prove that there always exist
finite Krasner hyperfields of integer order n ≥ 2.

2. Preliminaries

In this section, all preliminary definitions and results which will be
used throughout this work are discussed. More on this can be seen
in[11, 1].

In particular, let H be a non-empty set and P∗(H) be the set of all
non-empty subsets of H. The map

⊕ : H ×H −→ P∗(H),

defined by
(x, y) 7→ x⊕ y ⊆ P∗(H),

is called a hyperoperation and the couple (H,⊕) is called a hypergroupoid.

Definition 2.1. A hypergroupoid (H,⊕) is called a semihypergroup if,
for all a, b, c in H,

(a⊕ b)⊕ c = a⊕ (b⊕ c).

Definition 2.2. A hypergroupoid (H,⊕) is called a quasihypergroup if
for all a ∈ H, we have

a⊕H = H ⊕ a = H.

Definition 2.3. A hypergroupoid (H,⊕) which is both a semihyper-
group and a quasihypergroup is called a hypergroup.

Definition 2.4. A canonical hypergroup (R,⊕) is an algebraic structure
in which the following axioms hold:

(i) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, for any x, y, z ∈ R.
(ii) x⊕ y = y ⊕ x, for any x, y ∈ R.
(iii) There exists an additive identity 0 ∈ R such that 0 ⊕ x = {x},

for every x ∈ R.
(iv) For every x ∈ R there exists a unique element x′ (an opposite of

x with respect to hyperoperation “⊕”) in R such that 0 ∈ x⊕ x′.
(v) z ∈ x⊕ y implies y ∈ x′ ⊕ z and x ∈ z ⊕ y′, for any x, y, z ∈ R.
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Remark 2.5. Note that, in the classical group (R,+), the concept of
opposite of x ∈ R is the same as inverse.

Definition 2.6. Let (R,+, ·) be a ring. For any element x ∈ R, 0 is
said to be bilaterally absorbing if

x · 0 = 0 · x = 0.

A canonical hypergroup with a multiplicative operation which satisfies
the following conditions is called a Krasner hyperring.

Definition 2.7. An algebraic hyperstructure (R,⊕, ·), where “·” is usual
multiplication on R, is called a Krasner hyperring when the following
axioms hold:

(i) (R,⊕) is a canonical hypergroup with 0 as additive identity.
(ii) (R, ·) is a semigroup having 0 as a bilaterally absorbing element.
(iii) The multiplication “·” is both left and right distributive over the

hyperoperation “⊕”.

A Krasner hyperring is called commutative (with unit element) if (R, ·)
is a commutative semigroup (with unit element) and such is denoted
(R,⊕, ·, 0, 1).

Definition 2.8. Let (R,⊕, ·, 0, 1) be a commutative Krasner hyperring
with unit such that (R\{0}, ·, 1) is a group. Then, (R,⊕, ·, 0, 1) is called
a Krasner hyperfield.

Example 2.9. [10] Consider a field (F,+, ·) and a subgroup G of (F \
{0}, ·). Take H = F/G = {aG| a ∈ F} with the hyperoperation and the
multiplication given by:{

aG⊕ bG = {c̄ = cG| c̄ ∈ aG + bG}
aG · bG = abG

Then (H,⊕, ·) is a Krasner hyperfield.

Example 2.10. Define a set F = {0, 1, a, b, c} a hyperoperation “⊕” and
multiplication operation “·” as in the following tables:

⊕ 0 1 a b c
0 {0} {1} {a} {b} {c}
1 {1} {1} {1, a} {0, 1, a, b, c} {1, c}
a {a} {1, a} {a} {a, b} {0, 1, a, b, c}
b {b} {0, 1, a, b, c} {a, b} {b} {b, c}
c {c} {1, c} {0, 1, a, b, c} {b, c} {c}
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· 0 1 a b c
0 0 0 0 0 0
1 0 1 a b c
a 0 a b c 1
b 0 b c 1 a
c 0 c 1 a b

Then (F,⊕, ·) is a Krasner hyperfield with 5 elements which can be
easily proved with the help of a computer program.

The following example is one of the well-known construction of Kras-
ner hyperfields from fields. It is due to the work of Massouros [2].

Example 2.11. Let (F,+, ·) be a field. Define on F the hyperoperation

a⊕ b = {a, b, a + b},
for a 6= b, and a, b ∈ F ∗, where F ∗ denotes the set of non zero elements
of F . Then

a⊕ 0 = 0⊕ a = {a},
for all a ∈ F and

a⊕ a′ = F,

for all a ∈ F , where a′ is the opposite of the element a with respect to
the operation “+” on F , (that is a′ + a = a + a′ = 0F ).

Therefore (F,⊕, ·) is a Krasner hyperfield.

3. Existence theorem of finite Krasner hyperfields

In this section, we prove that for any given integer n ≥ 2, there exist
finite Krasner hyperfields of order n.

Theorem 3.1. There exist always finite Krasner hyperfields of integer
order n ≥ 2.

Proof. Let (F,+F , ·F , 0F , 1F ) and (K,+K , ·K , 0K , 1K) be two finite fields.
Their orders are powers of prime. Then we can only have the Krasner
hyperfields (F,⊕F , ·F , 0F , 1F ) and (K,⊕K , ·K , 0K , 1K) whose orders are
only powers of prime corresponding to exactly the same elements in the
underlying finite fields. But, with the product of (F,+F , ·F , 0F , 1F ) and
(K,+K , ·K , 0K , 1K), we can construct Krasner hyperfieds whose orders
can be any of the integers n ≥ 2, not necessarily powers of prime. Define
on the cartesian product F ×K the hyperoperation

⊕ : F ×K → P∗(F ×K)
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by

(a, b)⊕ (c, d) =
⋃

i∈a⊕F c,j∈b⊕Kd

(i, j),

with (a, b), (c, d) ∈ F ×K.
Here (A,B) = {(a, b)| a ∈ A and b ∈ B}, where A is a subset of F

and B is a subset of K. Also, we have

(A,B)⊕ (a, b) =
⋃

i∈A,j∈B
(i, j)⊕ (a, b).

The multiplication on F ×K is defined by

(a, b) · (c, d) = (a ·F c, b ·K d),

where (a, b), (c, d) ∈ F ×K. If A is a subset of F and B is a subset of
K, then (a, b) · (A,B) = (a ·F A, b ·K B).

Now we prove that the algebraic hyperstructure (F×K,⊕, ·, (0F , 0K),
(1F , 1K)) is a Krasner hyperfield.

We first prove that (F × K,⊕, (0F , 0K)) is a canonical hypergroup
satisfying the properties in Definition 2.4.

(i) Additive identity element
(0F , 0K) is the additive identity element of F ×K. Let (a, b) be an

element of F ×K.

(a, b)⊕ (0F , 0K) =
⋃

(a⊕F 0F , b⊕K 0K)

= ({a}, {b})
=

⋃
(0F ⊕F a, 0K ⊕K b)

= (0F , 0K)⊕ (a, b).

(ii) Commutativity
Let (a, b), (c, d) be two elements of F ×K.

(a, b)⊕ (c, d) = (a⊕F c, b⊕K d)

= (c⊕F a, d⊕K b)

= (c, d)⊕ (a, b).

(iii) Associativity
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Let (a, b), (c, d), (e, f) be three elements of F ×K.

(a, b)⊕ ((c, d)⊕ (e, f)) = (a, b)⊕ (c⊕F e, d⊕K f)

= (a⊕F (c⊕F e), b⊕K (d⊕K f))

= ((a⊕F c)⊕F e, (b⊕K d)⊕K f)

= ((a, b)⊕ (c, d))⊕ (e, f).

Therefore

(a, b)⊕ ((c, d)⊕ (e, f)) = ((a, b)⊕ (c, d))⊕ (e, f).

(iv) Opposite element
Let (a, b) be an element of F ×K. Assume that a′ is the opposite of

a in F and b′ is the opposite of b in K. Then,

(0F , 0K) ∈ (a⊕F a′, b⊕K b′) = (a, b)⊕ (a′, b′).

Since a′ and b′ are unique, then (a′, b′) is the unique opposite of (a, b) in
F ×K.

(v) Reversibility
Let (a, b), (c, d), (e, f) be three elements of F ×K, such that (a, b) ∈

(c, d) ⊕ (e, f). Then, (a, b) ∈ (c ⊕F e, d ⊕K f) implies a ∈ c ⊕F e and
b ∈ d⊕K f . From a ∈ c⊕F e we know e ∈ c′⊕F a and c ∈ a⊕F e′. Also,
from b ∈ d⊕K f we get f ∈ d′ ⊕K b and d ∈ b⊕K f ′.

Furthermore, e ∈ c′ ⊕F a and f ∈ d′ ⊕K b imply

(e, f) ∈ (c′ ⊕F a, d′ ⊕K b) = (c′, d′)⊕ (a, b).

In the same way, c ∈ a⊕F e′ and d ∈ b⊕K f ′ imply

(c, d) ∈ (a⊕F e′, b⊕K f ′) = (a, b)⊕ (e′, f ′).

Hence, if (a, b) ∈ (c, d) ⊕ (e, f), we have (e, f) ∈ (c′, d′) ⊕ (a, b) and
(c, d) ∈ (a, b)⊕ (e′, f ′).

So the reversibility holds. Thus, (F ×K,⊕, (0F , 0K)) is a canonical
hypergroup.

Secondly, we prove that (F × K, ·, (0F , 0K)) is a semigroup having
(0F , 0K) as a bilaterally absorbing element.

(vi) Semigroup
It is trivial to show that (F ×K, ·, (0F , 0K)) is a groupoid. We only

show that associativity holds, in which case it is a semigroup. Let
(a, b), (c, d), (e, f) be three elements of F ×K. Then
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(a, b) · ((c, d) · (e, f)) = (a, b) · (c ·F e, d ·K f)

= (a ·F (c ·F e), b ·K (d ·K f))

= ((a ·F c) ·F e, (b ·K d) ·K f)

= (a ·F c, b ·K d) · (e, f)

= ((a, b) · (c, d)) · (e, f).

(vii) Bilaterally absorbing element
(0F , 0K) is a bilaterally absorbing element. Let (a, b) be an element

of F ×K. Then

(a, b) · (0F , 0K) = (a ·F 0F , b ·K 0K)

= (0F , 0K)

= (0F ·F a, 0K ·K b)

= (0F , 0K) · (a, b).

Thirdly, we prove that multiplication “·” is both left and right dis-
tributive over the hyperoperation “⊕”.
Let (a, b), (c, d), (e, f) be three elements of F ×K.

(a, b) · ((c, d)⊕ (e, f)) = (a, b) · (c⊕F e, d⊕K f)

= (a ·F (c⊕F e), b ·K (d⊕K f))

= ((a ·F c)⊕F (a ·F e), (b ·K d)⊕K (b ·K f))

= ((a ·F c), (b ·K d))⊕ ((a ·F e), (b ·K f))

= ((a, b) · (c, d))⊕ ((a, b) · (e, f)).

In the same way ((c, d)⊕(e, f)) ·(a, b) = ((c, d) ·(a, b))⊕((e, f) ·(a, b)).
Lastly, we prove that ((F ×K)\{(0F , 0K)}, ·, (1F , 1K)) is a group. This
is true because if (F \{0F }, ·F , 1F ) and (K \{0K}, ·K , 1K) are groups, so
is their cartesian product since the product of groups is a group. This
completes the prove that (F × K,⊕, ·, (0F , 0K), (1F , 1K)) is a Krasner
hyperfield. Since the cardinality of a finite field is a prime power [4],
we use the fundamental theorem of arithmetic [5] to conclude that there
always exists a finite Krasner hyperfields of order n ≥ 2. This ends the
proof. �

Remark 3.2. From the work of Ameri, Eyvazi and Hoskova-Mayerova
[12], we construct the following table.
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N1 2 3 4 5 6
N2 2 5 7 27 16

where N1 denotes the number of elements, and N2 denotes the number
of finite Krasner hyperfields up to isomorphism. This table allows us to
affirm that there is no uniqueness for finite Krasner hyperfields as for
finite fields.

4. conclusion

This work proves that there always exists a finite Krasner hyperfields
of integer order n ≥ 2. Now we can tackle the problems of construc-
tion and classification of finite Krasner hyperfields without asking the
question of existence. So, for a given integer n ≥ 2, how many Krasner
hyperfields of order n will we have? And are there fast algorithm for the
construction of all of them? We will try to solve these problems in next
papers.
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