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iterated entire functions.
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1. Introduction, Definitions and Notations

For any two transcendental entire functions f(z) and g(z) defined in

the open complex plane C, it is well known [3] that limr→∞
log T (r,fog)

T (r,f) =

∞ and limr→∞
log T (r,fog)

T (r,g) = 0. Later on Singh [12] investigated some

comparative growth of logT (r, fog) and T (r, f). Farther in [12] he raised
the problem of investing the comparative growth of logT (r, fog) and
T (r, g). However some results on the comparative growth of logT (r, fog)
and T (r, g) are proved in [8].

Recently Banerjee and Dutta [1], and Dutta [4], [5], [6] made close in-
vestigation on comparative growth properties of iterated entire functions
to generalist some earlier results.

In this paper we consider three entire functions f (z) , g (z) and h (z)
and following Banerjee and Mandal [2] form the iterations of f (z) with
respect to g (z) and h (z) [defined below] and generalist the results of
Banerjee and Dutta [1] in this direction.
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116 A study on the growth of generalist iterated entire functions

f1 (z) = f (z)

f2 (z) = f (g (z)) = f (g1 (z))

f3 (z) = f (g (h (z))) = f (g (h1 (z))) = f (g2 (z))

f4 (z) = f (g (h (f (z)))) = f (g (h2 (z))) = f (g3 (z))

...

fn (z) = f(g(h(f..(f (z) or g (z) or h (z) according as n = 3m− 2 or 3m− 1

or 3m)...)))

= f (gn−1 (z)) = f (g (hn−2 (z))) .

Similarly,

g1 (z) = g (z)

g2 (z) = g (h (z)) = g (h1 (z))

g3 (z) = g (h (f (z))) = g (h (f1 (z))) = g (h2 (z))

g4 (z) = g (h (f (g (z)))) = g (h (f2 (z))) = g (h3 (z))

...

gn (z) = g(h(f(g...(g (z) or h (z) or f (z) according as n = 3m− 2 or 3m− 1

or 3m)...)))

= g (hn−1 (z)) = g (h (fn−2 (z)))

and

h1 (z) = h (z)

h2 (z) = h (f (z)) = h (f1 (z))

h3 (z) = h (f (g (z))) = h (f (g1 (z))) = h (f2 (z))

h4 (z) = h (f (g (h (z)))) = h (f (g2 (z))) = h (f3 (z))

...

hn (z) = h(f(g(h...(h (z) or f (z) or g (z) according as n = 3m− 2 or 3m− 1

or 3m)...)))

= h (fn−1 (z)) = h (f (gn−2 (z))) .

Clearly all fn(z), gn(z) and hn(z) are entire functions.
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For two non-constant entire functions f(z) and g(z), we have the well
known inequality

(1.1) logM(r, f(g)) ≤ logM(M(r, g), f).

Definition 1.1. The order ρf and lower order λf of a meromorphic
function f(z) is defined as

ρf = lim sup
r→∞

log T (r, f)

log r

and

λf = lim inf
r→∞

log T (r, f)

log r
.

If f(z) is entire then

ρf = lim sup
r→∞

log logM(r, f)

log r

and

λf = lim inf
r→∞

log logM(r, f)

log r
.

Definition 1.2. A function λf (r) is called a lower proximate order of a
meromorphic function f(z) if

(i) λf (r) is nonnegative and continuous for r ≥ r0, say;
(ii) λf (r) is differentiable for r ≥ r0 except possibly at isolated points

at which λ
′
f (r − 0) and λ

′
f (r + 0) exist;

(iii) limr→∞ λf (r) = λf <∞;

(iv) limr→∞ rλ
′
f (r) log r = 0; and

(v) lim infr→∞
T (r,f)

r
λf (r)

= 1.

Notation 1.3. [11] Let log[0]x = x, exp[0]x = x and for positive integer

m, log[m]x = log(log[m−1]x), exp[m]x = exp(exp[m−1]x).

Throughout we assume f(z), g(z), h(z) etc. are non constant entire
functions having respective orders ρf , ρg, ρh and respective lower orders
λf , λg, λh. Also we do not explain the standard notations and definitions
of the theory of entire and meromorphic functions because those are
available in [7].
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2. Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [7] Let f(z) be an entire function. For 0 ≤ r < R < ∞,
we have

T (r, f) ≤ log+M(r, f) ≤ R+ r

R− r
T (R, f).

Lemma 2.2. [10] Let f(z) and g(z) be two entire functions. Then we
have

T (r, f(g)) ≥ 1

3
logM

(
1

8
M
(r

4
, g
)

+O(1), f

)
.

Lemma 2.3. [9] Let f (z)be a meromorphic function. Then for δ(> 0)

the function rλf +δ−λf (r) is an increasing function of r.

Lemma 2.4. Let f(z), g(z) and h(z) be three non-constant entire func-
tions of finite order and nonzero lower order. Then for any ε (0 <
ε <min{λf , λg, λh})

log[n−1] T (r, fn) ≤

 (ρg + ε) logM(r, h) +O(1) when n = 3k
(ρh + ε) logM(r, f) +O(1) when n = 3k + 1
(ρf + ε) logM(r, g) +O(1) when n = 3k + 2

and

log[n−1] T (r, fn) ≥


(λg − ε) logM

(
r

4n−1 , h
)

+O(1) when n = 3k
(λh − ε) logM

(
r

4n−1 , f
)

+O(1) when n = 3k + 1
(λf − ε) logM

(
r

4n−1 , g
)

+O(1) when n = 3k + 2.

Proof. For ε(> 0) we get from Lemma 2.1 and (1.1) for all large values
of r

T (r, fn) ≤ logM(r, fn)

≤ logM(M(r, gn−1), f)

≤ [M(r, gn−1)]
ρf+ε,

that is, log T (r, fn) ≤ (ρf + ε) logM(r, gn−1)

≤ (ρf + ε) logM(M(r, hn−2), g)

≤ (ρf + ε)[M(r, hn−2)]
ρg+ε.

So, log[2] T (r, fn) ≤ (ρg + ε) logM(M(r, fn−3), h) +O(1)

≤ (ρg + ε)[M(r, fn−3)]
ρh+ε +O(1).

Therefore, log[n−1] T (r, fn) ≤ (ρg + ε) logM(r, h) +O(1) when n = 3k.
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Similarly

log[n−1] T (r, fn) ≤ (ρh + ε) logM(r, f) +O(1) when n = 3k + 1,

and

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1) when n = 3k + 2.

Again for ε (0 < ε <min{λf , λg, λh}), we get from Lemma 2.1 and
Lemma 2.2, for all large values of r

T (r, fn) = T (r, f(gn−1))

≥ 1

3
logM

(
1

8
M
(r

4
, gn−1

)
+O(1), f

)
≥ 1

3

[
1

8
M
(r

4
, gn−1

)
+O(1)

]λf−ε
≥ 1

3

[
1

9
M
(r

4
, gn−1

)]λf−ε
,

that is, log T (r, fn) ≥ (λf − ε) logM
(r

4
, gn−1

)
+O(1)

≥ (λf − ε)T
(r

4
, gn−1

)
+O(1)

≥ (λf − ε)
1

3
logM

(
1

8
M
( r

42
, hn−2

)
+O(1), g

)
+O(1)

≥ (λf − ε)
1

3

[
1

8
M
( r

42
, hn−2

)
+O(1)

]λg−ε
+O(1)

≥ (λf − ε)
1

3

[
1

9
M
( r

42
, hn−2

)]λg−ε
+O(1),

that is, log[2] T (r, fn) ≥ (λg − ε) logM
( r

42
, hn−2

)
+O(1).

So, log[n−1] T (r, fn) ≥ (λg − ε) logM
( r

4n−1
, h
)

+O(1) when n = 3k.

Similarly

log[n−1] T (r, fn) ≥ (λh − ε) logM
( r

4n−1
, f
)

+O(1) when n= 3k + 1,

and

log[n−1] T (r, fn) ≥ (λf − ε) logM
( r

4n−1
, g
)

+O(1) when n= 3k + 2.

This proves the lemma. �
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3. Theorems

Theorem 3.1. Let f(z), g(z) and h(z) be three non-constant entire
functions of finite order and nonzero lower order, then

(i) lim inf
r→∞

log[n−1] T (r, fn)

T (r, h)
≤ 3ρg2

λh ,

(ii) lim sup
r→∞

log[n−1] T (r, fn)

T (r, h)
≥ λg

(4n−1)λh

when n = 3k
and

(iii) lim inf
r→∞

log[n−1] T (r, fn)

T (r, f)
≤ 3ρh2λf ,

(iv) lim sup
r→∞

log[n−1] T (r, fn)

T (r, f)
≥ λh

(4n−1)λf

when n = 3k + 1. Also when n = 3k + 2,

(v) lim inf
r→∞

log[n−1] T (r, fn)

T (r, g)
≤ 3ρf2λg ,

(vi) lim sup
r→∞

log[n−1] T (r, fn)

T (r, g)
≥

λf

(4n−1)λg
.

Proof. Since f(z), g(z) and h(z) are three non-constant entire functions
of finite order and nonzero lower order so from Lemma 2.4 for arbitrary
ε > 0,

(3.1) log[n−1] T (r, fn) ≤ (ρg + ε) logM(r, h) +O(1)

when n = 3k.
Let 0 < ε <min{1, λf , λg, λh}. Since

lim inf
r→∞

T (r, h)

rλh(r)
= 1,

there is a sequence of values of r tending to infinity for which

(3.2) T (r, h) < (1 + ε)rλh(r)

and for all large value of r

(3.3) T (r, h) > (1− ε)rλh(r).
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Thus for a sequence of values of r tending to infinity we get for any
δ(> 0)

logM(r, h)

T (r, h)
≤ 3T (2r, h)

T (r, h)
≤ 3(1 + ε)

1− ε
(2r)λh+δ

(2r)λh+δ−λh(2r)
1

rλh(r)

≤ 3(1 + ε)

1− ε
2λh+δ

because rλh+δ−λh(r) is an increasing function of r.
Since ε, δ > 0 be arbitrary, we have

(3.4) lim inf
r→∞

logM(r, h)

T (r, h)
≤ 3.2λh .

Therefore from (3.1) and (3.4) we get

lim inf
r→∞

log[n−1] T (r, fn)

T (r, h)
≤ 3ρg2

λh ,

when n = 3k.
Again for n = 3k we have from Lemma 2.4,

log[n−1] T (r, fn) ≥ (λg − ε) logM
( r

4n−1
, h
)

+O(1)

≥ (λg − ε)T
( r

4n−1
, h
)

+O(1)

≥ (λg − ε)(1− ε)(1 +O(1))

(
r

4n−1

)λh+δ(
r

4n−1

)λh+δ−λh( r
4n−1

) , by (3.3).

Since rλh+δ−λh(r) is an increasing function of r, we have

log[n−1] T (r, fn) ≥ (λg − ε)(1− ε)(1 +O(1))
rλh(r)

(4n−1)λh+δ

for all large values of r.
So by (3.2) for a sequence of values of r tending to infinity

log[n−1] T (r, fn) ≥ (λg − ε)
1− ε
1 + ε

(1 +O(1))
T (r, h)

(4n−1)λh+δ
.

Since ε and δ are arbitrary, it follows from the above that

lim sup
r→∞

log[n−1] T (r, fn)

T (r, h)
≥ λg

(4n−1)λh
.

Similarly for n = 3k + 1 and 3k + 2 we get the other results.
This proves the theorem. �
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Theorem 3.2. Let f(z), g(z) and h(z) be three entire functions with
nonzero lower order and finitre order, then for k = 0, 1, 2, 3, ......

lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0 for all natural number n.

Proof. First suppose n = 3k then by Lemma 2.4, for all sufficiently large
values of r and ε(0 < ε < min{λf , λg, λh}),

log[n−1] T (r, fn) ≤ (ρg + ε) logM(r, h) +O(1),

logM(r, h) < rρh+ε

and T (exp(r), f (k)) > er
(λf−ε)

.

lSo

log[n−1] T (r, fn)

T (exp(r), f (k))
≤ (ρg + ε)rρh+ε

er
(λf−ε)

+ o(1).

∴ lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0.

Similarly for n = 3k + 1, we have

log[n−1] T (r, fn) ≤ (ρh + ε) logM(r, f) +O(1),

and logM(r, f) < rρf+ε.

So

log[n−1] T (r, fn)

T (exp(r), f (k))
≤ (ρh + ε)rρf+ε

er
(λf−ε)

+ o(1).

∴ lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0.

Also when n = 3k + 2, then,

log[n−1] T (r, fn) ≤ (ρf + ε) logM(r, g) +O(1),

and logM(r, g) < rρg+ε.

So

log[n−1] T (r, fn)

T (exp(r), f (k))
≤

(ρf + ε)rρg+ε

er
(λf−ε)

+ o(1).

∴ lim
r→∞

log[n−1] T (r, fn)

T (exp(r), f (k))
= 0.

This proves the theorem. �
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Remark 3.3. The finite order of the functions is necessary for Theorem
3.2, which is shown by the following example.

Example 3.4. Let f(z) = g(z) = exp z and h(z) = exp[2] z then λf =
ρf = λg = ρg = 1 and ρh =∞.

Now when n = 3k
fn(z) = exp[ 4n

3
] z.

Therefore,

3T (2r, fn) ≥ logM(r, fn) = exp[ 4n
3
−1] r

i.e. T (r, fn) ≥ 1

3
exp[ 4n

3
−1] r

2

∴ log[n−1] T (r, fn) ≥ exp[ 4n
3
−1−n+1] r

2
+ o(1)

= exp[n
3
] r

2
+ o(1).

Also when n = 3k + 1,

fn(z) = exp[ 4n−1
3

] z.

Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[ 4n−1
3
−1] r

i.e. T (r, fn) ≥ 1

3
exp[ 4n−1

3
−1] r

2

∴ log[n−1] T (r, fn) ≥ exp[ 4n−1
3
−1−n+1] r

2
+ o(1)

= exp[n−1
3

] r

2
+ o(1).

If n = 3k + 1,

fn(z) = exp[ 4n−2
3

] z.

Therefore

3T (2r, fn) ≥ logM(r, fn) = exp[ 4n−2
3
−1] r

i.e. T (r, fn) ≥ 1

3
exp[ 4n−2

3
−1] r

2

∴ log[n−1] T (r, fn) ≥ exp[ 4n−2
3
−1−n+1] r

2
+ o(1)

= exp[n−2
3

] r

2
+ o(1).

Also

T (exp(r), f (k)) =
er

π
.
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Therefore

log[n−1] T (r, fn)

T (exp(r), f (k))
≥

exp[n
3
] r
2 + o(1)

er/π
9 0 as r →∞ and n = 3k,

log[n−1] T (r, fn)

T (exp(r), f (k))
≥

exp[n−1
3

] r
2 + o(1)

er/π
9 0 as r →∞ and n = 3k + 1,

log[n−1] T (r, fn)

T (exp(r), f (k))
≥

exp[n−2
3

] r
2 + o(1)

er/π
9 0 as r →∞ and n = 3k + 2.

Theorem 3.5. Let f(z), g(z) and h(z) be three entire functions with
nonzero lower order and finitre order, then for k = 0, 1, 2, 3, ......

lim
r→∞

log[n−1] T (r, fn)

T (exp(r), g(k))
= 0 and lim

r→∞

log[n−1] T (r, fn)

T (exp(r), h(k))
= 0 for all natural number n.

References

[1] D. Banerjee and R. K. Dutta, The growth of iterated entire functions, Bulletin
of Mathematical analysis and applications, 3(3) (2011), 35–49.

[2] D. Banerjee and B. Mandal, Relative fix points of a certain class of complex
functions, Istanbul Univ. Sci. Fac. J. Math. Phys. Astr., 6, (2015), 15–25.

[3] J. Clunie, The composition of entire and meromorphic functions, Mathematical
essays dedicated to A. J. Macintyre, Ohio Univ. Press, (1970), 75–92.

[4] R. K. Dutta, Further growth of iterated entire functions-I, Journal of Mathemat-
ical Inequalities, 5(4) (2011), 533–550.

[5] R. K. Dutta, Growth of iterated entire functions in terms of its maximum term,
Acta Universitatis Apulensis, 30 (2012), 209–219.

[6] R. K. Dutta, The growth estimate of iterated entire functions, Acta Universitatis
Apulensis, 34 (2013), 81–87.

[7] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[8] I. Lahiri, Growth of composite integral functions, Indian J. Pure and Appl. Math.,

20(9) (1989), 899–907.
[9] I. Lahiri and S. K. Datta, On the growth of composite entire and meromorphic

functions, Indian J. Pure and Appl. Math., 35(4) (2004), 525–543.
[10] K. Niino and C. C. Yang, Some growth relationships on factors of two composite

entire functions, Factorization Theory of Meromorphic Functions and Related
Topics, Marcel Dekker Inc. (New York and Basel), (1982), 95–99.

[11] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer.
Math. Soc., 69 (1963), 411–414.

[12] A. P. Singh, Growth of composite entire functions, Kodai Math. J., 8 (1985),
99–102.



Ratan Kumar Dutta 125

Ratan Kumar Dutta
Department of Mathematics, Rishi Bankim Chandra College, West Bengal, Naihati-
743165, India
Email: ratan 3128@yahoo.com


	1. Introduction, Definitions and Notations
	2. Lemmas
	3. Theorems
	References

