(a, b)-FUZZY SUBRINGS AND (a, b)-FUZZY IDEALS OF A RING

SHRIRAM KHANDERAO NIMBHORKAR AND JYOTI ASHOK KHUBCHANDANI

Abstract

As an extension of the concept of a fuzzy subring and a fuzzy ideal, a new kind of a fuzzy subring and a fuzzy ideal called an (a, b)-fuzzy subring and an (a, b)-fuzzy ideal of a ring is defined and their properties are studied. We also investigate the preimage of an (a, b)-fuzzy subring and an (a, b)-fuzzy ideal under a ring homomorphism. Also, (a, b)-level fuzzy subrings (fuzzy ideals) are studied. A necessary and sufficient condition for two (a, b)-level fuzzy subrings (fuzzy ideals) to be equal is proved. We show that the set of cosets of an (a, b)-fuzzy ideal forms a ring.

Key Words: (a, b)-fuzzy subring, (a, b)-fuzzy ideal, (a, b)-fuzzy level subset.
2010 Mathematics Subject Classification: Primary: 08A72; Secondary: 13A15.

1. Introduction

In 1965, Zadeh [3] introduced the concept of a fuzzy set. Later in 1971, Rosenfeld [1] used this concept to define a fuzzy subgroupoid and a fuzzy subgroup. Liu [5] studied fuzzy invariant subgroups, fuzzy ideals and proved some fundamental properties. Sharma [4] introduced and studied the concept of an α-fuzzy subgroup. We extend this concept to form (a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring R.

[^0]
2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity. We recall some definitions and results.

Definition 2.1. [3] Let S be a nonempty set. A mapping $\omega: S \rightarrow[0,1]$ is called a fuzzy subset of S.
Remark 2.2. [3] If ω and σ are two fuzzy subsets of R, then
(i) $\omega \subseteq \sigma$ if and only if $\omega(x) \leq \sigma(x)$;
(ii) $(\omega \cup \sigma)(x)=\max \{\omega(x), \sigma(x)\}=\omega(x) \vee \sigma(x)$;
(iii) $(\omega \cap \sigma)(x)=\min \{\omega(x), \sigma(x)\}=\omega(x) \wedge \sigma(x)$; for all $x \in R$.

Definition 2.3. [2] Let X and Y be two nonempty sets and $g: X \rightarrow Y$ be a mapping. Let $\omega \in[0,1]^{X}$ and $\sigma \in[0,1]^{Y}$. Then the image $g(\omega) \in$ $[0,1]^{Y}$ and the inverse image $g^{-1}(\sigma) \in[0,1]^{X}$ are defined as follows: for all $y \in Y$,

$$
g(\omega)(y)=\left\{\begin{array}{l}
\vee\{\omega(x) \mid x \in X, g(x)=y\}, \text { if } g^{-1}(y) \neq \phi, \\
0, \text { otherwise }
\end{array}\right.
$$

and $g^{-1}(\sigma)(x)=\sigma(g(x))$ for all $x \in X$.
Definition 2.4. [3] Let ω be a fuzzy subset of a set S and let $t \in[0,1]$. The set $\omega_{t}=\{x \in R \mid \omega(x) \geqslant t\}$ is called a level subset of ω.

Clearly, $\omega_{t} \subseteq \omega_{s}$ whenever $t>s$.
Definition 2.5. [5] A fuzzy subset ω of R is called a fuzzy subring, if for all $x, y \in R$, the following conditions hold:
(i) $\omega(x-y) \geq \min (\omega(x), \omega(y))$;
(ii) $\omega(x y) \geq \min (\omega(x), \omega(y))$.

Definition 2.6. [5] A fuzzy subset ω of R is called a fuzzy ideal, if for all $x, y \in R$, the following conditions are satisfied:
(i) $\omega(x-y) \geq \min (\omega(x), \omega(y))$;
(ii) $\omega(x y) \geq \max (\omega(x), \omega(y))$.

3. (a, b)-Fuzzy subsets and their properties

Sharma [4] introduced the concept of an α-fuzzy subgroup. We extend this concept to a subring and an ideal of a ring. This notion is used to construct a fuzzy subring (ideal) from a fuzzy set.
Definition 3.1. Let ω be a fuzzy subset of R. Let $0 \leq b<a \leq 1$. Then the fuzzy set ω_{b}^{a} of R defined by $\omega_{b}^{a}(x)=\min \{\omega(x), 1-a+b\}$, for all
$x \in R$, is called as the (a, b)-fuzzy subset of R with respect to the fuzzy set ω.

Lemma 3.2. (i) Let ω and η be two fuzzy subsets of X. Then $(\omega \cap \eta)_{b}^{a}=\omega_{b}^{a} \cap \eta_{b}^{a}$.
(ii) Let $g: X \longrightarrow Y$ be an onto mapping and η be a fuzzy subset of Y.

Define $\eta \circ g: X \rightarrow[0,1]$ by $(\eta \circ g)(x)=\eta(g(x))$. Then $\eta_{b}^{a} \circ g=(\eta \circ g)_{b}^{a}$. (iii) Let $g: X \longrightarrow Y$ be a onto mapping and η be two fuzzy subsets of Y. Then $g^{-1}\left(\eta_{b}^{a}\right)=\left(g^{-1}(\eta)\right)_{b}^{a}$.

Proof. (i): For all $x \in X$ we have

$$
\begin{aligned}
(\omega \cap \eta)_{b}^{a}(x) & =\min \{(\omega \cap \eta)(x), 1-a+b\} \\
& =\min \{\min \{\omega(x), \eta(x)\}, 1-a+b\} \\
& =\min \{\min \{\omega(x), 1-a+b\}, \min \{\eta(x), 1-a+b\}\} \\
& =\min \left\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\right\} \\
& =\omega_{b}^{a}(x) \cap \eta_{b}^{a}(x) \\
& =\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x) .
\end{aligned}
$$

Hence, $(\omega \cap \eta)_{b}^{a}=\omega_{b}^{a} \cap \eta_{b}^{a}$.
(ii): For all $x \in X$, we have

$$
\begin{aligned}
\left(\eta_{b}^{a} \circ g\right)(x) & =\eta_{b}^{a}(g(x)) \\
& =\min \{\eta(g(x)), 1-a+b\} \\
& =\min \{(\eta \circ g)(x), 1-a+b\} \\
& =(\eta \circ g)_{b}^{a}(x) .
\end{aligned}
$$

Hence, $\eta_{b}^{a} \circ g=(\eta \circ g)_{b}^{a}$.
(iii): Consider

$$
\begin{aligned}
g^{-1}\left(\eta_{b}^{a}\right)(x) & =\eta_{b}^{a}(g(x)) \\
& =\min \{\eta(g(x)), 1-a+b\} \\
& =\min \left\{g^{-1}(\eta(x)), 1-a+b\right\} \\
& =\left(g^{-1}(\eta)\right)_{b}^{a}(x), \quad \text { for all } x \in X .
\end{aligned}
$$

Hence, $g^{-1}\left(\eta_{b}^{a}\right)=\left(g^{-1}(\eta)\right)_{b}^{a}$.

4. (a, b)-Fuzzy subrings

Definition 4.1. Let ω be a fuzzy subset of R. Let $0 \leq b<a \leq 1$. Then ω is called an (a, b)-fuzzy subring of R if ω_{b}^{a} is a fuzzy subring of R, that is, if the following conditions hold:
(i) $\omega_{b}^{a}(x-y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}$;
(ii) $\omega_{b}^{a}(x y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}$, for all $x, y \in R$.

Proposition 4.2. If ω is a fuzzy subring of R, then ω is also (a, b)-fuzzy subring of R.

Proof. For $x, y \in R$ we have

$$
\begin{aligned}
\omega_{b}^{a}(x-y) & =\min \{\omega(x-y), 1-a+b\} \\
& \geq \min \{\min \{\omega(x), \omega(y)\}, 1-a+b\}
\end{aligned}
$$

(since ω is a fuzzy subring of R)
$=\min \{\min \{\omega(x), 1-a+b\}, \min \{\omega(y), 1-a+b\}\}$
$=\min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}$.
Also,

$$
\begin{align*}
\omega_{b}^{a}(x y)= & \min \{\omega(x y), 1-a+b\} \\
\geq & \min \{\min \{\omega(x), \omega(y)\}, 1-a+b\} \\
& \quad(\text { since } \omega \text { is a fuzzy subring of } R) \\
= & \min \{\min \{\omega(x), 1-a+b\}, \min \{\omega(y), 1-a+b\}\} \\
= & \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} \tag{4.2}
\end{align*}
$$

It follows from (4.1) and (4.2), that ω is (a, b)-fuzzy subring of R.
The following example shows that the converse of Proposition 4.2 need not hold.

Example 4.3. Consider the fuzzy subset of the ring $R=\mathbb{Z}_{8}$ defined as follows:

$$
\omega(x)= \begin{cases}0.4, & \text { if } x=\{0,4\} \\ 0.7, & \text { if } x=\{1,2,3,5,6,7\}\end{cases}
$$

We note that for $x=6, y=2, \omega(6)=\omega(2)=0.7$ and $\omega(x-y)=\omega(6-2)=\omega(4)=0.4$. Thus, $\omega(x-y) \nsupseteq \min \{\omega(x), \omega(y)\}$.
Hence, ω is not a fuzzy subring of R.
We note that if $a=0.9, b=0.2$, then $1-a+b=0.3$ and so
$\omega(x)>1-a+b=0.3$ for all $x \in R$. Hence

$$
\omega_{0.2}^{0.9}(x)=\min \{\omega(x), 0.3\}=0.3, \text { for all } x \in R
$$

Therefore,

$$
\omega_{0.2}^{0.9}(x-y) \geq \min \left\{\omega_{0.2}^{0.9}(x), \omega_{0.2}^{0.9}(y)\right\}
$$

and

$$
\omega_{0.2}^{0.9}(x y) \geq \min \left\{\omega_{0.2}^{0.9}(x), \omega_{0.2}^{0.9}(y)\right\}
$$

Hence, ω is an ($0.9,0.2$)-fuzzy subring of R.
Proposition 4.4. The intersection of two (a, b)-fuzzy subrings of a ring R is again an (a, b)-fuzzy subring of R.

Proof. Let ω and η be two (a, b)-fuzzy subrings of a ring R.
For $x, y \in R$, we have

$$
\begin{align*}
(\omega \cap \eta)_{b}^{a}(x-y) & =\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x-y), \text { by Lemma } 3.2 \\
& \left.=\min \left\{\omega_{b}^{a}(x-y), \eta_{b}^{a}(x-y)\right\}\right\} \\
& \geq \min \left\{\min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}, \min \left\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\right\}, \min \left\{\omega_{b}^{a}(y), \eta_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x),\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(y)\right\} \\
& \left.\left.=\min \left\{(\omega \cap \eta)_{b}^{a}(x)\right),(\omega \cap \eta)_{b}^{a}(y)\right)\right\} . \tag{4.3}
\end{align*}
$$

Also,

$$
\begin{align*}
(\omega \cap \eta)_{b}^{a}(x y) & =\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x y), \text { by Lemma } 3.2 \\
& =\min \left\{\omega_{b}^{a}(x y), \eta_{b}^{a}(x y)\right\} \\
& \geq \min \left\{\min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}, \min \left\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\right\}, \min \left\{\omega_{b}^{a}(y), \eta_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x),\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(y)\right\} \\
& \left.\left.=\min \left\{(\omega \cap \eta)_{b}^{a}(x)\right),(\omega \cap \eta)_{b}^{a}(y)\right)\right\} . \tag{4.4}
\end{align*}
$$

It follows from (4.3) and (4.4), that $\omega \cap \eta$ is an (a, b)-fuzzy subring of R.

The following example shows that the union of two (a, b)-fuzzy subrings of a ring R need not be an (a, b)-fuzzy subring of R.
Example 4.5. Define fuzzy subsets ω and η of the ring $R=\mathbb{Z}$ as follows:

$$
\omega(x)= \begin{cases}0.5, & \text { if } x \in 4 \mathbb{Z} \\ 0.1, & \text { otherwise }\end{cases}
$$

$$
\eta(x)= \begin{cases}0.25, & \text { if } x \in 5 \mathbb{Z} \\ 0.08, & \text { otherwise }\end{cases}
$$

Let $a=0.5, b=0.2$. Then $1-a+b=0.7$.
We note that ω and η are ($0.5,0.2$)-fuzzy subrings of \mathbb{Z}.
We know that, $(\omega \cup \eta)(x)=\max \{\omega(x), \eta(x)\}$.
Therefore,

$$
(\omega \cup \eta)(x)=\left\{\begin{array}{l}
0.5, \text { if } x \in 4 \mathbb{Z}, \\
0.25, \text { if } x \in 5 \mathbb{Z}, \\
0.1, \text { if } x \notin 4 \mathbb{Z} \cup 5 \mathbb{Z}
\end{array}\right.
$$

Let $x=12, y=5$. Then $(\omega \cup \eta)(x)=0.5,(\omega \cup \eta)(y)=0.25$ and $(\omega \cup \eta)(x-y)=0.1$.
Also,

$$
\begin{aligned}
& (\omega \cup \eta)_{0.2}^{0.5}(x)=\min \{(\omega \cup \eta)(x), 0.7\}=\min \{0.5,0.7\}=0.5 . \\
& (\omega \cup \eta)_{0.2}^{0.5}(y)=\min \{(\omega \cup \eta)(y), 0.7\}=\min \{0.25,0.7\}=0.25 . \\
& (\omega \cup \eta)_{0.2}^{0.5}(x-y)=\min \{(\omega \cup \eta)(x-y), 0.7\}=\min \{0.1,0.7\}=0.1
\end{aligned}
$$

Thus,

$$
(\omega \cup \eta)_{0.2}^{0.5}(x-y) \nsupseteq \min \left\{(\omega \cup \eta)_{0.2}^{0.5}(x),(\omega \cup \eta)_{0.2}^{0.5}(y)\right\} .
$$

Hence, $\omega \cup \eta$ is not a ($0.5,0.2$)-fuzzy subring of R.
Theorem 4.6. Let g be a homomorphism from a ring R onto a ring R^{\prime}. If ω is an (a, b)-fuzzy subring of R^{\prime}, then $g^{-1}(\omega)$ is an (a, b)-fuzzy subring of R.

Proof. Let $x, y \in R$. We have

$$
\begin{aligned}
\left(g^{-1}(\omega)\right)_{b}^{a}(x-y) & =g^{-1}\left(\omega_{b}^{a}\right)(x-y), \text { by Lemma } 3.2 \\
& =\omega_{b}^{a}((g(x-y))) \\
& =\omega_{b}^{a}(g(x)-g(y)) \\
& \geq \min \left\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\right\},
\end{aligned}
$$

(since ω is an (a, b)-fuzzy subring of R^{\prime})
$=\min \left\{g^{-1}\left(\omega_{b}^{a}(x)\right), g^{-1}\left(\omega_{b}^{a}(y)\right)\right\}$

$$
\begin{equation*}
=\min \left\{\left(g^{-1}(\omega)\right)_{b}^{a}(x),\left(g^{-1}(\omega)\right)_{b}^{a}(y)\right\} \tag{4.5}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left(g^{-1}(\omega)\right)_{b}^{a}(x y) \\
& =g^{-1}\left(\omega_{b}^{a}\right)(x y), \text { by Lemma } 3.2 \\
& =\omega_{b}^{a}((g(x y))) \\
& =\omega_{b}^{a}(g(x) g(y)) \\
& \geq \min \left\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\right\}, \\
& \quad\left(\text { since } \omega \text { is an }(a, b) \text {-fuzzy subring of } R^{\prime}\right) \\
& =\min \left\{g^{-1}\left(\omega_{b}^{a}\right)(x), g^{-1}\left(\omega_{b}^{a}\right)(y)\right\} \\
& =\min \left\{\left(g^{-1}(\omega)\right)_{b}^{a}(x),\left(g^{-1}(\omega)\right)_{b}^{a}(y)\right\}, \text { by Lemma 3.2. } \tag{4.6}
\end{align*}
$$

From (4.5) and (4.6), it follows that $g^{-1}(\omega)$ is an (a, b)-fuzzy subring of R.
Definition 4.7. Let $\omega: R \rightarrow[0,1]$ be a fuzzy subset of R.
For $t \in[0,1]$, the (a, b)-level subset of ω is denoted by $\left(\omega_{b}^{a}\right)_{t}$ and is defined as $\left(\omega_{b}^{a}\right)_{t}=\left\{x \in R \mid \omega_{b}^{a}(x) \geq t\right\}$.
Example 4.8. Let $\omega: \mathbb{Z}_{9} \rightarrow[0,1]$ be as follows:

$$
\omega(x)=\left\{\begin{array}{l}
0.7, \text { if } x=\{0,3,6\} \\
0.1, \text { otherwise }
\end{array}\right.
$$

Let $a=1, b=0.5$ and $t=0.4$. We have $1-a+b=0.5$.
Then

$$
\omega_{b}^{a}(x)=\omega_{0.5}^{1}(x)=\left\{\begin{array}{l}
0.5, \text { if } x=\{0,3,6\} \\
0.1, \text { otherwise }
\end{array}\right.
$$

and $\left(\omega_{0.5}^{1}\right)_{0.4}=\left\{x \in \mathbb{Z}_{9} \mid \omega_{0.5}^{1}(x) \geq 0.4\right\}=\{0,3,6\}$.
Theorem 4.9. Let R be a ring, $t \in[0,1]$ and $\omega: R \rightarrow[0,1]$ be an (a, b) fuzzy subring of R. If the (a, b)-level subset is nonempty, then $\left(\omega_{b}^{a}\right)_{t}$ is a subring of R.
Proof. We note that if $x, y \in\left(\omega_{b}^{a}\right)_{t}$, then $\left(\omega_{b}^{a}\right)(x) \geq t$ and $\left(\omega_{b}^{a}\right)(y) \geq t$. We have $\left(\omega_{b}^{a}\right)(x-y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}=\min \{t, t\}=t$.
This implies that

$$
\begin{equation*}
x-y \in\left(\omega_{b}^{a}\right)_{t} . \tag{4.7}
\end{equation*}
$$

We have, $\left(\omega_{b}^{a}\right)(x y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}=\min \{t, t\}=t$.
This implies that

$$
\begin{equation*}
x y \in\left(\omega_{b}^{a}\right)_{t} . \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), we conclude that $\left(\omega_{b}^{a}\right)_{t}$ is a subring of R.
Theorem 4.10. Let R be a ring and $\omega: R \rightarrow[0,1]$ be a fuzzy subset of R. Suppose that $\left(\omega_{b}^{a}\right)_{t}$ is a subring of R, for all $t \in[0,1]$. Then ω is an (a, b)-fuzzy subring of R.
Proof. Let $x, y \in R,\left(\omega_{b}^{a}\right)(x)=t_{1}$ and $\left(\omega_{b}^{a}\right)(y)=t_{2}$ where $t_{1}, t_{2} \in[0,1]$. Then $\left(\omega_{b}^{a}\right)_{t_{1}}$ and $\left(\omega_{b}^{a}\right)_{t_{2}}$ are subrings of R.
Since, $t_{1} \wedge t_{2} \leq t_{1}$ and $t_{1} \wedge t_{2} \leq t_{2}$, we have $\left(\omega_{b}^{a}\right)_{t_{1}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$ and $\left(\omega_{b}^{a}\right)_{t_{2}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$.
Hence, $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$ and $y \in\left(\omega_{b}^{a}\right)_{t_{2}}$ implies $x, y \in\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$.
Then $x-y$ and $x y \in\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$, since $\left(\omega_{b}^{a}\right)_{t}$ is a subring of R, for all $t \in[0,1]$.
This implies $\left(\omega_{b}^{a}\right)(x-y) \geq t_{1} \wedge t_{2}=\min \left\{\left(\omega_{b}^{a}\right)(x),\left(\omega_{b}^{a}\right)(y)\right\}$ and $\left(\omega_{b}^{a}\right)(x y) \geq t_{1} \wedge t_{2}=\min \left\{\left(\omega_{b}^{a}\right)(x),\left(\omega_{b}^{a}\right)(y)\right\}$.
This proves that ω is an (a, b)-fuzzy subring of R.
Definition 4.11. Let ω be an (a, b)-fuzzy subring of R and $t \in[0,1]$. Then the subring $\left(\omega_{b}^{a}\right)_{t}$ is said to be an (a, b)-level subring of ω.
Example 4.12. Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$. Define a fuzzy subset ω as follows:

$$
\omega(x)=\left\{\begin{array}{l}
0.75, \text { if } x=\{(0,0),(0,2),(2,0),(2,2)\} \\
0.4, \text { otherwise }
\end{array}\right.
$$

We note that for $a=0.9, b=0.5,1-a+b=0.6, \omega$ is an (a, b)-fuzzy subring of R.
Also,

$$
\omega_{0.5}^{0.9}(x)=\left\{\begin{array}{l}
0.6, \text { if } x=\{(0,0),(0,2),(2,0),(2,2)\} \\
0.4, \text { otherwise }
\end{array}\right.
$$

If $t=0.5$, then $\left(\omega_{0.5}^{0.9}\right)_{t}=\{(0,0),(0,2),(2,0),(2,2)\}$ is a subring of R and a $(0.9,0.5)$-level subring of ω.
Theorem 4.13. Let ω be an (a, b)-fuzzy subring of a ring R. Then two (a,b)-level subrings $\left(\omega_{b}^{a}\right)_{t_{1}},\left(\omega_{b}^{a}\right)_{t_{2}}$ with $t_{1}<t_{2}$ are equal if and only if there is no $x \in R$ such that $t_{1} \leq \omega_{b}^{a}(x)<t_{2}$.
Proof. Let $\left(\omega_{b}^{a}\right)_{t_{1}}=\left(\omega_{b}^{a}\right)_{t_{2}}$. If there exists $x \in R$ such that $t_{1} \leq \omega_{b}^{a}(x)<t_{2}$, then $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$, but $x \notin\left(\omega_{b}^{a}\right)_{t_{2}}$ which is a contradiction. Conversely, suppose there is no $x \in R$ such that $t_{1} \leq \omega_{b}^{a}(x)<t_{2}$.
As $t_{1}<t_{2}$ implies $\left(\omega_{b}^{a}\right)_{t_{2}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1}}$.
Now, if $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$, then $\left(\omega_{b}^{a}\right)(x) \geq t_{1}$.
Clearly, $\omega_{b}^{a}(x) \nless t_{2}$. Since $\omega_{b}^{a}(x)$ and t_{2} are real numbers, it follows that $\omega_{b}^{a}(x) \geq t_{2}$, i.e., $x \in\left(\omega_{b}^{a}\right)_{t_{2}}$. Hence, $\left(\omega_{b}^{a}\right)_{t_{1}}=\left(\omega_{b}^{a}\right)_{t_{2}}$.

5. (a, b)-Fuzzy ideals

Definition 5.1. Let ω be a fuzzy subset of R and $0 \leq b<a \leq 1$. Then ω is called an (a, b)-fuzzy ideal of R if the following conditions hold:
$\left(R_{1}\right) \omega_{b}^{a}(x-y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} ;$
$\left(R_{2}\right) \omega_{b}^{a}(x y) \geq \max \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}$.
Remark 5.2. Let ω be an (a, b)-fuzzy subset of a commutative ring R. Then ω_{b}^{a} satisfies $\left(R_{2}\right)$ if and only if $\omega_{b}^{a}(x y) \geq \omega_{b}^{a}(x), \forall x, y \in R$.

Proposition 5.3. If ω is a fuzzy ideal of R, then ω is also (a, b)-fuzzy ideal of R.

Proof. For $x, y \in R$, we have

$$
\begin{align*}
\omega_{b}^{a}(x-y)= & \min \{\omega(x-y), 1-a+b\} \\
\geq & \min \{\min \{\omega(x), \omega(y)\}, 1-a+b\} \\
& (\text { since } \omega \text { is a fuzzy ideal of } R) \\
= & \min \{\min \{\omega(x), 1-a+b\}, \min \{\omega(y), 1-a+b\}\} \\
= & \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} \tag{5.1}
\end{align*}
$$

Also,

$$
\begin{align*}
\omega_{b}^{a}(x y)= & \min \{\omega(x y), 1-a+b\} \\
\geq & \min \{\max \{\omega(x), \omega(y)\}, 1-a+b\} \\
& (\text { since } \omega \text { is a fuzzy ideal of } R) \\
= & \max \{\min \{\omega(x), \omega(y)\}, 1-a+b\} \\
= & \max \{\min \{\omega(x), 1-a+b\}, \min \{\omega(y), 1-a+b\}\} \\
= & \max \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} \tag{5.2}
\end{align*}
$$

It follows from (5.1) and (5.2), that ω is a (a, b)-fuzzy ideal of ring R.
The following example shows that the converse of Proposition 5.3 may not be true.
Example 5.4. Define a fuzzy subset ω of the ring $R=\mathbb{Z}_{8}$ as follows:

$$
\omega(x)=\left\{\begin{array}{l}
0.45, \text { if } x=\{0,2,4,6\} \\
0.75, \text { otherwise }
\end{array}\right.
$$

We note that for $x=6, y=3, \omega(6)=0.45, \omega(3)=0.75, x y=18=2$, $\omega(x y)=0.45$. Thus, $\omega(x y) \nsupseteq \max \{\omega(x), \omega(y)\}$.
Hence ω is not a fuzzy ideal of \mathbb{Z}_{8}.
But ω is a $(0.8,0.1)$-fuzzy ideal of \mathbb{Z}_{8}.

Proposition 5.5. If $\omega: R \rightarrow[0,1]$ is an (a, b)-fuzzy ideal of R, then $\omega_{b}^{a}(0) \geq \omega_{b}^{a}(x) \geq \omega_{b}^{a}(1)$, for all $x \in R$.

Proof. For any $x \in R$, we have

$$
\begin{aligned}
\omega_{b}^{a}(0) & =\omega_{b}^{a}(x-x) \\
& \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(x)\right\}, \text { since } \omega \text { is an }(a, b) \text {-fuzzy ideal of } R . \\
& =\omega_{b}^{a}(x) \\
& =\omega_{b}^{a}(x .1) \\
& \geq \omega_{b}^{a}(1)
\end{aligned}
$$

Hence, $\omega_{b}^{a}(0) \geq \omega_{b}^{a}(x) \geq \omega_{b}^{a}(1)$, for all $x \in R$.
Proposition 5.6. If $\omega: R \rightarrow[0,1]$ is an (a, b)-fuzzy ideal of ring R with $\omega_{b}^{a}(x-y)=\omega_{b}^{a}(0)$, then $\omega_{b}^{a}(x)=\omega_{b}^{a}(y)$, for all $x, y \in R$.
Proof. Since ω is an (a, b)-fuzzy ideal of R,

$$
\begin{aligned}
\omega_{b}^{a}(x) & =\omega_{b}^{a}(x-y+y) \\
& \geq \min \left\{\omega_{b}^{a}(x-y), \omega_{b}^{a}(y)\right\} \\
& =\min \left\{\omega_{b}^{a}(0), \omega_{b}^{a}(y)\right\} \\
& =\omega_{b}^{a}(y) \\
\omega_{b}^{a}(y) & =\omega_{b}^{a}(y-x+x) \\
& \geq \min \left\{\omega_{b}^{a}(y-x), \omega_{b}^{a}(x)\right\} \\
& =\min \left\{\omega_{b}^{a}(0), \omega_{b}^{a}(x)\right\} \\
& =\omega_{b}^{a}(x)
\end{aligned}
$$

Hence, $\omega_{b}^{a}(x)=\omega_{b}^{a}(y)$, for all $x, y \in R$.
Proposition 5.7. Let $\omega: R \rightarrow[0,1]$ be an (a, b)-fuzzy ideal of R. If for some $t \in[0,1]$, the (a, b)-level subset $\left(\omega_{b}^{a}\right)_{t}$, is nonempty, then it is an ideal of R where $\left(\omega_{b}^{a}\right)_{t}=\left\{x \in R \mid \omega_{b}^{a}(x) \geq t\right\}$.
Proof. Let $x, y \in\left(\omega_{b}^{a}\right)_{t}$. Then $\omega_{b}^{a}(x) \geq t$ and $\omega_{b}^{a}(y) \geq t$. As ω is an (a, b)-fuzzy ideal of R,

$$
\left(\omega_{b}^{a}\right)(x-y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}=\min \{t, t\}=t
$$

Hence

$$
\begin{equation*}
x-y \in\left(\omega_{b}^{a}\right)_{t} \tag{5.3}
\end{equation*}
$$

Let $r \in R$ be arbitrary and $x \in\left(\omega_{b}^{a}\right)_{t}$, then $\omega_{b}^{a}(x) \geq t$.

$$
\left(\omega_{b}^{a}\right)(r x) \geq \max \left\{\omega_{b}^{a}(r), \omega_{b}^{a}(x)\right\} \geq \omega_{b}^{a}(x)=t
$$

Hence,

$$
\begin{equation*}
r x \in\left(\omega_{b}^{a}\right)_{t} . \tag{5.4}
\end{equation*}
$$

From (5.3) and (5.4), we conclude that $\left(\omega_{b}^{a}\right)_{t}$ is an ideal of R.
Proposition 5.8. Let $\omega: R \rightarrow[0,1]$ be an (a, b)-fuzzy subset of R. Suppose that $\left(\omega_{b}^{a}\right)_{t}$ is an ideal for all $t \in[0,1]$. Then ω is an (a, b)-fuzzy ideal of R.
Proof. Let $x, y \in R$ and $\omega_{b}^{a}(x)=t_{1}, \omega_{b}^{a}(y)=t_{2}$, where $t_{1}, t_{2} \in[0,1]$.
Then $\left(\omega_{b}^{a}\right)_{t_{1}}$ and $\left(\omega_{b}^{a}\right)_{t_{2}}$ are ideals of R.
Since, $t_{1} \wedge t_{2} \leq t_{1}$ and $t_{1} \wedge t_{2} \leq t_{2}$.
This implies that $\left(\omega_{b}^{a}\right)_{t_{1}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$ and $\left(\omega_{b}^{a}\right)_{t_{2}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$.
Hence, $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$ and $y \in\left(\omega_{b}^{a}\right)_{t_{2}}$, which implies that $x, y \in\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$ and so $x-y \in\left(\omega_{b}^{a}\right)_{t_{1} \wedge t_{2}}$.
Thus,

$$
\begin{align*}
\omega_{b}^{a}(x-y) \geq & t_{1} \wedge t_{2}=\min \left\{t_{1}, t_{2}\right\}, \\
& \text { as } t_{1}, t_{2} \text { are real numbers belonging to }[0,1] \\
= & \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} . \tag{5.5}
\end{align*}
$$

For $x, y \in R$, if $\omega_{b}^{a}(x)=t_{1}$, then $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$.
Therefore, $x y \in\left(\omega_{b}^{a}\right)_{t_{1}}$ implies $\omega_{b}^{a}(x y) \geq t_{1}$.
Hence,

$$
\begin{equation*}
\omega_{b}^{a}(x y) \geq \omega_{b}^{a}(x) \tag{5.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\omega_{b}^{a}(x y) \geq \omega_{b}^{a}(y) \tag{5.7}
\end{equation*}
$$

Hence, from (5.6) and (5.7),

$$
\begin{equation*}
\omega_{b}^{a}(x y) \geq \max \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} \tag{5.8}
\end{equation*}
$$

Thus, from (5.5) and (5.8), we conclude that ω is an (a, b)-fuzzy ideal of R.

Corollary 5.9. If $\omega: R \rightarrow[0,1]$ is an (a, b)-fuzzy ideal of R, then $\left\{x \in R \mid \omega_{b}^{a}(x)=\omega_{b}^{a}(0)\right\}$ is an ideal of R, where 0 is the additive identity of R.

Proof. Let $\tau=\left\{x \in R \mid \omega_{b}^{a}(x)=\omega_{b}^{a}(0)\right\}$.
Let $x, y \in \tau$. Then $\omega_{b}^{a}(x)=\omega_{b}^{a}(0)$ and $\omega_{b}^{a}(y)=\omega_{b}^{a}(0)$.

As ω is an (a, b)-fuzzy ideal, we have

$$
\begin{aligned}
\omega_{b}^{a}(x-y) & \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\} \\
& =\min \left\{\omega_{b}^{a}(0), \omega_{b}^{a}(0)\right\} \\
& =\omega_{b}^{a}(0)
\end{aligned}
$$

By Proposition 5.5, we have $\omega_{b}^{a}(0) \geq \omega_{b}^{a}(x-y)$.
Thus, $\omega_{b}^{a}(x-y)=\omega_{b}^{a}(0)$, which implies that $x-y \in \tau$.
Let $r \in R$ and $x \in \tau$. Then $\omega_{b}^{a}(x)=\omega_{b}^{a}(0)$.
Also,

$$
\begin{aligned}
\omega_{b}^{a}(r x) & \geq \max \left\{\omega_{b}^{a}(r), \omega_{b}^{a}(x)\right\} \\
& =\max \left\{\omega_{b}^{a}(r), \omega_{b}^{a}(0)\right\} \\
& =\omega_{b}^{a}(0) .
\end{aligned}
$$

Again by Proposition 5.5, $\omega_{b}^{a}(0) \geq \omega_{b}^{a}(r x)$
Thus $\omega_{b}^{a}(0)=\omega_{b}^{a}(r x)$ and so $r x \in \tau$.
Hence τ is an ideal of R.
Proposition 5.10. If $\omega: R \rightarrow[0,1]$ is an (a, b)-fuzzy ideal of R, then $\left\{x \in R \mid \omega_{b}^{a}(x)>t\right\}$ is an ideal of R for all $t \in[0,1]$.
Proof. Let us write $\left(\omega_{b}^{a}\right)_{t}=\left\{x \in R \mid \omega_{b}^{a}(x)>t\right\}$.
Let $x, y \in\left(\omega_{b}^{a}\right)_{t}$. Then $\omega_{b}^{a}(x)>t$ and $\omega_{b}^{a}(y)>t$.
As ω is an (a, b)-fuzzy ideal of R, we have

$$
\omega_{b}^{a}(x-y) \geq \min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}>\min \{t, t\}=t
$$

Hence, $x-y \in\left(\omega_{b}^{a}\right)_{t}$.
Now let $x \in \omega_{b}^{a}(x)$ and $r \in R$. Then

$$
\omega_{b}^{a}(r x) \geq \max \left\{\omega_{b}^{a}(r), \omega_{b}^{a}(x)\right\}>\omega_{b}^{a}(x)>t
$$

Hence, $r x \in\left(\omega_{b}^{a}\right)_{t}$.
Thus, $\left\{x \in R \mid \omega_{b}^{a}(x)>t\right\}$ is an ideal of R for all $t \in[0,1]$.
Definition 5.11. Let ω be an (a, b)-fuzzy ideal of R. Then the ideals $\left(\omega_{b}^{a}\right)_{t}$ for $t \in[0,1]$ are called (a, b)-level ideals of R.
Remark 5.12. Let ω be an (a, b)-fuzzy ideal of R and $t_{1}, t_{2} \in[0,1]$ be such that $t_{1} \leq t_{2}$. We note that if $x \in\left(\omega_{b}^{a}\right)_{t_{2}}$, then $\left(\omega_{b}^{a}\right)(x) \geq t_{2} \geq t_{1}$. Hence $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$. Thus $\left(\omega_{b}^{a}\right)_{t_{2}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1}}$.
Proposition 5.13. Let $\omega: R \rightarrow[0,1]$ be a (a, b)-fuzzy ideal of R. Two level ideals $\left(\omega_{b}^{a}\right)_{t_{1}},\left(\omega_{b}^{a}\right)_{t_{2}}$ with $t_{1}<t_{2}$ are equal if and only if there is no $x \in R$ such that $t_{1} \leq \omega_{b}^{a}(x)<t_{2}$.

Proof. Assume that $\left(\omega_{b}^{a}\right)_{t_{1}}=\left(\omega_{b}^{a}\right)_{t_{2}}$. If there exists $x \in R$ such that $t_{1} \leq \omega_{b}^{a}(x)<t_{2}$, then $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$ but $x \notin\left(\omega_{b}^{a}\right)_{t_{2}}$, a contradiction.

Conversely, suppose that there is no $x \in R$ such that $t_{1} \leq \omega_{b}^{a}(x)<t_{2}$. Since, $t_{1}<t_{2}$ we have $\left(\omega_{b}^{a}\right)_{t_{2}} \subseteq\left(\omega_{b}^{a}\right)_{t_{1}}$.
Now if $x \in\left(\omega_{b}^{a}\right)_{t_{1}}$, then $t_{1} \leq \omega_{b}^{a}(x)$.
Hence, by the given condition it follows that $\omega_{b}^{a}(x) \not \leq t_{2}$.
Since $\omega_{b}^{a}(x)$ and t_{2} are real numbers belonging to $[0,1]$, this implies that $\omega_{b}^{a}(x) \geq t_{2}$. Hence $x \in\left(\omega_{b}^{a}\right)_{t_{2}}$.
Therefore, $\left(\omega_{b}^{a}\right)_{t_{1}}=\left(\omega_{b}^{a}\right)_{t_{2}}$.
Proposition 5.14. The intersection of two (a, b)-fuzzy ideals of R is an (a, b)-fuzzy ideal.

Proof. Let ω and η be two (a, b)-fuzzy ideals of R.
For $x, y \in R$, we have

$$
\begin{align*}
(\omega \cap \eta)_{b}^{a}(x-y) & =\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x-y), \text { by Lemma } 3.2 \\
& =\min \left\{\omega_{b}^{a}(x-y), \eta_{b}^{a}(x-y)\right\} \\
& \geq \min \left\{\min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}, \min \left\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\right\}, \min \left\{\omega_{b}^{a}(y), \eta_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\omega_{b}^{a}(x) \cap \eta_{b}^{a}(x), \omega_{b}^{a}(y) \cap \eta_{b}^{a}(y)\right\} \\
& =\min \left\{(\omega \cap \eta)_{b}^{a}(x),(\omega \cap \eta)_{b}^{a}(y)\right\} \tag{5.9}
\end{align*}
$$

Also, we have

$$
\begin{align*}
(\omega \cap \eta)_{b}^{a}(x y)= & \left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x y), \text { by Lemma } 3.2 \\
= & \min \left\{\omega_{b}^{a}(x y), \omega_{b}^{a}(x y)\right\} \\
\geq & \min \left\{\max \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}, \max \left\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\right\}\right\} \\
& \text { as all the quantities involved belong to }[0,1] \\
= & \max \left\{\min \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\right\}, \min \left\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\right\}\right\} \\
= & \max \left\{\min \left\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\right\}, \min \left\{\omega_{b}^{a}(y), \eta_{b}^{a}(y)\right\}\right\} \\
= & \left.\max \left\{\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(x)\right),\left(\omega_{b}^{a} \cap \eta_{b}^{a}\right)(y)\right\} \\
= & \max \left\{(\omega \cap \eta)_{b}^{a}(x),(\omega \cap \eta)_{b}^{a}(y)\right\} \tag{5.10}
\end{align*}
$$

It follows from (5.9) and (5.10), $\omega \cap \eta$ is an (a, b)-fuzzy ideal of R.
The following example shows that the union of two (a, b)-fuzzy ideals may not be an (a, b)-fuzzy ideal.

Example 5.15. Let $R=\mathbb{Z}_{12}$. Define fuzzy subsets ω and η as follows:

$$
\begin{gathered}
\omega(x)=\left\{\begin{array}{l}
0.4, \text { if } x=\{0,2,4,6,8,10\}, \\
0, \text { otherwise }
\end{array}\right. \\
\eta(x)=\left\{\begin{array}{l}
0.2, \text { if } x=\{0,3,6,9\} \\
0.1, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

It can be seen that ω and η are ($0.6,0.3$)-fuzzy ideals of \mathbb{Z}_{12}.
We have

$$
(\omega \cup \eta)(x)= \begin{cases}0.4, & \text { if } x=\{0,2,4,6,8,10\} \\ 0.2, & \text { if } x=\{3,9\} \\ 0.1, \text { otherwise }\end{cases}
$$

If we take $x=9, y=2$, then $x-y=7$.
For $a=0.6$ and $b=0.3$, we have $1-a+b=0.7$.
Also, $(\omega \cup \eta)(x)=0.2,(\omega \cup \eta)(y)=0.4$ and $(\omega \cup \eta)(x-y)=0.1$.
Now,

$$
\begin{aligned}
& (\omega \cup \eta)_{b}^{a}(x)=\min \{0.2,0.7\}=0.2, \\
& (\omega \cup \eta)_{b}^{a}(y)=\min \{0.4,0.7\}=0.4, \\
& (\omega \cup \eta)_{b}^{a}(x-y)=\min \{0.1,0.7\}=0.1 . \\
& (\omega \cup \eta)_{b}^{a}(x-y) \nsupseteq \min \left\{(\omega \cup \eta)_{b}^{a}(x),(\omega \cup \eta)_{b}^{a}(y)\right\} .
\end{aligned}
$$

Thus, $\omega \cup \eta$ is not a ($0.6,0.3$)-fuzzy ideal of \mathbb{Z}_{12}.
Proposition 5.16. Let $g: R \rightarrow R^{\prime}$ be an onto homomorphism of a ring R to a ring R^{\prime}. If ω is an (a, b)-fuzzy ideal of R^{\prime}, then $g^{-1}(\omega)$ is an (a, b)-fuzzy ideal of R which is constant on kerg.

Proof. For $x, y \in R$. we have

$$
\begin{align*}
& \left(g^{-1}(\omega)\right)_{b}^{a}(x-y) \\
& =g^{-1}\left(\omega_{b}^{a}\right)(x-y), \text { by Lemma } 3.2 \\
& =\omega_{b}^{a}(g(x-y)) \\
& =\omega_{b}^{a}(g(x)-g(y)) \\
& \geq \min \left\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\right\}, \\
& \quad\left(\operatorname{as} \omega \text { is }(a, b) \text {-fuzzy ideal of } R^{\prime}\right) \\
& =\min \left\{g^{-1}\left(\omega_{b}^{a}\right)(x), g^{-1}\left(\omega_{b}^{a}\right)(y)\right\} \\
& =\min \left\{\left(g^{-1}(\omega)\right)_{b}^{a}(x),\left(g^{-1}(\omega)\right)_{b}^{a}(y)\right\}, \quad \text { by Lemma } 3.2 \tag{5.11}
\end{align*}
$$

Also, we have

$$
\begin{align*}
& \left(g^{-1}(\omega)\right)_{b}^{a}(x y) \\
& =g^{-1}\left(\omega_{b}^{a}\right)(x y) \\
& =\omega_{b}^{a}(g(x y))=\omega_{b}^{a}(g(x) g(y)) \\
& \geq \max \left\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\right\}, \\
& \quad\left(\operatorname{as} \omega \text { is }(a, b) \text {-fuzzy ideal of } R^{\prime}\right) \\
& =\max \left\{g^{-1}\left(\omega_{b}^{a}\right)(x), g^{-1}\left(\omega_{b}^{a}\right)(y)\right\} \\
& =\max \left\{\left(g^{-1}(\omega)\right)_{b}^{a}(x),\left(g^{-1}(\omega)\right)_{b}^{a}(y)\right\}, \text { by Lemma 3.2. } \tag{5.12}
\end{align*}
$$

It follows from (5.11) and (5.12) that $g^{-1}(\omega)$ is an (a, b)-fuzzy ideal of R.
Next if $p \in \operatorname{kerg}$, then $g(p)=0^{\prime}$, where 0^{\prime} is the additive identity of R^{\prime}. Therefore, $\left(g^{-1}(\omega)\right)_{b}^{a}(p)=\omega_{b}^{a}(g(p))=\omega_{b}^{a}\left(0^{\prime}\right)$ and so $g^{-1}(\omega)$ is constant on kerg.

Now we consider the (a, b)-fuzzy quotient rings.
Definition 5.17. Let ω be an (a, b)-fuzzy ideal of R.
For $x \in R$, define a fuzzy set $x+\omega_{b}^{a}: R \rightarrow[0,1]$ by:
$\left(x+\omega_{b}^{a}\right)(y)=\min \{\omega(y-x), 1-a+b\}$. The fuzzy set $x+\omega_{b}^{a}$ is called an (a, b)-fuzzy coset of the fuzzy ideal ω of R.

Proposition 5.18. If ω is an (a, b)-fuzzy ideal of R, then
(i) $0+\omega_{b}^{a}=\omega_{b}^{a}$.
(ii) For any $t \in[0,1],\left(x+\omega_{b}^{a}\right)_{t}=x+\left(\omega_{b}^{a}\right)_{t}$.
(iii) $\omega_{b}^{a}(x)=\omega_{b}^{a}(0) \Leftrightarrow x+\omega_{b}^{a}=\omega_{b}^{a}$.

Proof. (i): We have

$$
\begin{aligned}
\left(0+\omega_{b}^{a}\right)(x) & =\min \{\omega(x-0), 1-a+b\} \\
& =\min \{\omega(x), 1-a+b\} \\
& =\omega_{b}^{a}(x) .
\end{aligned}
$$

Hence, $0+\omega_{b}^{a}=\omega_{b}^{a}$.
(ii): Let $y \in R$. We have

$$
\begin{aligned}
y \in\left(x+\omega_{b}^{a}\right)_{t} & \Leftrightarrow\left(x+\omega_{b}^{a}\right)(y) \geq t \\
& \Leftrightarrow \min \{\omega(y-x), 1-a+b\} \geq t
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow\{\min \{\omega(y), \omega(x)\}, 1-a+b\} \geq t \\
& \Leftrightarrow\{\min \{\omega(y), 1-a+b\}, \min \{\omega(x), 1-a+b\}\} \geq t \\
& \Leftrightarrow \min \left\{\omega_{b}^{a}(y), \omega_{b}^{a}(x)\right\} \geq t \\
& \Leftrightarrow \omega_{b}^{a}(y-x) \geq t \\
& \Leftrightarrow y-x \in\left(\omega_{b}^{a}\right)_{t} \\
& \Leftrightarrow y \in x+\left(\omega_{b}^{a}\right)_{t} .
\end{aligned}
$$

Hence, $\left(x+\omega_{b}^{a}\right)_{t}=x+\left(\omega_{b}^{a}\right)_{t}$.
(iii): Assume that

$$
\begin{equation*}
\omega_{b}^{a}(x)=\omega_{b}^{a}(0) \tag{5.13}
\end{equation*}
$$

Then for $y \in R$, we have

$$
\begin{aligned}
\left(x+\omega_{b}^{a}\right)(y) & =\min \{\omega(y-x), 1-a+b\} \\
& \geq \min \{\min \{\omega(y), \omega(x)\}, 1-a+b\} \\
& =\min \{\min \{\omega(y), 1-a+b\}, \min \{\omega(x), 1-a+b\}\} \\
& =\min \left\{\omega_{b}^{a}(y), \omega_{b}^{a}(x)\right\} \\
& =\min \left\{\omega_{b}^{a}(y), \omega_{b}^{a}(0)\right\}, \text { from }(5.13) \\
& =\omega_{b}^{a}(y), \text { by Proposition } 5.5 \\
& =\omega_{b}^{a}(y-x+x) \\
& \geq \min \left\{\omega_{b}^{a}(y-x), \omega_{b}^{a}(x)\right\} \\
& =\min \left\{\omega_{b}^{a}(y-x), \omega_{b}^{a}(0)\right\}, \text { from }(5.13) \\
& =\omega_{b}^{a}(y-x), \text { by Proposition } 5.5 \\
& =\min \{\omega(y-x), 1-a+b\} \\
& =\left(x+\omega_{b}^{a}\right)(y) .
\end{aligned}
$$

Thus, $x+\omega_{b}^{a}=\omega_{b}^{a}$.
Conversely, assume that $x+\omega_{b}^{a}=\omega_{b}^{a}$

$$
\begin{aligned}
& \Rightarrow\left(x+\omega_{b}^{a}\right)(0)=\omega_{b}^{a}(0) \\
& \Rightarrow \min \{\omega(0-x), 1-a+b\}=\omega_{b}^{a}(0) \\
& \Rightarrow \min \{\omega(-x), 1-a+b\}=\omega_{b}^{a}(0) \\
& \Rightarrow \min \{\omega(x), 1-a+b\}=\omega_{b}^{a}(0) \\
& \Rightarrow \omega_{b}^{a}(x)=\omega_{b}^{a}(0) .
\end{aligned}
$$

Theorem 5.19. Let ω be a fuzzy ideal of R and τ be the collection of all fuzzy cosets of ω. Define, $\left(x+\omega_{b}^{a}\right)+\left(y+\omega_{b}^{a}\right)=(x+y)+\omega_{b}^{a}$ and $\left(x+\omega_{b}^{a}\right) \cdot\left(y+\omega_{b}^{a}\right)=(x \cdot y)+\omega_{b}^{a}$, for all $x, y \in R$.
Then τ is a ring under these two operations.
Proof. First we shall show that these two operations are well-defined.
Let $x+\omega_{b}^{a}=x^{\prime}+\omega_{b}^{a}$ and $y+\omega_{b}^{a}=y^{\prime}+\omega_{b}^{a}$.
Then for x^{\prime}, y^{\prime},
$\left(x+\omega_{b}^{a}\right)\left(x^{\prime}\right)=\left(x^{\prime}+\omega_{b}^{a}\right)\left(x^{\prime}\right)$ and $\left(y+\omega_{b}^{a}\right)\left(y^{\prime}\right)=\left(y^{\prime}+\omega_{b}^{a}\right)\left(y^{\prime}\right)$.
Then by definition 5.17,
$\min \left\{\omega\left(x^{\prime}-x\right), 1-a+b\right\}=\min \left\{\omega\left(x^{\prime}-x^{\prime}\right), 1-a+b\right\}$ and
$\min \left\{\omega\left(y^{\prime}-y\right), 1-a+b\right\}=\min \left\{\omega\left(y^{\prime}-y^{\prime}\right), 1-a+b\right\}$.
Therefore, $\min \left\{\omega\left(x^{\prime}-x\right), 1-a+b\right\}=\min \{\omega(0), 1-a+b\}$ and $\min \left\{\omega\left(y^{\prime}-y\right), 1-a+b\right\}=\min \{\omega(0), 1-a+b\}$.
Therefore, $\omega_{b}^{a}\left(x^{\prime}-x\right)=\omega_{b}^{a}(0)$ and $\omega_{b}^{a}\left(y^{\prime}-y\right)=\omega_{b}^{a}(0)$, by definition 3.1. Therefore,

$$
\begin{equation*}
\omega_{b}^{a}\left(x^{\prime}-x\right)=\omega_{b}^{a}(0) \text { and } \omega_{b}^{a}\left(y^{\prime}-y\right)=\omega_{b}^{a}(0) \tag{5.14}
\end{equation*}
$$

For $z \in R$, we have

$$
\begin{aligned}
& \left((x+y)+\omega_{b}^{a}\right)(z) \\
& =\min \{\omega(z-(x+y)), 1-a+b\} \\
& =\min \{\omega(z-x-y), 1-a+b\} \\
& =\min \left\{\omega\left(z-x^{\prime}-y^{\prime}+x^{\prime}-x+y^{\prime}-y\right), 1-a+b\right\} \\
& \geq \min \left\{\left\{\omega\left(z-x^{\prime}-y^{\prime}\right), \omega\left(x^{\prime}-x\right), \omega\left(y^{\prime}-y\right)\right\}, 1-a+b\right\}, \\
& \quad \quad \operatorname{since} \omega \text { is a fuzzy ideal of } R . \\
& =\min \left\{\min \left\{\omega\left(z-x^{\prime}-y^{\prime}\right), 1-a+b\right\}, \min \left\{\omega\left(x^{\prime}-x\right), 1-a+b\right\},\right. \\
& \left.\quad \quad \min \left\{\omega\left(y^{\prime}-y\right), 1-a+b\right\}\right\} \\
& =\min \left\{\omega_{b}^{a}\left(z-x^{\prime}-y^{\prime}\right), \omega_{b}^{a}\left(x^{\prime}-x\right), \omega_{b}^{a}\left(y^{\prime}-y\right)\right\} \\
& =\min \left\{\omega_{b}^{a}\left(z-x^{\prime}-y^{\prime}\right), \omega_{b}^{a}(0), \omega_{b}^{a}(0)\right\}, \text { from }(5.14) . \\
& =\omega_{b}^{a}\left(z-x^{\prime}-y^{\prime}\right), \text { by Proposition } 5.5 \\
& =\min \left\{\omega\left(z-x^{\prime}-y^{\prime}\right), 1-a+b\right\} \\
& =\left(\left(x^{\prime}+y^{\prime}\right)+\omega_{b}^{a}\right)(z) .
\end{aligned}
$$

Thus $\left((x+y)+\omega_{b}^{a}\right)(z) \geq\left(\left(x^{\prime}+y^{\prime}\right)+\omega_{b}^{a}\right)(z)$.
Similarly, we can show that $\left(\left(x^{\prime}+y^{\prime}\right)+\omega_{b}^{a}\right)(z) \geq\left((x+y)+\omega_{b}^{a}\right)(z)$.

Hence,

$$
\begin{equation*}
\left(\left(x^{\prime}+y^{\prime}\right)+\omega_{b}^{a}\right)(z)=\left((x+y)+\omega_{b}^{a}\right)(z) \tag{5.15}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left(x y+\omega_{b}^{a}\right)(z) \\
& =\min \{\omega(z-x y), 1-a+b\} \\
& =\min \left\{\omega\left(z-x^{\prime} y^{\prime}+x^{\prime} y^{\prime}-x y\right), 1-a+b\right\} \\
& \geq \min \left\{\min \left\{\omega\left(z-x^{\prime} y^{\prime}\right), \omega\left(x^{\prime} y^{\prime}-x y\right)\right\}, 1-a+b\right\}, \\
& \quad \quad \sin c e \omega \text { is a fuzzy ideal of } R \\
& =\min \left\{\min \left\{\omega\left(z-x^{\prime} y^{\prime}\right), 1-a+b\right\}, \min \left\{\omega\left(x^{\prime} y^{\prime}-x y\right), 1-a+b\right\}\right\} \\
& =\min \left\{\omega_{b}^{a}\left(z-x^{\prime} y^{\prime}\right), \omega_{b}^{a}\left(x^{\prime} y^{\prime}-x y\right)\right\} . \tag{5.16}
\end{align*}
$$

We have

$$
\begin{align*}
& \omega_{b}^{a}\left(x^{\prime} y^{\prime}-x y\right) \\
& =\omega_{b}^{a}\left(x^{\prime} y^{\prime}-x^{\prime} y+x^{\prime} y-x y\right) \\
& =\omega_{b}^{a}\left(x^{\prime}\left(y^{\prime}-y\right)+\left(x^{\prime}-x\right) y\right) \\
& \geq \min \left\{\omega_{b}^{a}\left(x\left(y^{\prime}-y\right)\right), \omega_{b}^{a}\left(\left(x^{\prime}-x\right) y\right)\right\}, \text { by Proposition } 5.3 \\
& \geq \min \left\{\max \left\{\omega_{b}^{a}(x), \omega_{b}^{a}\left(y^{\prime}-y\right)\right\}, \max \left\{\omega_{b}^{a}\left(x^{\prime}-x\right), \omega_{b}^{a}(y)\right\}\right\} \\
& =\min \left\{\max \left\{\omega_{b}^{a}(x), \omega_{b}^{a}(0)\right\}, \max \left\{\omega_{b}^{a}(0), \omega_{b}^{a}(y)\right\}, \text { from }(5.14) .\right. \\
& =\min \left\{\omega_{b}^{a}(0), \omega_{b}^{a}(0)\right\}, \quad \text { by } \operatorname{Proposition~} 5.5 \\
& =\omega_{b}^{a}(0) . \tag{5.17}
\end{align*}
$$

Now, (5.16) becomes

$$
\begin{aligned}
\left(x y+\omega_{b}^{a}\right)(z) & =\min \left\{\omega_{b}^{a}\left(z-x^{\prime} y^{\prime}\right), \omega_{b}^{a}(0)\right\} \\
& =\omega_{b}^{a}\left(z-x^{\prime} y^{\prime}\right), \text { by Proposition } 5.5 \\
& =\min \left\{\omega\left(z-x^{\prime} y^{\prime}\right), 1-a+b\right\} \\
& =\left(x^{\prime} y^{\prime}+\omega_{b}^{a}\right)(z) .
\end{aligned}
$$

Similarly, we can show that $\left(x^{\prime} y^{\prime}+\omega_{b}^{a}\right)(z) \geq\left(x y+\omega_{b}^{a}\right)(z)$.
Hence, $\left(x y+\omega_{b}^{a}\right)(z)=\left(x^{\prime} y^{\prime}+\omega_{b}^{a}\right)(z)$.
Thus, the operations + and \cdot are well defined.

Further we have,

$$
\begin{aligned}
\left(x+\omega_{b}^{a}\right)+\left(y+\omega_{b}^{a}+z+\omega_{b}^{a}\right) & =\left(x+\omega_{b}^{a}+y+\omega_{b}^{a}\right)+z+\omega_{b}^{a} \\
& =(x+y+z)+\omega_{b}^{a} . \\
\left(x+\omega_{b}^{a}\right)+\left((-x)+\omega_{b}^{a}\right) & =\left(0+\omega_{b}^{a}\right)=\omega_{b}^{a} . \\
\left(x+\omega_{b}^{a}\right) \cdot\left(\left(y+\omega_{b}^{a}\right) \cdot\left(z+\omega_{b}^{a}\right)\right) & =\left(\left(x+\omega_{b}^{a}\right) \cdot\left(y+\omega_{b}^{a}\right)\right) \cdot\left(z+\omega_{b}^{a}\right) \\
& =(x \cdot y \cdot z)+\omega_{b}^{a} . \\
\left(x+\omega_{b}^{a}\right) \cdot\left(1+\omega_{b}^{a}\right) & =x+\omega_{b}^{a}=\left(1+\omega_{b}^{a}\right) \cdot\left(x+\omega_{b}^{a}\right) . \\
\left(x+\omega_{b}^{a}\right) \cdot\left(y+\omega_{b}^{a}\right) & =\left(y+\omega_{b}^{a}\right) \cdot\left(x+\omega_{b}^{a}\right)=x y+\omega_{b}^{a} . \\
\left(x+\omega_{b}^{a}\right) \cdot\left(y+\omega_{b}^{a}\right) & =\left(y+\omega_{b}^{a}\right) \cdot\left(x+\omega_{b}^{a}\right)=x y+\omega_{b}^{a} .
\end{aligned}
$$

Hence, τ is a commutative ring with unity.

6. Conclusion

In this paper, we have studied (a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring. In the next studies, we will formulate the concept of (a, b)-intuitionistic fuzzy subrings and (a, b)-intuitionistic fuzzy ideals of a ring.

Acknowledgments

The authors are thankful to the referee for helpful suggestions, which improved the paper.

References

[1] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[2] J. N. Moderson and D. S. Malik, Fuzzy commutative algebra, World Scientific, River Edge, NJ, USA, 1998.
[3] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
[4] P. K. Sharma, α-Fuzzy subgroups, Inter. J. Fuzzy Math. and Systems, 3(1) (2013), 47-59.
[5] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139.

Shriram Khanderao Nimbhorkar

Department of Mathematics,
Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
Email: sknimbhorkar@gmail.com
Jyoti Ashok Khubchandani
Department of Mathematics, Dr.Vitthalrao Vikhe Patil College of Engineering, Ahmednagar 414001, India
Email: khubchandani_jyoti@yahoo.com

[^0]: Received:16 December 2020, Accepted: 14 January 2021. Communicated by Mirela Stefanescu;
 *Address correspondence to Jyoti A. Khubchandani; E-mail: khubchandani_jyoti@yahoo.com (C) 2020 University of Mohaghegh Ardabili.

