Journal of Hyperstructures 9(2)(2020), 96-114. ISSN: 2322-1666 print/2251-8436 online

(a, b)-FUZZY SUBRINGS AND (a, b)-FUZZY IDEALS OF A RING

SHRIRAM KHANDERAO NIMBHORKAR AND JYOTI ASHOK KHUBCHANDANI

ABSTRACT. As an extension of the concept of a fuzzy subring and a fuzzy ideal, a new kind of a fuzzy subring and a fuzzy ideal called an (a, b)-fuzzy subring and an (a, b)-fuzzy ideal of a ring is defined and their properties are studied. We also investigate the preimage of an (a, b)-fuzzy subring and an (a, b)-fuzzy ideal under a ring homomorphism. Also, (a, b)-level fuzzy subrings (fuzzy ideals) are studied. A necessary and sufficient condition for two (a, b)-level fuzzy subrings (fuzzy ideals) to be equal is proved. We show that the set of cosets of an (a, b)-fuzzy ideal forms a ring.

Key Words: (a, b)-fuzzy subring, (a, b)-fuzzy ideal, (a, b)-fuzzy level subset.
2010 Mathematics Subject Classification: Primary: 08A72; Secondary: 13A15.

1. Introduction

In 1965, Zadeh [3] introduced the concept of a fuzzy set. Later in 1971, Rosenfeld [1] used this concept to define a fuzzy subgroupoid and a fuzzy subgroup. Liu [5] studied fuzzy invariant subgroups, fuzzy ideals and proved some fundamental properties. Sharma [4] introduced and studied the concept of an α -fuzzy subgroup. We extend this concept to form (a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring R.

Received:16 December 2020, Accepted: 14 January 2021. Communicated by Mirela Stefanescu;

^{*}Address correspondence to Jyoti A. Khubchandani; E-mail: khubchandani_jyoti@yahoo.com © 2020 University of Mohaghegh Ardabili.

⁹⁶

(a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring

2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity. We recall some definitions and results.

Definition 2.1. [3] Let S be a nonempty set. A mapping $\omega : S \to [0, 1]$ is called a fuzzy subset of S.

Remark 2.2. [3] If ω and σ are two fuzzy subsets of R, then (i) $\omega \subseteq \sigma$ if and only if $\omega(x) \leq \sigma(x)$; (ii) $(\omega \cup \sigma)(x) = \max\{\omega(x), \sigma(x)\} = \omega(x) \lor \sigma(x)$; (iii) $(\omega \cap \sigma)(x) = \min\{\omega(x), \sigma(x)\} = \omega(x) \land \sigma(x)$; for all $x \in R$.

Definition 2.3. [2] Let X and Y be two nonempty sets and $g: X \to Y$ be a mapping. Let $\omega \in [0,1]^X$ and $\sigma \in [0,1]^Y$. Then the image $g(\omega) \in [0,1]^Y$ and the inverse image $g^{-1}(\sigma) \in [0,1]^X$ are defined as follows: for all $y \in Y$,

$$g(\omega)(y) = \begin{cases} \vee \{\omega(x) \mid x \in X, g(x) = y\}, & \text{if } g^{-1}(y) \neq \phi, \\ 0, & \text{otherwise.} \end{cases}$$

and $g^{-1}(\sigma)(x) = \sigma(g(x))$ for all $x \in X$.

Definition 2.4. [3] Let ω be a fuzzy subset of a set S and let $t \in [0, 1]$. The set $\omega_t = \{x \in R \mid \omega(x) \ge t\}$ is called a level subset of ω .

Clearly, $\omega_t \subseteq \omega_s$ whenever t > s.

Definition 2.5. [5] A fuzzy subset ω of R is called a fuzzy subring, if for all $x, y \in R$, the following conditions hold: (i) $\omega(x - y) \ge \min(\omega(x), \omega(y))$; (ii) $\omega(xy) \ge \min(\omega(x), \omega(y))$.

Definition 2.6. [5] A fuzzy subset ω of R is called a fuzzy ideal, if for all $x, y \in R$, the following conditions are satisfied: (i) $\omega(x-y) \ge \min(\omega(x), \omega(y))$; (ii) $\omega(xy) \ge \max(\omega(x), \omega(y))$.

3. (a, b)-Fuzzy subsets and their properties

Sharma [4] introduced the concept of an α -fuzzy subgroup. We extend this concept to a subring and an ideal of a ring. This notion is used to construct a fuzzy subring (ideal) from a fuzzy set.

Definition 3.1. Let ω be a fuzzy subset of R. Let $0 \le b < a \le 1$. Then the fuzzy set ω_h^a of R defined by $\omega_h^a(x) = \min\{\omega(x), 1-a+b\}$, for all $x \in R$, is called as the (a, b)-fuzzy subset of R with respect to the fuzzy set ω .

Lemma 3.2. (i) Let ω and η be two fuzzy subsets of X. Then $(\omega \cap \eta)^a_b = \omega^a_b \cap \eta^a_b.$ (ii) Let $g: X \longrightarrow Y$ be an onto mapping and η be a fuzzy subset of Y. Define $\eta \circ g: X \to [0,1]$ by $(\eta \circ g)(x) = \eta(g(x))$. Then $\eta^a_b \circ g = (\eta \circ g)^a_b.$ (iii) Let $g: X \longrightarrow Y$ be a onto mapping and η be two fuzzy subsets of Y. Then $g^{-1}(\eta^a_b) = (g^{-1}(\eta))^a_b.$

Proof. (i): For all $x \in X$ we have

$$\begin{split} (\omega \cap \eta)_b^a(x) &= \min\{(\omega \cap \eta)(x), 1 - a + b\} \\ &= \min\{\min\{\omega(x), \eta(x)\}, 1 - a + b\} \\ &= \min\{\min\{\omega(x), 1 - a + b\}, \min\{\eta(x), 1 - a + b\}\} \\ &= \min\{\omega_b^a(x), \eta_b^a(x)\} \\ &= \omega_b^a(x) \cap \eta_b^a(x) \\ &= (\omega_b^a \cap \eta_b^a)(x). \end{split}$$

Hence, $(\omega \cap \eta)_b^a = \omega_b^a \cap \eta_b^a$. (ii): For all $x \in X$, we have

$$\begin{aligned} (\eta_b^a \circ g)(x) &= \eta_b^a(g(x)) \\ &= \min\{\eta(g(x)), 1 - a + b\} \\ &= \min\{(\eta \circ g)(x), 1 - a + b\} \\ &= (\eta \circ g)_b^a(x). \end{aligned}$$

Hence, $\eta_b^a \circ g = (\eta \circ g)_b^a$. (iii): Consider

$$g^{-1}(\eta_b^a)(x) = \eta_b^a(g(x))$$

= min{ $\eta(g(x)), 1 - a + b$ }
= min{ $g^{-1}(\eta(x)), 1 - a + b$ }
= $(g^{-1}(\eta))_b^a(x)$, for all $x \in X$.

Hence, $g^{-1}(\eta_b^a) = (g^{-1}(\eta))_b^a$.

4. (a, b)-Fuzzy subrings

Definition 4.1. Let ω be a fuzzy subset of R. Let $0 \le b < a \le 1$. Then ω is called an (a, b)-fuzzy subring of R if ω_b^a is a fuzzy subring of R, that is, if the following conditions hold: (i) $\omega_b^a(x-y) \ge \min\{\omega_b^a(x), \omega_b^a(y)\};$ (ii) $\omega_b^a(xy) \ge \min\{\omega_b^a(x), \omega_b^a(y)\},$ for all $x, y \in R$.

Proposition 4.2. If ω is a fuzzy subring of R, then ω is also (a, b)-fuzzy subring of R.

Proof. For $x, y \in R$ we have

$$\begin{split} \omega_b^a(x-y) &= \min\{\omega(x-y), 1-a+b\}\\ &\geq \min\{\min\{\omega(x), \omega(y)\}, 1-a+b\},\\ & \text{(since } \omega \text{ is a fuzzy subring of } R)\\ &= \min\{\min\{\omega(x), 1-a+b\}, \min\{\omega(y), 1-a+b\}\}\\ &= \min\{\omega_b^a(x), \omega_b^a(y)\}. \end{split}$$
(4.1)

Also,

$$\begin{aligned}
\omega_b^a(xy) &= \min\{\omega(xy), 1-a+b\} \\
&\geq \min\{\min\{\omega(x), \omega(y)\}, 1-a+b\}, \\
&\quad (\text{since } \omega \text{ is a fuzzy subring of } R) \\
&= \min\{\min\{\omega(x), 1-a+b\}, \min\{\omega(y), 1-a+b\}\} \\
&= \min\{\omega_b^a(x), \omega_b^a(y)\}.
\end{aligned}$$
(4.2)

It follows from (4.1) and (4.2), that ω is (a, b)-fuzzy subring of R.

The following example shows that the converse of Proposition 4.2 need not hold.

Example 4.3. Consider the fuzzy subset of the ring $R = \mathbb{Z}_8$ defined as follows:

$$\omega(x) = \begin{cases} 0.4, & \text{if } x = \{0, 4\}, \\ 0.7, & \text{if } x = \{1, 2, 3, 5, 6, 7\} \end{cases}$$

We note that for x = 6, y = 2, $\omega(6) = \omega(2) = 0.7$ and $\omega(x - y) = \omega(6 - 2) = \omega(4) = 0.4$. Thus, $\omega(x - y) \not\geq \min\{\omega(x), \omega(y)\}$. Hence, ω is not a fuzzy subring of R. We note that if a = 0.9, b = 0.2, then 1 - a + b = 0.3 and so $\omega(x) > 1 - a + b = 0.3$ for all $x \in R$. Hence

$$\omega_{0.2}^{0.9}(x) = \min\{\omega(x), 0.3\} = 0.3, \text{ for all } x \in R.$$

Therefore,

$$\omega_{0.2}^{0.9}(x-y) \ge \min\{\omega_{0.2}^{0.9}(x), \omega_{0.2}^{0.9}(y)\}\$$

and

$$\omega_{0.2}^{0.9}(xy) \ge \min\{\omega_{0.2}^{0.9}(x), \omega_{0.2}^{0.9}(y)\}.$$

Hence, ω is an (0.9, 0.2)-fuzzy subring of R.

Proposition 4.4. The intersection of two (a, b)-fuzzy subrings of a ring R is again an (a, b)-fuzzy subring of R.

Proof. Let ω and η be two (a, b)-fuzzy subrings of a ring R. For $x, y \in R$, we have

$$\begin{aligned} (\omega \cap \eta)_{b}^{a}(x-y) &= (\omega_{b}^{a} \cap \eta_{b}^{a})(x-y), \text{ by Lemma 3.2} \\ &= \min\{\omega_{b}^{a}(x-y), \eta_{b}^{a}(x-y)\}\} \\ &\geq \min\{\min\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\}, \min\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\}\} \\ &= \min\{\min\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\}, \min\{\omega_{b}^{a}(y), \eta_{b}^{a}(y)\}\} \\ &= \min\{(\omega_{b}^{a} \cap \eta_{b}^{a})(x), (\omega_{b}^{a} \cap \eta_{b}^{a})(y)\} \\ &= \min\{(\omega \cap \eta)_{b}^{a}(x)), (\omega \cap \eta)_{b}^{a}(y))\}. \end{aligned}$$
(4.3)

Also,

$$(\omega \cap \eta)_b^a(xy) = (\omega_b^a \cap \eta_b^a)(xy), \text{ by Lemma 3.2}$$

$$= \min\{\omega_b^a(xy), \eta_b^a(xy)\}$$

$$\geq \min\{\min\{\omega_b^a(x), \omega_b^a(y)\}, \min\{\eta_b^a(x), \eta_b^a(y)\}\}$$

$$= \min\{\min\{\omega_b^a(x), \eta_b^a(x)\}, \min\{\omega_b^a(y), \eta_b^a(y)\}\}$$

$$= \min\{(\omega_b^a \cap \eta_b^a)(x), (\omega_b^a \cap \eta_b^a)(y)\}$$

$$= \min\{(\omega \cap \eta)_b^a(x)), (\omega \cap \eta)_b^a(y))\}.$$
(4.4)

It follows from (4.3) and (4.4), that $\omega \cap \eta$ is an (a, b)-fuzzy subring of R.

The following example shows that the union of two (a, b)-fuzzy subrings of a ring R need not be an (a, b)-fuzzy subring of R.

Example 4.5. Define fuzzy subsets ω and η of the ring $R = \mathbb{Z}$ as follows:

$$\omega(x) = \begin{cases} 0.5, & \text{if } x \in 4\mathbb{Z}, \\ 0.1, & \text{otherwise.} \end{cases}$$

$$\eta(x) = \begin{cases} 0.25, & \text{if } x \in 5\mathbb{Z}, \\ 0.08, & \text{otherwise.} \end{cases}$$

Let a = 0.5, b = 0.2. Then 1 - a + b = 0.7. We note that ω and η are (0.5, 0.2)-fuzzy subrings of \mathbb{Z} . We know that, $(\omega \cup \eta)(x) = \max\{\omega(x), \eta(x)\}$. Therefore,

$$(\omega \cup \eta)(x) = \begin{cases} 0.5, & \text{if } x \in 4\mathbb{Z}, \\ 0.25, & \text{if } x \in 5\mathbb{Z}, \\ 0.1, & \text{if } x \notin 4\mathbb{Z} \cup 5\mathbb{Z}. \end{cases}$$

Let x = 12, y = 5. Then $(\omega \cup \eta)(x) = 0.5, (\omega \cup \eta)(y) = 0.25$ and $(\omega \cup \eta)(x - y) = 0.1$. Also,

$$\begin{aligned} (\omega \cup \eta)_{0.2}^{0.5}(x) &= \min\{(\omega \cup \eta)(x), 0.7\} = \min\{0.5, 0.7\} = 0.5. \\ (\omega \cup \eta)_{0.2}^{0.5}(y) &= \min\{(\omega \cup \eta)(y), 0.7\} = \min\{0.25, 0.7\} = 0.25. \\ (\omega \cup \eta)_{0.2}^{0.5}(x - y) &= \min\{(\omega \cup \eta)(x - y), 0.7\} = \min\{0.1, 0.7\} = 0.1. \end{aligned}$$

Thus,

$$(\omega \cup \eta)_{0.2}^{0.5}(x-y) \not\geq \min\{(\omega \cup \eta)_{0.2}^{0.5}(x), (\omega \cup \eta)_{0.2}^{0.5}(y)\}.$$

Hence, $\omega \cup \eta$ is not a (0.5, 0.2)-fuzzy subring of R.

Theorem 4.6. Let g be a homomorphism from a ring R onto a ring R'. If ω is an (a,b)-fuzzy subring of R', then $g^{-1}(\omega)$ is an (a,b)-fuzzy subring of R.

Proof. Let $x, y \in R$. We have

$$(g^{-1}(\omega))_b^a(x-y) = g^{-1}(\omega_b^a)(x-y), \text{ by Lemma } \frac{3.2}{2}$$

$$= \omega_b^a((g(x-y)))$$

$$= \omega_b^a(g(x) - g(y))$$

$$\geq \min\{\omega_b^a(g(x)), \omega_b^a(g(y))\},$$
(since ω is an (a, b) -fuzzy subring of R')
$$= \min\{g^{-1}(\omega_b^a(x)), g^{-1}(\omega_b^a(y))\}$$

$$= \min\{(g^{-1}(\omega))_b^a(x), (g^{-1}(\omega))_b^a(y)\}$$
(4.5)

We have

$$(g^{-1}(\omega))_{b}^{a}(xy) = g^{-1}(\omega_{b}^{a})(xy), \text{ by Lemma 3.2} = \omega_{b}^{a}((g(xy))) = \omega_{b}^{a}(g(x)g(y)) \ge \min\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\}, (\text{since } \omega \text{ is an } (a, b)\text{-fuzzy subring of } R') = \min\{g^{-1}(\omega_{b}^{a})(x), g^{-1}(\omega_{b}^{a})(y)\} = \min\{(g^{-1}(\omega))_{b}^{a}(x), (g^{-1}(\omega))_{b}^{a}(y)\}, \text{ by Lemma 3.2.}$$
(4.6)

From (4.5) and (4.6), it follows that $g^{-1}(\omega)$ is an (a, b)-fuzzy subring of R.

Definition 4.7. Let $\omega : R \to [0,1]$ be a fuzzy subset of R. For $t \in [0,1]$, the (a,b)-level subset of ω is denoted by $(\omega_b^a)_t$ and is defined as $(\omega_b^a)_t = \{x \in R \mid \omega_b^a(x) \ge t\}.$

Example 4.8. Let $\omega : \mathbb{Z}_9 \to [0,1]$ be as follows:

$$\omega(x) = \begin{cases} 0.7, & if \ x = \{0, 3, 6\}, \\ 0.1, & otherwise. \end{cases}$$

Let a = 1, b = 0.5 and t = 0.4. We have 1 - a + b = 0.5. Then

$$\omega_b^a(x) = \omega_{0.5}^1(x) = \begin{cases} 0.5, \text{ if } x = \{0, 3, 6\}, \\ 0.1, \text{ otherwise.} \end{cases}$$

and $(\omega_{0.5}^1)_{0.4} = \{x \in \mathbb{Z}_9 \mid \omega_{0.5}^1(x) \ge 0.4\} = \{0, 3, 6\}.$

Theorem 4.9. Let R be a ring, $t \in [0, 1]$ and $\omega : R \to [0, 1]$ be an (a, b)-fuzzy subring of R. If the (a, b)-level subset is nonempty, then $(\omega_b^a)_t$ is a subring of R.

Proof. We note that if $x, y \in (\omega_b^a)_t$, then $(\omega_b^a)(x) \ge t$ and $(\omega_b^a)(y) \ge t$. We have $(\omega_b^a)(x-y) \ge \min\{\omega_b^a(x), \omega_b^a(y)\} = \min\{t, t\} = t$. This implies that

$$x - y \in (\omega_b^a)_t. \tag{4.7}$$

We have, $(\omega_b^a)(xy) \ge \min\{\omega_b^a(x), \omega_b^a(y)\} = \min\{t, t\} = t$. This implies that

$$xy \in (\omega_b^a)_t. \tag{4.8}$$

(a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring

From (4.7) and (4.8), we conclude that $(\omega_b^a)_t$ is a subring of R.

Theorem 4.10. Let R be a ring and $\omega : R \to [0,1]$ be a fuzzy subset of R. Suppose that $(\omega_b^a)_t$ is a subring of R, for all $t \in [0,1]$. Then ω is an (a,b)-fuzzy subring of R.

Proof. Let $x, y \in R$, $(\omega_b^a)(x) = t_1$ and $(\omega_b^a)(y) = t_2$ where $t_1, t_2 \in [0, 1]$. Then $(\omega_b^a)_{t_1}$ and $(\omega_b^a)_{t_2}$ are subrings of R.

Since, $t_1 \wedge t_2 \leq t_1$ and $t_1 \wedge t_2 \leq t_2$, we have $(\omega_b^a)_{t_1} \subseteq (\omega_b^a)_{t_1 \wedge t_2}$ and $(\omega_b^a)_{t_2} \subseteq (\omega_b^a)_{t_1 \wedge t_2}$.

Hence, $x \in (\omega_b^a)_{t_1}$ and $y \in (\omega_b^a)_{t_2}$ implies $x, y \in (\omega_b^a)_{t_1 \wedge t_2}$.

Then x - y and $xy \in (\omega_b^a)_{t_1 \wedge t_2}$, since $(\omega_b^a)_t$ is a subring of R, for all $t \in [0, 1]$.

This implies
$$(\omega_b^a)(x-y) \ge t_1 \wedge t_2 = \min\{(\omega_b^a)(x), (\omega_b^a)(y)\}$$
 and
 $(\omega_b^a)(xy) \ge t_1 \wedge t_2 = \min\{(\omega_b^a)(x), (\omega_b^a)(y)\}.$
This proves that ω is an (a, b) -fuzzy subring of R .

Definition 4.11. Let ω be an (a, b)-fuzzy subring of R and $t \in [0, 1]$. Then the subring $(\omega_b^a)_t$ is said to be an (a, b)-level subring of ω .

Example 4.12. Let $R = \mathbb{Z}_4 \times \mathbb{Z}_4$. Define a fuzzy subset ω as follows:

$$\omega(x) = \begin{cases} 0.75, & \text{if } x = \{(0,0), (0,2), (2,0), (2,2)\}, \\ 0.4, & \text{otherwise.} \end{cases}$$

We note that for $a = 0.9, b = 0.5, 1 - a + b = 0.6, \omega$ is an (a, b)-fuzzy subring of R.

Also,

$$\omega_{0.5}^{0.9}(x) = \begin{cases} 0.6, & \text{if } x = \{(0,0), (0,2), (2,0), (2,2)\}, \\ 0.4, & \text{otherwise.} \end{cases}$$

If t = 0.5, then $(\omega_{0.5}^{0.9})_t = \{(0,0), (0,2), (2,0), (2,2)\}$ is a subring of R and a (0.9, 0.5)-level subring of ω .

Theorem 4.13. Let ω be an (a, b)-fuzzy subring of a ring R. Then two (a, b)-level subrings $(\omega_b^a)_{t_1}$, $(\omega_b^a)_{t_2}$ with $t_1 < t_2$ are equal if and only if there is no $x \in R$ such that $t_1 \leq \omega_b^a(x) < t_2$.

Proof. Let $(\omega_b^a)_{t_1} = (\omega_b^a)_{t_2}$. If there exists $x \in R$ such that $t_1 \leq \omega_b^a(x) < t_2$, then $x \in (\omega_b^a)_{t_1}$, but $x \notin (\omega_b^a)_{t_2}$ which is a contradiction. Conversely, suppose there is no $x \in R$ such that $t_1 \leq \omega_b^a(x) < t_2$. As $t_1 < t_2$ implies $(\omega_b^a)_{t_2} \subseteq (\omega_b^a)_{t_1}$. Now, if $x \in (\omega_b^a)_{t_1}$, then $(\omega_b^a)(x) \geq t_1$. Clearly, $\omega_b^a(x) \nleq t_2$. Since $\omega_b^a(x)$ and t_2 are real numbers, it follows that $\omega_b^a(x) \geq t_2$, i.e., $x \in (\omega_b^a)_{t_2}$.

5. (a, b)-Fuzzy ideals

Definition 5.1. Let ω be a fuzzy subset of R and $0 \le b < a \le 1$. Then ω is called an (a, b)-fuzzy ideal of R if the following conditions hold: $(R_1) \ \omega_b^a(x-y) \ge \min\{\omega_b^a(x), \omega_b^a(y)\};$ $(R_2) \ \omega_b^a(xy) \ge \max\{\omega_b^a(x), \omega_b^a(y)\}.$

Remark 5.2. Let ω be an (a, b)-fuzzy subset of a commutative ring R. Then ω_b^a satisfies (R_2) if and only if $\omega_b^a(xy) \ge \omega_b^a(x), \forall x, y \in R$.

Proposition 5.3. If ω is a fuzzy ideal of R, then ω is also (a,b)-fuzzy ideal of R.

Proof. For $x, y \in R$, we have

$$\omega_b^a(x-y) = \min\{\omega(x-y), 1-a+b\}
\geq \min\{\min\{\omega(x), \omega(y)\}, 1-a+b\},
(since ω is a fuzzy ideal of R)

$$= \min\{\min\{\omega(x), 1-a+b\}, \min\{\omega(y), 1-a+b\}\}
= \min\{\omega_b^a(x), \omega_b^a(y)\}.$$
(5.1)$$

Also,

$$\begin{aligned}
\omega_b^a(xy) &= \min\{\omega(xy), 1-a+b\} \\
&\geq \min\{\max\{\omega(x), \omega(y)\}, 1-a+b\}, \\
&\quad (\text{since } \omega \text{ is a fuzzy ideal of } R) \\
&= \max\{\min\{\omega(x), \omega(y)\}, 1-a+b\} \\
&= \max\{\min\{\omega(x), 1-a+b\}, \min\{\omega(y), 1-a+b\}\} \\
&= \max\{\omega_b^a(x), \omega_b^a(y)\}.
\end{aligned}$$
(5.2)

It follows from (5.1) and (5.2), that ω is a (a, b)-fuzzy ideal of ring R. \Box

The following example shows that the converse of Proposition 5.3 may not be true.

Example 5.4. Define a fuzzy subset ω of the ring $R = \mathbb{Z}_8$ as follows:

$$\omega(x) = \begin{cases} 0.45, & \text{if } x = \{0, 2, 4, 6\} \\ 0.75, & \text{otherwise.} \end{cases}$$

We note that for x = 6, y = 3, $\omega(6) = 0.45$, $\omega(3) = 0.75$, xy = 18 = 2, $\omega(xy) = 0.45$. Thus, $\omega(xy) \not\geq \max\{\omega(x), \omega(y)\}$. Hence ω is not a fuzzy ideal of \mathbb{Z}_8 . But ω is a (0.8, 0.1)-fuzzy ideal of \mathbb{Z}_8 .

Proposition 5.5. If $\omega : R \to [0,1]$ is an (a,b)-fuzzy ideal of R, then $\omega_b^a(0) \ge \omega_b^a(x) \ge \omega_b^a(1)$, for all $x \in R$.

Proof. For any $x \in R$, we have

$$\begin{split} \omega_b^a(0) &= \omega_b^a(x-x) \\ &\geq \min\{\omega_b^a(x), \omega_b^a(x)\}, \text{ since } \omega \text{ is an } (a,b)\text{-fuzzy ideal of } R. \\ &= \omega_b^a(x). \\ &= \omega_b^a(x.1) \\ &\geq \omega_b^a(1). \end{split}$$

Hence, $\omega_h^a(0) \ge \omega_h^a(x) \ge \omega_h^a(1)$, for all $x \in R$.

Proposition 5.6. If $\omega : R \to [0,1]$ is an (a,b)-fuzzy ideal of ring R with $\omega_b^a(x-y) = \omega_b^a(0)$, then $\omega_b^a(x) = \omega_b^a(y)$, for all $x, y \in R$.

Proof. Since ω is an (a, b)-fuzzy ideal of R,

$$\begin{split} \omega_b^a(x) &= \omega_b^a(x - y + y) \\ &\geq \min\{\omega_b^a(x - y), \omega_b^a(y)\} \\ &= \min\{\omega_b^a(0), \omega_b^a(y)\} \\ &= \omega_b^a(y). \\ \omega_b^a(y) &= \omega_b^a(y - x + x) \\ &\geq \min\{\omega_b^a(y - x), \omega_b^a(x)\} \\ &= \min\{\omega_b^a(0), \omega_b^a(x)\} \\ &= \omega_b^a(x). \end{split}$$

Hence, $\omega_b^a(x) = \omega_b^a(y)$, for all $x, y \in R$.

Proposition 5.7. Let $\omega : R \to [0,1]$ be an (a,b)-fuzzy ideal of R. If for some $t \in [0,1]$, the (a,b)-level subset $(\omega_b^a)_t$, is nonempty, then it is an ideal of R where $(\omega_b^a)_t = \{x \in R \mid \omega_b^a(x) \ge t\}$.

Proof. Let $x, y \in (\omega_b^a)_t$. Then $\omega_b^a(x) \ge t$ and $\omega_b^a(y) \ge t$. As ω is an (a, b)-fuzzy ideal of R,

$$(\omega_b^a)(x-y) \ge \min\{\omega_b^a(x), \omega_b^a(y)\} = \min\{t, t\} = t.$$

Hence

$$x - y \in (\omega_b^a)_t. \tag{5.3}$$

Let $r \in R$ be arbitrary and $x \in (\omega_b^a)_t$, then $\omega_b^a(x) \ge t$. $(\omega_b^a)(rx) \ge \max\{\omega_b^a(r), \omega_b^a(x)\} \ge \omega_b^a(x) = t$.

S. K. Nimbhorkar and J. A. Khubchandani

Hence,

$$rx \in (\omega_b^a)_t. \tag{5.4}$$

From (5.3) and (5.4), we conclude that $(\omega_b^a)_t$ is an ideal of R.

Proposition 5.8. Let $\omega : R \to [0,1]$ be an (a,b)-fuzzy subset of R. Suppose that $(\omega_b^a)_t$ is an ideal for all $t \in [0,1]$. Then ω is an (a,b)-fuzzy ideal of R.

Proof. Let $x, y \in R$ and $\omega_b^a(x) = t_1$, $\omega_b^a(y) = t_2$, where $t_1, t_2 \in [0, 1]$. Then $(\omega_b^a)_{t_1}$ and $(\omega_b^a)_{t_2}$ are ideals of R. Since, $t_1 \wedge t_2 \leq t_1$ and $t_1 \wedge t_2 \leq t_2$. This implies that $(\omega_b^a)_{t_1} \subseteq (\omega_b^a)_{t_1 \wedge t_2}$ and $(\omega_b^a)_{t_2} \subseteq (\omega_b^a)_{t_1 \wedge t_2}$. Hence, $x \in (\omega_b^a)_{t_1}$ and $y \in (\omega_b^a)_{t_2}$, which implies that $x, y \in (\omega_b^a)_{t_1 \wedge t_2}$ and so $x - y \in (\omega_b^a)_{t_1 \wedge t_2}$. Thus,

$$\omega_b^a(x-y) \ge t_1 \wedge t_2 = \min\{t_1, t_2\},$$

as t_1, t_2 are real numbers belonging to $[0, 1]$
 $= \min\{\omega_b^a(x), \omega_b^a(y)\}.$ (5.5)

For $x, y \in R$, if $\omega_b^a(x) = t_1$, then $x \in (\omega_b^a)_{t_1}$. Therefore, $xy \in (\omega_b^a)_{t_1}$ implies $\omega_b^a(xy) \ge t_1$. Hence,

$$\omega_b^a(xy) \ge \omega_b^a(x). \tag{5.6}$$

Similarly,

$$\omega_b^a(xy) \ge \omega_b^a(y). \tag{5.7}$$

Hence, from (5.6) and (5.7),

$$\omega_b^a(xy) \ge \max\{\omega_b^a(x), \omega_b^a(y)\}.$$
(5.8)

Thus, from (5.5) and (5.8), we conclude that ω is an (a, b)-fuzzy ideal of R.

Corollary 5.9. If $\omega : R \to [0,1]$ is an (a,b)-fuzzy ideal of R, then $\{x \in R \mid \omega_b^a(x) = \omega_b^a(0)\}$ is an ideal of R, where 0 is the additive identity of R.

Proof. Let $\tau = \{x \in R | \omega_b^a(x) = \omega_b^a(0)\}.$ Let $x, y \in \tau$. Then $\omega_b^a(x) = \omega_b^a(0)$ and $\omega_b^a(y) = \omega_b^a(0).$

(a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring

As ω is an (a, b)-fuzzy ideal, we have

$$\begin{split} \omega_b^a(x-y) &\geq \min\{\omega_b^a(x), \omega_b^a(y)\} \\ &= \min\{\omega_b^a(0), \omega_b^a(0)\} \\ &= \omega_b^a(0). \end{split}$$

By Proposition 5.5, we have $\omega_b^a(0) \ge \omega_b^a(x-y)$. Thus, $\omega_b^a(x-y) = \omega_b^a(0)$, which implies that $x-y \in \tau$. Let $r \in R$ and $x \in \tau$. Then $\omega_b^a(x) = \omega_b^a(0)$. Also,

$$\omega_b^a(rx) \ge \max\{\omega_b^a(r), \omega_b^a(x)\} \\ = \max\{\omega_b^a(r), \omega_b^a(0)\} \\ = \omega_b^a(0).$$

Again by Proposition 5.5, $\omega_b^a(0) \ge \omega_b^a(rx)$ Thus $\omega_b^a(0) = \omega_b^a(rx)$ and so $rx \in \tau$. Hence τ is an ideal of R.

Proposition 5.10. If $\omega : R \to [0,1]$ is an (a,b)-fuzzy ideal of R, then $\{x \in R \mid \omega_h^a(x) > t\}$ is an ideal of R for all $t \in [0,1]$.

Proof. Let us write $(\omega_b^a)_t = \{x \in R \mid \omega_b^a(x) > t\}$. Let $x, y \in (\omega_b^a)_t$. Then $\omega_b^a(x) > t$ and $\omega_b^a(y) > t$. As ω is an (a, b)-fuzzy ideal of R, we have

$$\omega_b^a(x-y) \ge \min\{\omega_b^a(x), \omega_b^a(y)\} > \min\{t, t\} = t.$$

Hence, $x - y \in (\omega_b^a)_t$. Now let $x \in \omega_b^a(x)$ and $r \in R$. Then

$$\omega_b^a(rx) \ge \max\{\omega_b^a(r), \omega_b^a(x)\} > \omega_b^a(x) > t.$$

Hence, $rx \in (\omega_b^a)_t$.

Thus, $\{x \in R \mid \omega_b^a(x) > t\}$ is an ideal of R for all $t \in [0, 1]$.

Definition 5.11. Let ω be an (a, b)-fuzzy ideal of R. Then the ideals $(\omega_b^a)_t$ for $t \in [0, 1]$ are called (a, b)-level ideals of R.

Remark 5.12. Let ω be an (a, b)-fuzzy ideal of R and $t_1, t_2 \in [0, 1]$ be such that $t_1 \leq t_2$. We note that if $x \in (\omega_b^a)_{t_2}$, then $(\omega_b^a)(x) \geq t_2 \geq t_1$. Hence $x \in (\omega_b^a)_{t_1}$. Thus $(\omega_b^a)_{t_2} \subseteq (\omega_b^a)_{t_1}$.

Proposition 5.13. Let $\omega : R \to [0,1]$ be a (a,b)-fuzzy ideal of R. Two level ideals $(\omega_b^a)_{t_1}, (\omega_b^a)_{t_2}$ with $t_1 < t_2$ are equal if and only if there is no $x \in R$ such that $t_1 \le \omega_b^a(x) < t_2$.

Proof. Assume that $(\omega_b^a)_{t_1} = (\omega_b^a)_{t_2}$. If there exists $x \in R$ such that $t_1 \leq \omega_b^a(x) < t_2$, then $x \in (\omega_b^a)_{t_1}$ but $x \notin (\omega_b^a)_{t_2}$, a contradiction.

Conversely, suppose that there is no $x \in R$ such that $t_1 \leq \omega_b^a(x) < t_2$. Since, $t_1 < t_2$ we have $(\omega_b^a)_{t_2} \subseteq (\omega_b^a)_{t_1}$. Now if $x \in (\omega_b^a)_{t_1}$, then $t_1 \leq \omega_b^a(x)$. Hence, by the given condition it follows that $\omega_b^a(x) \not\leq t_2$. Since $\omega_b^a(x)$ and t_2 are real numbers belonging to [0, 1], this implies that $\omega_b^a(x) \geq t_2$. Hence $x \in (\omega_b^a)_{t_2}$. Therefore, $(\omega_b^a)_{t_1} = (\omega_b^a)_{t_2}$.

Proposition 5.14. The intersection of two (a, b)-fuzzy ideals of R is an (a, b)-fuzzy ideal.

Proof. Let ω and η be two (a, b)-fuzzy ideals of R. For $x, y \in R$, we have

$$\begin{aligned} (\omega \cap \eta)_{b}^{a}(x-y) &= (\omega_{b}^{a} \cap \eta_{b}^{a})(x-y), \text{ by Lemma 3.2} \\ &= \min\{\omega_{b}^{a}(x-y), \eta_{b}^{a}(x-y)\} \\ &\geq \min\{\min\{\omega_{b}^{a}(x), \omega_{b}^{a}(y)\}, \min\{\eta_{b}^{a}(x), \eta_{b}^{a}(y)\}\} \\ &= \min\{\min\{\omega_{b}^{a}(x), \eta_{b}^{a}(x)\}, \min\{\omega_{b}^{a}(y), \eta_{b}^{a}(y)\}\} \\ &= \min\{\omega_{b}^{a}(x) \cap \eta_{b}^{a}(x), \omega_{b}^{a}(y) \cap \eta_{b}^{a}(y)\} \\ &= \min\{(\omega \cap \eta)_{b}^{a}(x), (\omega \cap \eta)_{b}^{a}(y)\}. \end{aligned}$$
(5.9)

Also, we have

$$\begin{aligned} (\omega \cap \eta)_b^a(xy) &= (\omega_b^a \cap \eta_b^a)(xy), \text{ by Lemma } \mathbf{3.2} \\ &= \min\{\omega_b^a(xy), \omega_b^a(xy)\} \\ &\geq \min\{\max\{\omega_b^a(x), \omega_b^a(y)\}, \max\{\eta_b^a(x), \eta_b^a(y)\}\}, \\ &\text{ as all the quantities involved belong to } [0, 1] \\ &= \max\{\min\{\omega_b^a(x), \omega_b^a(y)\}, \min\{\eta_b^a(x), \eta_b^a(y)\}\} \\ &= \max\{\min\{\omega_b^a(x), \eta_b^a(x)\}, \min\{\omega_b^a(y), \eta_b^a(y)\}\} \\ &= \max\{(\omega_b^a \cap \eta_b^a)(x)), (\omega_b^a \cap \eta_b^a)(y)\} \\ &= \max\{(\omega \cap \eta)_b^a(x), (\omega \cap \eta)_b^a(y)\}. \end{aligned}$$
(5.10)

It follows from (5.9) and (5.10), $\omega \cap \eta$ is an (a, b)-fuzzy ideal of R.

The following example shows that the union of two (a, b)-fuzzy ideals may not be an (a, b)-fuzzy ideal.

Example 5.15. Let $R = \mathbb{Z}_{12}$. Define fuzzy subsets ω and η as follows:

$$\omega(x) = \begin{cases} 0.4, & \text{if } x = \{0, 2, 4, 6, 8, 10\}, \\ 0, & \text{otherwise.} \end{cases}$$
$$\eta(x) = \begin{cases} 0.2, & \text{if } x = \{0, 3, 6, 9\}, \\ 0.1, & \text{otherwise.} \end{cases}$$

It can be seen that ω and η are (0.6, 0.3)-fuzzy ideals of $\mathbb{Z}_{12}.$ We have

$$(\omega \cup \eta)(x) = \begin{cases} 0.4, & \text{if } x = \{0, 2, 4, 6, 8, 10\}, \\ 0.2, & \text{if } x = \{3, 9\}, \\ 0.1, & \text{otherwise.} \end{cases}$$

If we take x = 9, y = 2, then x - y = 7. For a = 0.6 and b = 0.3, we have 1 - a + b = 0.7. Also, $(\omega \cup \eta)(x) = 0.2$, $(\omega \cup \eta)(y) = 0.4$ and $(\omega \cup \eta)(x - y) = 0.1$. Now,

$$(\omega \cup \eta)_b^a(x) = \min\{0.2, 0.7\} = 0.2, (\omega \cup \eta)_b^a(y) = \min\{0.4, 0.7\} = 0.4, (\omega \cup \eta)_b^a(x - y) = \min\{0.1, 0.7\} = 0.1. (\omega \cup \eta)_b^a(x - y) \not\ge \min\{(\omega \cup \eta)_b^a(x), (\omega \cup \eta)_b^a(y)\}.$$

Thus, $\omega \cup \eta$ is not a (0.6, 0.3)-fuzzy ideal of \mathbb{Z}_{12} .

Proposition 5.16. Let $g: R \to R'$ be an onto homomorphism of a ring R to a ring R'. If ω is an (a,b)-fuzzy ideal of R', then $g^{-1}(\omega)$ is an (a,b)-fuzzy ideal of R which is constant on kerg.

Proof. For $x, y \in R$. we have

$$(g^{-1}(\omega))_{b}^{a}(x-y)$$

$$= g^{-1}(\omega_{b}^{a})(x-y), \text{ by Lemma 3.2}$$

$$= \omega_{b}^{a}(g(x-y))$$

$$= \omega_{b}^{a}(g(x) - g(y))$$

$$\geq \min\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\},$$
(as ω is (a, b) -fuzzy ideal of R')
$$= \min\{g^{-1}(\omega_{b}^{a})(x), g^{-1}(\omega_{b}^{a})(y)\}$$

$$= \min\{(g^{-1}(\omega))_{b}^{a}(x), (g^{-1}(\omega))_{b}^{a}(y)\}, \text{ by Lemma 3.2}$$
(5.11)

Also, we have

$$(g^{-1}(\omega))_{b}^{a}(xy) = g^{-1}(\omega_{b}^{a})(xy) = \omega_{b}^{a}(g(x)g(y)) = \omega_{b}^{a}(g(x)g(y)) = \omega_{b}^{a}(g(x)g(y)) = \sum_{k=1}^{a} (g(x)), \omega_{b}^{a}(g(y)) = \max\{\omega_{b}^{a}(g(x)), \omega_{b}^{a}(g(y))\}, (as \ \omega \ is \ (a, b) - fuzzy \ ideal \ of \ R') = \max\{g^{-1}(\omega_{b}^{a})(x), g^{-1}(\omega_{b}^{a})(y)\} = \max\{(g^{-1}(\omega))_{b}^{a}(x), (g^{-1}(\omega))_{b}^{a}(y)\}, \text{ by Lemma } 3.2.$$
(5.12)

It follows from (5.11) and (5.12) that $g^{-1}(\omega)$ is an (a, b)-fuzzy ideal of R.

Next if $p \in kerg$, then g(p) = 0', where 0' is the additive identity of R'. Therefore, $(g^{-1}(\omega))^a_b(p) = \omega^a_b(g(p)) = \omega^a_b(0')$ and so $g^{-1}(\omega)$ is constant on kerg.

Now we consider the (a, b)-fuzzy quotient rings.

Definition 5.17. Let ω be an (a, b)-fuzzy ideal of R. For $x \in R$, define a fuzzy set $x + \omega_b^a : R \to [0, 1]$ by: $(x + \omega_b^a)(y) = \min\{\omega(y - x), 1 - a + b\}$. The fuzzy set $x + \omega_b^a$ is called an (a, b)-fuzzy coset of the fuzzy ideal ω of R.

Proposition 5.18. If ω is an (a, b)-fuzzy ideal of R, then (i) $0 + \omega_b^a = \omega_b^a$. (ii) For any $t \in [0, 1]$, $(x + \omega_b^a)_t = x + (\omega_b^a)_t$. (iii) $\omega_b^a(x) = \omega_b^a(0) \Leftrightarrow x + \omega_b^a = \omega_b^a$.

Proof. (i): We have

$$(0+\omega_b^a)(x) = \min\{\omega(x-0), 1-a+b\}$$
$$= \min\{\omega(x), 1-a+b\}$$
$$= \omega_b^a(x).$$

Hence, $0 + \omega_b^a = \omega_b^a$. (ii): Let $y \in R$. We have

$$y \in (x + \omega_b^a)_t \Leftrightarrow (x + \omega_b^a)(y) \ge t$$
$$\Leftrightarrow \min\{\omega(y - x), 1 - a + b\} \ge t$$

$$\Leftrightarrow \{\min\{\omega(y), \omega(x)\}, 1 - a + b\} \ge t$$

$$\Leftrightarrow \{\min\{\omega(y), 1 - a + b\}, \min\{\omega(x), 1 - a + b\}\} \ge t$$

$$\Leftrightarrow \min\{\omega_b^a(y), \omega_b^a(x)\} \ge t$$

$$\Leftrightarrow \omega_b^a(y - x) \ge t$$

$$\Leftrightarrow y - x \in (\omega_b^a)_t$$

$$\Leftrightarrow y \in x + (\omega_b^a)_t.$$

Hence, $(x + \omega_b^a)_t = x + (\omega_b^a)_t$. (iii): Assume that

$$\omega_b^a(x) = \omega_b^a(0). \tag{5.13}$$

Then for $y \in R$, we have

$$\begin{aligned} &(x + \omega_b^a)(y) = \min\{\omega(y - x), 1 - a + b\} \\ &\geq \min\{\min\{\omega(y), \omega(x)\}, 1 - a + b\} \\ &= \min\{\min\{\omega(y), 1 - a + b\}, \min\{\omega(x), 1 - a + b\}\} \\ &= \min\{\omega_b^a(y), \omega_b^a(x)\} \\ &= \min\{\omega_b^a(y), \omega_b^a(0)\}, \text{ from } (5.13) \\ &= \omega_b^a(y), \text{ by Proposition } 5.5 \\ &= \omega_b^a(y - x + x) \\ &\geq \min\{\omega_b^a(y - x), \omega_b^a(x)\} \\ &= \min\{\omega_b^a(y - x), \omega_b^a(0)\}, \text{ from } (5.13) \\ &= \omega_b^a(y - x), \text{ by Proposition } 5.5 \\ &= \min\{\omega_b^a(y - x), 1 - a + b\} \\ &= (x + \omega_b^a)(y). \end{aligned}$$

Thus, $x + \omega_b^a = \omega_b^a$. Conversely, assume that $x + \omega_b^a = \omega_b^a$ $\Rightarrow (x + \omega_b^a)(0) = \omega_b^a(0)$

$$\Rightarrow (x + \omega_b^a)(0) = \omega_b^a(0)$$

$$\Rightarrow \min\{\omega(0 - x), 1 - a + b\} = \omega_b^a(0)$$

$$\Rightarrow \min\{\omega(-x), 1 - a + b\} = \omega_b^a(0)$$

$$\Rightarrow \min\{\omega(x), 1 - a + b\} = \omega_b^a(0)$$

$$\Rightarrow \omega_b^a(x) = \omega_b^a(0).$$

Theorem 5.19. Let ω be a fuzzy ideal of R and τ be the collection of all fuzzy cosets of ω . Define, $(x + \omega_b^a) + (y + \omega_b^a) = (x + y) + \omega_b^a$ and $(x + \omega_b^a) \cdot (y + \omega_b^a) = (x \cdot y) + \omega_b^a$, for all $x, y \in R$. Then τ is a ring under these two operations.

Proof. First we shall show that these two operations are well-defined. Let $x + \omega_b^a = x' + \omega_b^a$ and $y + \omega_b^a = y' + \omega_b^a$. Then for x', y', $(x + \omega_b^a)(x') = (x' + \omega_b^a)(x')$ and $(y + \omega_b^a)(y') = (y' + \omega_b^a)(y')$. Then by definition 5.17, min{ $\omega(x' - x), 1 - a + b$ } = min{ $\omega(x' - x'), 1 - a + b$ } and min{ $\omega(y' - y), 1 - a + b$ } = min{ $\omega(y' - y'), 1 - a + b$ }. Therefore, min{ $\omega(x' - x), 1 - a + b$ } = min{ $\omega(0), 1 - a + b$ }. Therefore, min{ $\omega(x' - x), 1 - a + b$ } = min{ $\omega(0), 1 - a + b$ }. Therefore, $\omega_b^a(x' - x) = \omega_b^a(0)$ and $\omega_b^a(y' - y) = \omega_b^a(0)$, by definition 3.1. Therefore,

$$\omega_b^a(x'-x) = \omega_b^a(0) \text{ and } \omega_b^a(y'-y) = \omega_b^a(0).$$
 (5.14)

For $z \in R$, we have

$$\begin{split} &((x+y)+\omega_b^a)(z) \\ &= \min\{\omega(z-(x+y)), 1-a+b\} \\ &= \min\{\omega(z-x'-y), 1-a+b\} \\ &= \min\{\omega(z-x'-y'+x'-x+y'-y), 1-a+b\} \\ &\geq \min\{\omega(z-x'-y'), \omega(x'-x), \omega(y'-y)\}, 1-a+b\}, \\ &\text{since } \omega \text{ is a fuzzy ideal of } R. \\ &= \min\{\min\{\omega(z-x'-y'), 1-a+b\}, \min\{\omega(x'-x), 1-a+b\}, \\ &\min\{\omega(y'-y), 1-a+b\}\} \\ &= \min\{\omega_b^a(z-x'-y'), \omega_b^a(x'-x), \omega_b^a(y'-y)\} \\ &= \min\{\omega_b^a(z-x'-y'), \omega_b^a(0), \omega_b^a(0)\}, \text{ from } (5.14). \\ &= \omega_b^a(z-x'-y'), 1-a+b\} \\ &= \min\{\omega(z-x'-y'), 1-a+b\} \\ &= \min\{\omega(z-x'-y'), 1-a+b\} \\ &= \min\{\omega(z-x'-y'), 1-a+b\} \\ &= ((x'+y')+\omega_b^a)(z). \end{split}$$

Thus $((x + y) + \omega_b^a)(z) \ge ((x' + y') + \omega_b^a)(z)$. Similarly, we can show that $((x' + y') + \omega_b^a)(z) \ge ((x + y) + \omega_b^a)(z)$.

Hence,

$$((x' + y') + \omega_b^a)(z) = ((x + y) + \omega_b^a)(z).$$
(5.15)

We have

$$\begin{aligned} (xy + \omega_b^a)(z) \\ &= \min\{\omega(z - xy), 1 - a + b\} \\ &= \min\{\omega(z - x'y' + x'y' - xy), 1 - a + b\} \\ &\geq \min\{\min\{\omega(z - x'y'), \omega(x'y' - xy)\}, 1 - a + b\}, \\ &\text{ since } \omega \text{ is a fuzzy ideal of } R \\ &= \min\{\min\{\omega(z - x'y'), 1 - a + b\}, \min\{\omega(x'y' - xy), 1 - a + b\}\} \\ &= \min\{\omega_b^a(z - x'y'), \omega_b^a(x'y' - xy)\}. \end{aligned}$$
(5.16)

We have

$$\begin{split} &\omega_{b}^{a}(x'y'-xy) \\ &= \omega_{b}^{a}(x'y'-x'y+x'y-xy) \\ &= \omega_{b}^{a}(x'(y'-y)+(x'-x)y) \\ &\geq \min\{\omega_{b}^{a}(x(y'-y)), \omega_{b}^{a}((x'-x)y)\}, \text{ by Proposition 5.3} \\ &\geq \min\{\max\{\omega_{b}^{a}(x), \omega_{b}^{a}(y'-y)\}, \max\{\omega_{b}^{a}(x'-x), \omega_{b}^{a}(y)\}\} \\ &= \min\{\max\{\omega_{b}^{a}(x), \omega_{b}^{a}(0)\}, \max\{\omega_{b}^{a}(0), \omega_{b}^{a}(y)\}, \text{ from (5.14).} \\ &= \min\{\omega_{b}^{a}(0), \omega_{b}^{a}(0)\}, \text{ by Proposition 5.5} \\ &= \omega_{b}^{a}(0). \end{split}$$

Now, (5.16) becomes

$$(xy + \omega_b^a)(z) = \min\{\omega_b^a(z - x'y'), \omega_b^a(0)\}$$

= $\omega_b^a(z - x'y')$, by Proposition 5.5
= $\min\{\omega(z - x'y'), 1 - a + b\}$
= $(x'y' + \omega_b^a)(z)$.

Similarly, we can show that $(x'y' + \omega_b^a)(z) \ge (xy + \omega_b^a)(z)$. Hence, $(xy + \omega_b^a)(z) = (x'y' + \omega_b^a)(z)$. Thus, the operations + and \cdot are well defined. S. K. Nimbhorkar and J. A. Khubchandani

Further we have,

$$\begin{array}{rcl} (x+\omega_{b}^{a})+(y+\omega_{b}^{a}+z+\omega_{b}^{a}) &=& (x+\omega_{b}^{a}+y+\omega_{b}^{a})+z+\omega_{b}^{a}\\ &=& (x+y+z)+\omega_{b}^{a}.\\ (x+\omega_{b}^{a})+((-x)+\omega_{b}^{a}) &=& (0+\omega_{b}^{a})=\omega_{b}^{a}.\\ (x+\omega_{b}^{a})\cdot((y+\omega_{b}^{a})\cdot(z+\omega_{b}^{a})) &=& ((x+\omega_{b}^{a})\cdot(y+\omega_{b}^{a}))\cdot(z+\omega_{b}^{a})\\ &=& (x\cdot y\cdot z)+\omega_{b}^{a}.\\ (x+\omega_{b}^{a})\cdot(1+\omega_{b}^{a}) &=& x+\omega_{b}^{a}=(1+\omega_{b}^{a})\cdot(x+\omega_{b}^{a}).\\ (x+\omega_{b}^{a})\cdot(y+\omega_{b}^{a}) &=& (y+\omega_{b}^{a})\cdot(x+\omega_{b}^{a})=xy+\omega_{b}^{a}.\\ (x+\omega_{b}^{a})\cdot(y+\omega_{b}^{a}) &=& (y+\omega_{b}^{a})\cdot(x+\omega_{b}^{a})=xy+\omega_{b}^{a}. \end{array}$$

Hence, τ is a commutative ring with unity.

6. Conclusion

In this paper, we have studied (a, b)-fuzzy subrings and (a, b)-fuzzy ideals of a ring. In the next studies, we will formulate the concept of (a, b)-intuitionistic fuzzy subrings and (a, b)-intuitionistic fuzzy ideals of a ring.

Acknowledgments

The authors are thankful to the referee for helpful suggestions, which improved the paper.

References

- [1] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.
- [2] J. N. Moderson and D. S. Malik, *Fuzzy commutative algebra*, World Scientific, River Edge, NJ, USA, 1998.
- [3] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
- [4] P. K. Sharma, α-Fuzzy subgroups, Inter. J. Fuzzy Math. and Systems, 3(1) (2013), 47–59.
- [5] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133–139.

Shriram Khanderao Nimbhorkar

Department of Mathematics,

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India

Email: sknimbhorkar@gmail.com

Jyoti Ashok Khubchandani

Department of Mathematics, Dr.Vitthalrao Vikhe Patil College of Engineering, Ahmednagar 414001, India

Email: khubchandani_jyoti@yahoo.com