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GENERALIZATIONS OF PRIME FUZZY IDEALS

OF A LATTICE

SHRIRAM KHANDERAO NIMBHORKAR AND YOGITA SUBHASH PATIL

Abstract. As a generalization of the concepts of a fuzzy prime
ideal and a prime fuzzy ideal, the concepts of a fuzzy 2-absorbing
ideal and a 2-absorbing fuzzy ideal of a lattice are introduced. Some
results on such fuzzy ideals are proved. It is shown that the radical
of a fuzzy ideal of L is a 2-absorbing fuzzy ideal if and only if it is a
2-absorbing primary fuzzy ideal of L. We also introduce and study
these concepts in a product of lattices.
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1. Introduction

Zadeh [14] developed the concept of a fuzzy set. Gugan [13] general-
ized this concept by taking the evaluation set as a lattice. Ajmal and
Thomas [8] defined a fuzzy lattice and a fuzzy sublattice as a fuzzy al-
gebra. Attallah [7], Koguep et.al. [4] and Davvaz and Kazanci [3] have
studied fuzzy sublattices, fuzzy ideals, fuzzy prime ideals in lattices.

The notion of a 2-absorbing ideal of a commutative ring was intro-
duced by Badawi [1]. A proper ideal I of a commutative ring R is said
to be a 2-absorbing, if whenever a, b, c ∈ R, abc ∈ I then either ab ∈ I
or ac ∈ I or bc ∈ I. This concept was generalized by Anderson and
Badawi [6], Payrovi and Babaei [15], Badawi and Darani [2], Chaudhary
[12], Yuand and Wu [5] and Wasadikar and Gaikwad [10, 9] in other
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mathematical structures such as semirings, semigroups, submodules and
lattices.

In this paper, we introduce the concepts of a fuzzy 2-absorbing ideal
and a 2-absorbing fuzzy ideal of a lattice L. This is a generalization
of the concepts of a fuzzy prime ideal and a prime fuzzy ideal of L
introduced by Koguep et. al. [4]. Also we define a primary fuzzy ideal
and the radical of a fuzzy ideal of L. Some properties of these fuzzy
ideals are proved. We also introduce and study these concepts in a
product of lattices.

2. Preliminaries

Throughout in this paper, L = (L,∧,∨) denotes a lattice with 0. We
recall some concepts and results.

Definition 2.1. A fuzzy subset µ of L is a function µ : L→ [0, 1].

Definition 2.2. [5] A fuzzy subset µ of L is called proper if it is a
non-constant function.

Definition 2.3. [4] For any α ∈ [0, 1] the set µα = {x ∈ L/µ(x) ≥ α}
is called the α−cut of µ or α-level set and µα+ = {x ∈ L/µ(x) > α} is
called the strong α−cut of µ.

Definition 2.4. [4] A fuzzy subset µ of L is called a fuzzy sublattice of
L if µ(x ∧ y) ∧ µ(x ∨ y) ≥ min{µ(x), µ(y)} for all x, y ∈ L.

Definition 2.5. [4] A fuzzy sublattice µ of L is called a fuzzy ideal of
L if µ(x ∨ y) = µ(x) ∧ µ(y) for all x, y ∈ L.

Definition 2.6. [3] For fuzzy subsets µ, η of L, µ ⊆ η means µ(x) ≤ η(x)
for all x ∈ L.

The following result is from [7].

Lemma 2.7. Let µ be a fuzzy sublattice of L. Then µ is a fuzzy ideal
of L if and only if µ(x) ≤ µ(y) whenever, x ≥ y for all x, y ∈ L.

3. Fuzzy prime ideals and prime fuzzy ideals of a lattice

The following concept is well-known in lattice theory, see Grätzer [11].

Definition 3.1. A nonempty subset I of a lattice L is called an ideal,
if for a, b ∈ L, the following conditions hold.
(i) If a, b ∈ I, then a ∨ b ∈ I and (ii) if a ≤ b and b ∈ I, then a ∈ I.
A proper ideal I (i.e. I 6= L) is called a prime ideal, if a ∧ b ∈ I implies
that either a ∈ I or b ∈ I.
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Koguep et. al. [4], have defined a fuzzy prime ideal and a prime fuzzy
ideal as follows.

Definition 3.2. A proper fuzzy ideal µ of a lattice L is called a fuzzy
prime ideal, if for all a, b ∈ L, µ(a ∧ b) ≤ µ(a) ∨ µ(b).

In fact, a proper fuzzy ideal µ of L is fuzzy prime if and only if for all
a, b ∈ L, µ(a ∧ b) = µ(a) ∨ µ(b).

Definition 3.3. A fuzzy ideal µ of L is called a prime fuzzy ideal of L
if for any two fuzzy ideals σ and θ of lattice L if σ ∧ θ ⊆ µ imply that
either σ ⊆ µ or θ ⊆ µ.

We have the following theorem.

Theorem 3.4. Let I be an ideal of L and χI denote the characteristic
function of I.
(i) I is a prime ideal of L if and only if χI is a fuzzy prime ideal of L.
(ii) I is a prime ideal of L if and only if χI is a prime fuzzy ideal of L.

Proof. Clearly, χI is a fuzzy ideal of L.
(i): Suppose that I is a prime ideal of L.
Let a, b ∈ L. We need to show that

χI(a ∧ b) = χI(a) ∨ χI(b).
If a, b ∈ I, then a ∧ b ∈ I and we have

χI(a ∧ b) = 1 = 1 ∨ 1 = χI(a) ∨ χI(b).
If a, b /∈ I, then as I is a prime ideal, a ∧ b /∈ I and we have

χI(a ∧ b) = 0 = 0 ∨ 0 = χI(a) ∨ χI(b).
If only one of a or b is in I, say a ∈ I. Then a ∧ b ∈ I. We have
χI(a) = χI(a ∧ b) = 1 and χI(b) = 0. Thus

χI(a ∧ b) = 1 = 1 ∨ 0 = χI(a) ∨ χI(b).
Thus χI is a fuzzy prime ideal of L.

Conversely, suppose that χI is a fuzzy prime ideal of L.
Let a ∧ b ∈ I. Then

(3.1) χI(a ∧ b) = 1 = χI(a) ∨ χI(b).
If both a, b /∈ I, then χI(a) = χI(b) = 0 implies that χI(a)∨χI(b) = 0,

which contradicts (3.1).
Hence I must be a prime ideal of L.
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(ii): Suppose that I is a prime ideal of L.
Let σ, θ be fuzzy ideals of L. Suppose that σ ∩ θ ⊆ χI .
If σ * χI , θ * χI , then there exist a, b ∈ L such that
χI(a) < σ(a) and χI(b) < θ(b).
By the definition of χI , we conclude that a, b /∈ I. For, if say a ∈ I, then
χI(a) = 1 leads to 1 < σ(a), which is not possible.

Since I is a prime ideal of L, we get a ∧ b /∈ I. Hence χI(a ∧ b) = 0.
Since σ, θ are fuzzy ideals of L, we have
σ(a) ≤ σ(a ∧ b) and θ(b) ≤ θ(a ∧ b).
As the image of any element under a fuzzy set is a nonnegative number,
from the above, we get

χI(a ∧ b) = 0

≤ χI(a) ∧ χI(b)
< σ(a) ∧ θ(b)
≤ σ(a ∧ b) ∧ θ(a ∧ b)
= (σ ∩ θ)(a ∧ b) ≤ χI(a ∧ b)
= 0.

Thus we get 0 < 0 which is not possible.
Hence either σ ⊆ χI or θ ⊆ χI .

Conversely, suppose that χI is a prime fuzzy ideal of L.
Suppose that for some a, b ∈ L, a ∧ b ∈ I but a, b /∈ I.
Define fuzzy ideals σ and θ of L as follows.

σ(x) =

{
1, if; x ∈ (a];
0 otherwise

θ(x) =

{
1, if; x ∈ (b];
0 otherwise.

Then σ ∩ θ ⊆ χI but neither σ ⊆ χI nor θ ⊆ χI , a contradiction.
Hence I is a prime ideal of L. �

The following example shows that the condition of “primeness”in The-
orem 3.4 is necessary.

Example 3.5. Consider the lattice L shown in Figure 1. We note that
the ideal I = (0] is not a prime ideal of L, as a ∧ b = 0 ∈ I but neither
a ∈ I, nor b ∈ I.
(i): We have χI(a ∧ b) = 1 and χI(a) = χI(b) = 0.
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Thus χI(a ∧ b) � χI(a) ∨ χI(b) = 0.
Hence χI is not a fuzzy prime ideal of L.

0

a

1

b

L
Figure 1

(ii): Define fuzzy ideals σ and θ of L as follows.
σ(0) = 1, σ(1) = σ(b) = 0, σ(a) = 1/2.
θ(0) = 1, θ(1) = θ(a) = 0, θ(b) = 1/3.
Then σ ∩ θ ⊆ χI but neither σ ⊆ χI nor θ ⊆ χI .
Thus χI is not a prime fuzzy ideal of L.

Koguep et. al. [4], have given an example of a fuzzy prime ideal of
a lattice, which is not a prime fuzzy ideal. But no example of a prime
fuzzy ideal of a lattice is given by them. We pose the following question.

Question: Let L be a lattice with 0 (least element) and 1(greatest
element). Whether a prime fuzzy ideal, other than the characteristic
function of a prime ideal of L exists?

The following example indicates nonexistence of a prime fuzzy ideal
(other than the characteristic function of a prime ideal) of a lattice.

Example 3.6. Consider the lattice L, shown in Figure 1. Any fuzzy ideal
of L is of the form (or similar form with appropriate changes).
µ(0) = 1, µ(1) = 0, µ(a) = 0, µ(b) = β.
Consider the fuzzy ideals σ, θ of L defined by
σ(0) = 1, σ(1) = 0, σ(a) = 0, σ(b) = β + γ, where 0 < γ < 1.
θ(0) = 1, θ(1) = 0, θ(a) = α+ γ, θ(b) = 0.
Then σ ∩ θ ⊆ µ but neither σ ⊆ µ nor θ ⊆ µ.

4. Fuzzy 2-absorbing ideals

The following definition is from Wasadikar and Gaikwad [10].
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Definition 4.1. Let L be a lattice with 0. An ideal I of L is called
a 2-absorbing ideal, if for a, b, c ∈ L, a ∧ b ∧ c ∈ I implies that either
a ∧ b ∈ I or b ∧ c ∈ I or c ∧ a ∈ I.

We extend the concept of a 2-absorbing ideal, in the context of a fuzzy
ideal of a lattice and prove some properties of fuzzy 2-absorbing ideals
of a lattice. We denote the set of all fuzzy ideals of L by FI(L).

Definition 4.2. A proper fuzzy ideal µ of a lattice L is called a fuzzy
2-absorbing ideal of L if for all a, b, c ∈ L,

µ(a ∧ b ∧ c) ≤ max{µ(a ∧ b), µ(b ∧ c), µ(c ∧ a)}.

Since µ(a ∧ b), µ(b ∧ c), µ(c ∧ a) are nonnegative real numbers, the
definition of a fuzzy 2-absorbing ideal is equivalent to
µ is a fuzzy 2-absorbing ideal iff for all a, b, c ∈ L,

µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a).

In fact, µ is a fuzzy 2-absorbing ideal iff for all a, b, c ∈ L,

µ(a ∧ b ∧ c) = µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a).

Lemma 4.3. Let I be an ideal of L. Then I is a 2-absorbing ideal of L
if and only if χI is a fuzzy 2-absorbing ideal of L.

Proof. Suppose that I is a 2-absorbing ideal of L. Let a, b, c ∈ L.
If a ∧ b ∧ c ∈ I, then as I is 2-absorbing, either

a ∧ b ∈ I or b ∧ c ∈ I or c ∧ a ∈ I.
Thus in this case,

χI(a ∧ b ∧ c) ≤ χI(a ∧ b) ∨ χI(b ∧ c) ∨ χI(c ∧ a).

If a ∧ b ∧ c /∈ I, then clearly, a ∧ b /∈ I, b ∧ c /∈ I and c ∧ a /∈ I.
Thus in this case also,

χI(a ∧ b ∧ c) ≤ χI(a ∧ b) ∨ χI(b ∧ c) ∨ χI(c ∧ a).

Hence χI is a fuzzy 2-absorbing ideal of L.
Conversely, suppose that χI is a fuzzy 2-absorbing ideal of L.

Let a, b, c ∈ L be such that a ∧ b ∧ c ∈ I, but a ∧ b /∈ I, b ∧ c /∈ I and
c ∧ a /∈ I.
This implies that

χI(a ∧ b ∧ c) = 1 and χI(a ∧ b) = χI(b ∧ c) = χI(c ∧ a) = 0.

Then χI(a ∧ b ∧ c) � χI(a ∧ b) ∨ χI(b ∧ c) ∨ χI(c ∧ a), a contradiction,
as χI is fuzzy 2-absorbing. �
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The following lemma shows that any level set of a fuzzy 2-absorbing
ideal of L is a 2-absorbing ideal of L.

Lemma 4.4. A fuzzy ideal µ of L is a fuzzy 2-absorbing ideal if and
only if for each t ∈ Image(µ), the level ideal µt is a 2-absorbing ideal of
L.

Proof. (i): Let µ be a fuzzy 2-absorbing ideal of L. Let t ∈ Image(µ).
Let a, b, c ∈ L be such that a ∧ b ∧ c ∈ µt. Then t ≤ µ(a ∧ b ∧ c).
Since µ is a fuzzy 2-absorbing ideal,

(4.1) t ≤ µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a).

Since t, µ(a ∧ b), µ(b ∧ c), µ(c ∧ a) are nonnegative real numbers, if

µ(a ∧ b) < t, µ(b ∧ c) < t and µ(c ∧ a) < t,

then

(4.2) µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a) < t.

Thus (4.1) and (4.2) lead to t < t, which is not possible.
Hence

t ≤ µ(a ∧ b) or t ≤ µ(b ∧ c) or t ≤ µ(c ∧ a).

Thus either

a ∧ b or b ∧ c or c ∧ a ∈ µt;
i.e. µt is a 2-absorbing ideal of L.
(ii): Let µt be a 2-absorbing ideal of L for each t ∈ Image(µ).
Let a, b, c ∈ L and µ(a ∧ b ∧ c) = t.
Then a ∧ b ∧ c ∈ µt. Since µt is a 2-absorbing ideal of L, either

a ∧ b or b ∧ c or c ∧ a ∈ µt.

This implies that

t ≤ µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a).

Thus µ is a fuzzy 2-absorbing ideal of L. �

Now we show that every fuzzy prime ideal of L is a fuzzy 2-absorbing
ideal.

Lemma 4.5. Let µ be a fuzzy prime ideal of L. Then µ is a fuzzy
2-absorbing ideal of L.
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Proof. Let µ be a fuzzy prime ideal of L. Then for all a, b ∈ L,

µ(a ∧ b) ≤ µ(a) ∨ µ(b).

Hence for all a, b, c ∈ L, we have

µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(c),

µ(a ∧ b ∧ c) ≤ µ(b ∧ c) ∨ µ(a),

µ(a ∧ b ∧ c) ≤ µ(c ∧ a) ∨ µ(b).

Hence

(4.3) µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(c) ∨ µ(b ∧ c) ∨ µ(a) ∨ µ(c ∧ a) ∨ µ(b).

By the definition of a fuzzy ideal, it follows that for any x, y ∈ L,
µ(x) ≤ µ(x ∧ y).
Hence (4.3) reduces to

µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a).

Thus µ is a fuzzy 2-absorbing ideal of L. �

The following example shows that the converse of Lemma 4.5 does
not hold.

Example 4.6. Consider the lattice L shown in Figure 1. Let µ be the
fuzzy set defined by µ(0) = 1, µ(a) = 0, µ(b) = 1/2, µ(1) = 0.
Then µ is a fuzzy 2-absorbing ideal of L.
However, µ is not a fuzzy prime ideal as

1 = µ(0) = µ(a ∧ b) 6= 0 ∨ 1/2 = µ(a) ∨ µ(b).

Lemma 4.7. The intersection of any two distinct fuzzy prime ideals of
L is a fuzzy 2-absorbing ideal of L.

Proof. Let µ, θ be two distinct fuzzy prime ideals of L.
We know that for any a ∈ L, (µ ∩ θ)(a) = µ(a) ∧ θ(a).
Let a, b, c ∈ L. We have

(4.4) (µ ∩ θ)(a ∧ b ∧ c) = µ(a ∧ b ∧ c) ∧ θ(a ∧ b ∧ c)
Since every fuzzy prime ideal is fuzzy 2-absorbing, from (4.4), we get

(µ ∩ θ)(a ∧ b ∧ c)
≤ [µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a)]

∧ [θ(a ∧ b) ∨ θ(b ∧ c) ∨ θ(c ∧ a)].

(4.5)

Since µ and θ are fuzzy prime ideals, we can write

µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a) ≤ µ(a) ∨ µ(b) ∨ µ(c)
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and
θ(a ∧ b) ∨ θ(b ∧ c) ∨ θ(c ∧ a) ≤ θ(a) ∨ θ(b) ∨ θ(c).

We note that all the terms on the right hand side of (4.5) belong to the
distributive lattice [0, 1]. Hence we can write

(µ ∩ θ)(a ∧ b ∧ c) ≤ [µ(a) ∨ µ(b) ∨ µ(c)] ∧ [θ(a) ∨ θ(b) ∨ θ(c)]
= [µ(a) ∧ θ(a)] ∨ [µ(a) ∧ θ(b)] ∨ [µ(a) ∧ θ(c)]
∨ [µ(b) ∧ θ(a)] ∨ [µ(b) ∧ θ(b)] ∨ [µ(b) ∧ θ(c)]
∨ [µ(c) ∧ θ(a)] ∨ [µ(c) ∧ θ(b) ∨ [µ(c) ∧ θ(c)].

(4.6)

For any fuzzy ideal σ, we have σ(x) ≤ σ(x ∧ y), for all x, y ∈ L.
Hence µ(x) ≤ µ(x ∧ y) and θ(y) ≤ θ(x ∧ y) for all x, y ∈ L.
This implies

µ(x) ∧ θ(y) ≤ µ(x ∧ y) ∧ θ(x ∧ y) = (µ ∩ θ)(x ∧ y).

Applying this to the R. H. S. of (4.6), we get

(µ ∩ θ)(a ∧ b ∧ c) ≤ (µ ∩ θ)(a) ∨ (µ ∩ θ)(a ∧ b) ∨ (µ ∩ θ)(b ∧ c)
∨ (µ ∩ θ)(c ∧ a) ∨ (µ ∩ θ)(b) ∨ (µ ∩ θ)(c).

(4.7)

Since µ ∩ θ is a fuzzy ideal, for all x, y ∈ L, we have

(µ ∩ θ)(x) ≤ (µ ∩ θ)(x ∧ y).

Applying this to the R. H. S. of (4.7), we get

(µ ∩ θ)(a ∧ b ∧ c) ≤ (µ ∩ θ)(a ∧ b) ∨ (µ ∩ θ)(b ∧ c) ∨ (µ ∩ θ)(c ∧ a).

Thus µ ∩ θ is a fuzzy 2-absorbing ideal of L. �

The following example shows that the condition of “primeness”in
Lemma 4.7 is necessary. This example also shows that in general the in-
tersection of two fuzzy 2-absorbing ideals need not be a fuzzy 2-absorbing
ideal.
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Example 4.8. Consider the lattice shown in Figure 2.

1

g ih

f

c

ed

a b

0
Figure 2

Define µ : L→ [0, 1] and θ : L→ [0, 1] as follows.

µ(0) = 1 θ(0) = 1
µ(a) = 1/2 θ(a) = 1/3
µ(b) = 2/3 θ(b) = 1/3
µ(c) = 1/2 θ(c) = 1/3
µ(d) = 1/2 θ(d) = 0
µ(e) = 0 θ(e) = 1/3
µ(f) = 0 θ(f) = 0
µ(g) = 0 θ(g) = 0
µ(h) = 0 θ(h) = 0
µ(i) = 0 θ(i) = 0
µ(1) = 0 θ(1) = 0

We note that µ and θ are fuzzy 2-absorbing ideals of L.
For
µ(d ∧ e ∧ f) = µ(c) and µ(d ∧ e) = µ(e ∧ f) = µ(f ∧ d) = µ(c).
µ(g∧h∧i) = µ(c) = 1/2 and µ(g∧h) = µ(d) = 1/2, µ(h∧i) = µ(f) = 0,
µ(i ∧ g) = µ(e) = 0.
Similarly for other elements.
θ(d ∧ e ∧ f) = θ(c) and θ(d ∧ e) = θ(e ∧ f) = θ(f ∧ d) = θ(c).
θ(g ∧ h ∧ i) = θ(c) = 1/3 and θ(g ∧ h) = θ(d) = 0, θ(h ∧ i) = θ(f) = 0,
θ(i ∧ g) = θ(e) = 1/3.
Similarly for other elements.
We have
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(µ ∩ θ)(0) = min{µ(0), θ(0)} = min{3/4, 3/4} = 3/4.
(µ ∩ θ)(a) = min{µ(a), θ(a)} = min{2/3, 1/3} = 1/3.
(µ ∩ θ)(b) = min{µ(b), θ(b)} = min{2/3, 1/3} = 1/3.
(µ ∩ θ)(c) = min{µ(c), θ(c)} = min{1/2, 1/3} = 1/3.
(µ ∩ θ)(d) = min{µ(d), θ(d)} = min{1/2, 0} = 0.
(µ ∩ θ)(e) = min{µ(e), θ(e)} = min{0, 1/3} = 0.
(µ ∩ θ)(f) = min{µ(f), θ(f)} = min{0, 0} = 0.
(µ ∩ θ)(g) = min{µ(g), θ(g)} = min{0, 0} = 0.
(µ ∩ θ)(h) = min{µ(h), θ(h)} = min{0, 0} = 0.
(µ ∩ θ)(i) = min{µ(i), θ(i)} = min{0, 0} = 0.
(µ ∩ θ)(1) = min{µ(1), θ(1)} = min{0, 0} = 0.
(µ ∩ θ)(g ∧ h ∧ i) = (µ ∩ θ)(c) = 1/3.
(µ ∩ θ)(g ∧ h) = (µ ∩ θ)(d) = 0.
(µ ∩ θ)(h ∧ i) = (µ ∩ θ)(f) = 0.
(µ ∩ θ)(i ∧ g) = (µ ∩ θ)(e) = 0.
Thus
(µ ∩ θ)(g ∧ h ∧ i) � max{(µ ∩ θ)(g ∧ h), (µ ∩ θ)(h ∧ i), (µ ∩ θ)(i ∧ g)}.
Hence µ ∩ θ is not a fuzzy 2-absorbing ideal of L.

5. 2-Absorbing Fuzzy Ideals

Now we introduce the concept of a 2-absorbing fuzzy ideal on the lines
of a prime fuzzy ideal.

Definition 5.1. A proper fuzzy ideal µ of L is called a 2-absorbing
fuzzy ideal of L if whenever θ∩η∩ν ⊆ µ for θ, η, ν ∈ FI(L), then either
θ ∩ η ⊆ µ or η ∩ ν ⊆ µ or θ ∩ ν ⊆ µ.

The following example shows that the concept of a “fuzzy 2-absorbing
ideal”is different from that of a “2-absorbing fuzzy ideal”.

Example 5.2. Consider the following fuzzy ideals of the lattice L shown
in Figure 1.
µ = {(0, 7/8), (a, 1/3), (b, 3/4), (1, 1/3)},
η = {(0, 1), (a, 1/4), (b, 4/5), (1, 1/4)},
ν = {(0, 1), (a, 3/4), (b, 2/3), (1, 2/3)},
γ = {(0, 4/5), (a, 3/4), (b, 4/5), (1, 3/4)},
We note that (i) µ is a fuzzy 2-absorbing ideal and (ii) η ∩ ν ∩ γ ⊆ µ.
But η ∩ ν * µ, η ∩ γ * µ and γ ∩ ν * µ.
Thus µ is not a 2-absorbing fuzzy ideal.

Lemma 5.3. Let I be an ideal of L. If χI is a 2-absorbing fuzzy ideal
of L, then I is a 2-absorbing ideal of L.
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Proof. Suppose that χI is a 2-absorbing fuzzy ideal of L.
Let a ∧ b ∧ c ∈ I for some a, b, c ∈ L. Suppose that a ∧ b /∈ I, b ∧ c /∈ I
and c ∧ a /∈ I.
Then clearly, a, b, c /∈ I.
Define fuzzy ideals

µ(x) =

{
1, if x ∈ (a],

0 otherwise.

θ(x) =

{
1, if x ∈ (b],

0 otherwise.

η(x) =

{
1, if x ∈ (c],

0 otherwise.

We note that

(µ ∩ θ ∩ η)(x) =

{
1, if x ∈ (a ∧ b ∧ c],
0 otherwise.

Then µ ∩ θ ∩ η ⊆ χI but µ ∩ θ * χI , θ ∩ η * χI and µ ∩ η * χI .
This contradicts the assumption that χI is a 2-absorbing fuzzy ideal. �

Remark 5.4. However, we are unable to prove or disprove that if I is a
2-absorbing ideal of L, then χI is a 2-absorbing fuzzy ideal of L.

Lemma 5.5. Every prime fuzzy ideal of a lattice L is a 2-absorbing
fuzzy ideal of L.

Proof. Let µ be a prime fuzzy ideal of L. Suppose that θ, η, ν ∈ FI(L)
and θ ∩ η ∩ ν ⊆ µ. As µ is a prime fuzzy ideal of L we have either
(1) θ ∩ η ⊆ µ or ν ⊆ µ, or (2) θ ∩ ν ⊆ µ or η ⊆ µ, or (3) η ∩ ν ⊆ µ or
θ ⊆ µ.
Without loss of generality, suppose that θ ∩ η ⊆ µ or ν ⊆ µ.
If θ ∩ η ⊆ µ then the proof is obvious and if ν ⊆ µ then θ ∩ ν ⊆ µ and
η ∩ ν ⊆ µ. Thus µ is a 2-absorbing fuzzy ideal of a lattice L. �

We are unable to give an example to show that the converse of Lemma
5.5 does not hold.

Proposition 5.6. The intersection of two prime fuzzy ideals of L is a
2-absorbing fuzzy ideal of L.
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Proof. Let µ and δ be two distinct prime fuzzy ideals of L. Assume that
θ, η, ν are fuzzy ideals of L such that
θ ∩ η ∩ ν ⊆ µ ∩ δ but θ ∩ η * µ ∩ δ, θ ∩ ν * µ ∩ δ and η ∩ ν * µ ∩ δ.
Clearly, θ ∩ η ∩ ν ⊆ µ and θ ∩ η ∩ ν ⊆ δ.
Since µ and δ are prime fuzzy ideals, we have
(i) θ ∩ η ⊆ µ or ν ⊆ µ and (ii) θ ∩ η ⊆ δ or ν ⊆ δ.
We have the following cases:
Case(1): If θ ∩ η ⊆ µ and θ ∩ η ⊆ δ, then we have θ ∩ η ⊆ µ ∩ δ, a
contradiction.
Case(2): If ν ⊆ µ and ν ⊆ δ, then we get θ∩ν ⊆ µ∩ δ, a contradiction.
Case(3): Let θ ∩ η ⊆ µ and ν ⊆ δ. As µ is a prime fuzzy ideal, we get
either θ ⊆ µ or η ⊆ µ. Hence either θ ∩ ν ⊆ µ ∩ δ or η ∩ ν ⊆ µ ∩ δ, a
contradiction in either case.
Case(4): Let ν ⊆ µ and θ ∩ η ⊆ δ. As δ is a prime fuzzy ideal, we get
either θ ⊆ δ or η ⊆ δ. Hence either θ ∩ ν ⊆ µ ∩ δ or η ∩ ν ⊆ µ ∩ δ, a
contradiction in either case.
Hence at least one of θ ∩ η or θ ∩ ν or η ∩ ν must be a subset of µ ∩ δ.
Therefore µ ∩ δ is a 2-absorbing fuzzy ideal. �

6. Fuzzy primary ideals

The following definition is from Wasadikar and Gaikwad [10].

Definition 6.1. Let L be a lattice with 0. An ideal I of L is called
a primary ideal, if for a, b ∈ L, a ∧ b ∈ I implies that either a ∈ I or
b ∈
√
I, where

√
I denotes the radical of I (i.e. the intersection of all

prime ideals containing I).
If there does not exist a prime ideal containing an ideal I in a lattice L
then we define

√
I = L.

We define the radical of a fuzzy ideal. Since there are two concepts of
primeness (namely, a fuzzy prime ideal and a prime fuzzy ideal), we can
introduce two concepts of the radical and primariness. For the radical of
a fuzzy set, we use the notation

√
µ. The context will decide the radical

(i.e. whether fuzzy prime radical or prime fuzzy radical).

Definition 6.2. Let µ be a fuzzy ideal of a lattice L. We define the
fuzzy prime (respectively, prime fuzzy) radical of µ as the intersection
of all fuzzy prime (respectively, prime fuzzy) ideals containing µ and we
denote it by

√
µ.

We note that for a fuzzy ideal µ of L always µ ⊆ √µ.
It can be shown that for an ideal I of L,

√
χI = χ√I .
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Wasadikar and Gaikwad, [10, 9] have introduced and studied the con-
cepts of a primary ideal and a 2-absorbing primary ideal in a lattice.
We introduce the concept of a fuzzy primary ideal of a lattice.

Definition 6.3. A proper fuzzy ideal µ of a lattice L is called a fuzzy
primary ideal of L, if for a, b ∈ L,

µ(a ∧ b) ≤ µ(a) ∨√µ(b).

Lemma 6.4. Let I be a proper ideal of L. Then I is a primary ideal of
L if and only if χI is a fuzzy primary ideal of L.

Proof. Suppose that I is a primary ideal of L. Let a, b ∈ L.
(i) If a∧ b ∈ I, then as I is a primary ideal of L, either a ∈ I or b ∈

√
I.

Hence
χI(a ∧ b) ≤ χ(a) ∨√χI(b).

(ii) If a ∧ b /∈ I, then clearly a /∈ I and b /∈ I. In this case also

χI(a ∧ b) ≤ χ(a) ∨√χI(b).
Thus χI is a fuzzy primary ideal of L.

Conversely, suppose that χI is a fuzzy primary ideal of L.
Let a ∧ b ∈ I. Then

χI(a ∧ b) ≤ χ(a) ∨√χI(b),
implies that either χI(a) = 1 or

√
χI(b) = 1.

Thus either a ∈ I or b ∈
√
I. �

Now we give a relationship between a fuzzy prime ideal and a fuzzy
primary ideal.

Lemma 6.5. If µ is a fuzzy prime ideal of L, then µ is a fuzzy primary
ideal of L.

Proof. Let µ be a fuzzy prime ideal of L. For all a, b ∈ L,

µ(a ∧ b) ≤ µ(a) ∨ µ(b).

Since µ ⊆ √µ, we get the result. �

The following example shows that the converse of Lemma 6.5 does
not hold.

Example 6.6. Consider the ideal I = (a] of the lattice shown in Figure
3. We note that J = (d] is the only prime ideal of L containing I. Hence√
I = J . We know that for any ideal A of L,

√
χA = χ√A.
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Hence
√
χI = χ√I = χJ . Since J is a prime ideal, χJ is a fuzzy prime

ideal and so χI is a fuzzy primary ideal.
We have χI(b ∧ c) = 1 but χI(b) ∨ χI(c) = 0 as b, c /∈ I. Thus χI is not
fuzzy prime.

1

d fe

c

0

ba

Figure 3

Theorem 6.7. Let µ be a fuzzy ideal of L. Then µ is fuzzy primary if
and only if the level set µt, t ∈ Image(µ) is a primary ideal of L.

Proof. Suppose that µ is a fuzzy primary ideal of L.
Let a, b ∈ L be such that a ∧ b ∈ µt and a /∈ µt, b /∈

√
µt.

Then we have
t ≤ µ(a ∧ b), t < µ(a), t <

√
µ(b).

Since µ is fuzzy primary, we have

µ(a ∧ b) ≤ µ(a) ∨√µ(b).

Thus we get t < t, which is not possible.
Hence µt is a primary ideal of L.

Conversely, suppose that µt is a primary ideal of L.
Let a, b ∈ L be such that

µ(a ∧ b) � µ(a) ∨√µ(b).

Let µ(a ∧ b) = t. Then µ(a) < t and
√
µ(b) < t.

Since µt is a primary ideal, a ∧ b ∈ µt implies that either a ∈ µt or
b ∈ √µ

t
, i.e. either µ(a) ≥ t or

√
µ(b) ≥ t, a contradiction. �

Definition 6.8. A proper fuzzy ideal µ of a lattice L is called a fuzzy
2-absorbing primary ideal of L, if for a, b, c ∈ L,

µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨√µ(b ∧ c) ∨√µ(c ∧ a).

Lemma 6.9. A proper ideal I of L is a 2-absorbing primary ideal, if
and only if χI is a fuzzy 2-absorbing primary ideal of L.
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Proof. Suppose that I is a 2-absorbing primary ideal of L. Let a, b, c ∈ L.
Consider χI(a ∧ b ∧ c).
If a ∧ b ∧ c ∈ I, then χ(a ∧ b ∧ c) = 1.
As I is 2-absorbing primary, we have either

a ∧ b ∈ I or b ∧ c ∈
√
I or c ∧ a ∈

√
I.

Hence either

χI(a∧b) = 1 or χ√I(b∧c) =
√
χI(b∧c) = 1 or χ√I(c∧a) =

√
χI(c∧a) = 1.

Thus
χI(a ∧ b ∧ c) ≤ χI(a ∧ b) ∨ χ√I(b ∧ c) ∨ χ√I(c ∧ a).

If a ∧ b ∧ c /∈ I, then χ(a ∧ b ∧ c) = 0. Clearly, a ∧ b /∈ I.
Hence

χI(a ∧ b ∧ c) ≤ χI(a ∧ b) ∨ χ√I(b ∧ c) ∨ χ√I(c ∧ a).

Thus χI is a fuzzy 2-absorbing primary ideal.
Conversely, suppose that χI is a fuzzy 2-absorbing primary ideal.

Let a ∧ b ∧ c ∈ I. Then χI(a ∧ b ∧ c) = 1.

Suppose that a ∧ b /∈ I, b ∧ c /∈
√
I and c ∧ a /∈

√
I.

Since χI is a fuzzy 2-absorbing primary ideal, we have

1 = χI(a ∧ b ∧ c) ≤ χI(a ∧ b) ∨ χ√I(b ∧ c) ∨ χ√I(c ∧ a).

Since each of χI(a ∧ b), χ√I(b ∧ c), χ√I(c ∧ a) belongs to [0, 1], at least
one of these numbers must be 1.
This implies that either

a ∧ b ∈ I or b ∧ c ∈
√
I or c ∧ a ∈

√
I.

Thus I is a 2-absorbing primary ideal. �

Lemma 6.10. If µ is a fuzzy primary ideal of L, then µ is a fuzzy
2-absorbing primary ideal of L.

Proof. Let µ be a fuzzy primary fuzzy ideal of L. Let a, b, c ∈ L.
As µ is a fuzzy primary ideal, we have

µ(a ∧ b ∧ c) = µ(a ∧ b ∧ b ∧ c)
≤ µ(a ∧ b) ∨√µ(b ∧ c)
≤ µ(a ∧ b) ∨√µ(b ∧ c) ∨√µ(c ∧ a).

Thus µ is a fuzzy 2-absorbing primary ideal. �

The following example shows that a fuzzy 2-absorbing primary ideal
of L need not be a fuzzy primary ideal.
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Example 6.11. Consider the ideal I = (0] of the lattice shown in the
Figure 4.
We note that the ideals (h] = {0, a, b, c, e, f, g, h} and (i] = {0, b, c, d, g, i}
are the only prime ideals of L.
Hence

√
I = (h] ∩ (i] = (g].

We note that I is a 2-absorbing primary ideal as for any x, y, z ∈ L,
x ∧ y ∧ z ∈ I implies that either x ∧ y ∈ I or y ∧ z ∈

√
I or z ∧ x ∈

√
I.

Hence by Lemma 6.9, χI is a fuzzy 2-absorbing primary ideal of L.
We note that χI(h ∧ i) = 1 but χI(h) = 0 as well as χ√I(i) = 0.

Thus χI(h ∧ i) � χI(h) ∨ χ√I(i).
Hence χI is not a fuzzy primary ideal of L.

1

0

g

c d

i

ba

e f

h

Figure 4

Lemma 6.12. If µ is a fuzzy 2-absorbing ideal of L, then µ is a fuzzy
2-absorbing primary ideal of L.

Proof. Let µ be a fuzzy 2-absorbing ideal of L.
Let a, b, c ∈ L. Since µ is a fuzzy 2-absorbing ideal, we get

µ(a ∧ b ∧ c) ≤ µ(a ∧ b) ∨ µ(b ∧ c) ∨ µ(c ∧ a).

Since µ ⊆ √µ, we get the result. �

The following example shows that a fuzzy 2-absorbing primary ideal
of L need not be a fuzzy 2-absorbing ideal.

Example 6.13. Consider the lattice shown in Figure 5. Consider the
ideal I = (0]. The only prime ideals of L are (j], (k], (l].

We have
√
I = (j] ∩ (k] ∩ (l] = (d].

Also
√
χI = χ√I = χJ , where J = (d].

We note that I is a 2-absorbing primary ideal of L. Hence by Lemma
6.9, χI is a fuzzy 2-absorbing primary ideal of L.
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We note that I is not a 2-absorbing ideal of L, as d∧ e∧ f = 0 ∈ I, but
d ∧ e /∈ I, e ∧ f /∈ I and d ∧ f /∈ I.
We have

χI(d ∧ e ∧ f) = 1 � χI(d ∧ e) ∨ χI(e ∧ f) ∨ χI(d ∧ f) = 0.

Thus χI is not a fuzzy 2-absorbing ideal of L.

1

j lk

i

d

hg

a b

0

c

e
f

Figure 5

Lemma 6.14. Let µ be a fuzzy ideal of L. If
√
µ is a fuzzy prime ideal,

then µ is a fuzzy 2-absorbing primary ideal.

Proof. Let µ be a fuzzy ideal of L. Suppose that
√
µ is a fuzzy prime

ideal. If µ is not a fuzzy 2-absorbing primary ideal, then there exist
a, b, c ∈ L such that

(6.1) µ(a ∧ b ∧ c) � µ(a ∧ b) ∨√µ(b ∧ c) ∨√µ(a ∧ c).

This implies that

µ(a ∧ b) ∨√µ(b ∧ c) ∨√µ(a ∧ c) < µ(a ∧ b ∧ c).

Since
√
µ is fuzzy prime, we have
√
µ(a ∧ b ∧ c) =

√
µ(b ∧ c) ∨√µ(a) =

√
µ(a ∧ c) ∨√µ(b).

Hence
√
µ(b∧c)∨√µ(a∧c) =

√
µ(b∧c)∨√µ(a)∨√µ(c) =

√
µ(a∧b∧c)∨√µ(c).

Thus from (6.1),

µ(a ∧ b) ∨√µ(a ∧ b ∧ c) ∨√µ(c) < µ(a ∧ b ∧ c).
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This implies that
√
µ(a ∧ b ∧ c) < µ(a ∧ b ∧ c),

which is not possible. Hence µ is fuzzy 2-absorbing primary. �

The following example shows that the converse of Lemma 6.14 does
not hold.

Example 6.15. Consider the lattice shown in Figure 6.

1

g ih

f

a

ed

0

b c

Figure 6

The only prime ideals of L containing the ideal I = (c] are (h] and (i].

Hence
√
I = (h] ∩ (i] = (f ].

For any x, y, z ∈ I, x ∧ y ∧ z ∈ I implies that either

x ∧ y ∈ I or y ∧ z ∈
√
I or x ∧ z ∈

√
I.

Hence I is a 2-absorbing primary ideal and so by Lemma 6.9, χI is a
fuzzy 2-absorbing primary ideal
We note that d ∧ e = a ∈

√
I but d /∈

√
I and e /∈

√
I. Thus

√
I is not

a prime ideal of L. Hence by Theorem 3.4,
√
χI = χ√I is not a fuzzy

prime ideal of L.

We omit the easy proof of the following lemma.

Lemma 6.16. Let µ be a fuzzy ideal of L. Then
√
µ =

√√
µ.

Theorem 6.17. Let µ be a fuzzy ideal of L. Then
√
µ is fuzzy prime if

and only if
√
µ is fuzzy primary.

Proof. It follows from Lemma 6.5, that if
√
µ is fuzzy prime, then

√
µ is

fuzzy primary.
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The converse follows form the definition of a fuzzy primary ideal and by
Lemma 6.16. �

The proof of the following theorem follows from the definition of a
fuzzy 2-absorbing ideal, a fuzzy 2-absorbing primary ideal and Lemma
6.16.

Theorem 6.18. Let µ be a fuzzy ideal of L. Then
√
µ is fuzzy 2-

absorbing if and only if
√
µ is fuzzy 2-absorbing primary.

7. Primary Fuzzy Ideals

In the previous section we have defined the prime fuzzy radical of a
fuzzy ideal (Definition 6.2). Using this, we define, a primary fuzzy ideal
and prove some results.

We note that for a fuzzy ideal µ of L always µ ⊆ √µ.

Definition 7.1. A proper fuzzy ideal µ of a lattice L is called a primary
fuzzy ideal of L if for σ, θ ∈ FI(L), σ ∩ θ ⊆ µ implies that either σ ⊆ µ
or θ ⊆ √µ.

Now we give a relationship between a prime fuzzy ideal and a primary
fuzzy ideal.

Lemma 7.2. If µ is a prime fuzzy ideal of L, then µ is a primary fuzzy
ideal of L.

Proof. Let µ be a prime fuzzy ideal of L. Let θ ∩ η ⊆ µ for some
θ, η ∈ FI(L). Since µ is a prime fuzzy ideal, either θ ⊆ µ or η ⊆ µ.
Since µ ⊆ √µ, we get the result. �

The following result gives the existence of primary fuzzy ideals which
are not prime fuzzy.

Theorem 7.3. Let I be a primary ideal of L, I 6= L. The fuzzy subset
µ of L defined by

µ(x) =

{
1, if x ∈ I,
α if x ∈ L− I.

is a fuzzy primary ideal of L.

Proof. Clearly, µ is a fuzzy ideal of L.
Since µ ⊆ √µ, we have µ(x) ≤ √µ(x) for all x ∈ L.
Hence if x ∈ I, then

√
µ(x) = 1 and if x /∈ I, then

√
µ(x) = t ≥ α.
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Let σ, θ be fuzzy ideals of L such that σ ∩ θ ⊆ µ.
Suppose that σ * µ and θ * √µ.
Let x ∈ L be such that σ(x) > µ(x). This implies that x /∈ I, for
otherwise, σ(x) > 1, which is not possible.
Let σ(x) = k1 > α = µ(x).

Let y ∈ L be such that θ(y) >
√
µ(y). Clearly, y /∈

√
I, otherwise,

θ(y) >
√
µ(y) ≥ µ(y) = 1, which is not possible.

Let θ(y) = k2. Then k2 > α.
Since I is primary, x ∧ y /∈ I. Hence µ(x ∧ y) = α.
We have

(σ ∩ θ)(x ∧ y) ≥ min{σ(x), θ(y)} = min{k1, k2} > α = µ(x ∧ y),

which is not possible. Thus µ is a primary fuzzy ideal of L. �

Theorem 7.4. If µ is a primary fuzzy ideal of L, then the level set µt,
t ∈ Image(µ) is a primary ideal of L.

Proof. Let a, b ∈ L be such that a ∧ b ∈ µt and a /∈ µt.
Define fuzzy ideals σ and θ of L as follows.

σ(x) =

{
t, if x ≤ a,
0 if x � a

and

θ(x) =

{
t, if x ≤ b,
0 if x � b.

Then σ ∩ θ ⊆ µ.
Also σ * µ as a /∈ µt implies µ(a) < t = σ(a).
Since µ is a primary fuzzy ideal, we have θ ⊆ √µ.
Hence t = θ(b) ≤ √µ(b) and so b ∈ √µt.
Thus µt is a primary ideal of L. �

The following example shows that the converse of Theorem 7.4 does
not hold.

Example 7.5. We note that set N of natural numbers with divisibility as
the partial order is a lattice. Let p be any prime number. Let ti ∈ (0, 1),
0 ≤ i ≤ m be such that t0 > t1 > . . . > tm.
Consider the fuzzy ideal µ of N defined by
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µ(x) =

{
t0, if x ∈ (pm],

ti if x ∈ (pm−i]− (pm−i+1], i = 1, 2, . . . ,m.

We have
√
µ(x) =

{
t0, if x ∈ (p],

tm if x ∈ N− (p].

Define fuzzy ideals σ and θ of N by

σ(x) =

{
α, if x ∈ (pm], where t0 < α ≤ 1

0 otherwise.

and θ(x) = t0, for all x ∈ N.
Then

(σ ∩ θ)(x) =

{
t0, if x ∈ (pm],

0 otherwise.

Then σ ∩ θ ⊆ µ ⊆ √µ and σ * µ.
We note that if x ∈ N− (p], then

√
µ(x) = tm < t0 = θ(x).

Hence θ * √µ.
Thus µ is not primary fuzzy. However, each level ideal µi of µ is primary,
i = 0, . . . ,m.

Definition 7.6. A proper fuzzy ideal µ of a lattice L is called a
2-absorbing primary fuzzy ideal of L, if whenever, θ ∩ η ∩ ν ⊆ µ for
θ, η, ν ∈ FI(L), then either

θ ∩ η ⊆ µ or η ∩ ν ⊆ √µ or θ ∩ ν ⊆ √µ.

It known that
√
χI = χ√I .

Lemma 7.7. Let I be an ideal of L. If χI is a 2-absorbing primary
fuzzy ideal of L, then I is a 2-absorbing ideal of L.

Proof. Suppose that χI is a 2-absorbing primary fuzzy ideal of L.
Let a ∧ b ∧ c ∈ I for some a, b, c ∈ L. Suppose that

a ∧ b /∈ I, b ∧ c /∈
√
I and c ∧ a /∈

√
I.

Then clearly, a /∈ I and b, c /∈
√
I.

Define fuzzy ideals

µ(x) =

{
1, if x ∈ (a],

0 otherwise.
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θ(x) =

{
1, if x ∈ (b],

0 otherwise.

η(x) =

{
1, if x ∈ (c],

0 otherwise.

We note that

(µ ∩ θ ∩ η)(x) =

{
1, if x ∈ (a ∧ b ∧ c],
0 otherwise.

Then µ ∩ θ ∩ η ⊆ χI but µ ∩ θ * χI , θ ∩ η * χ√I and µ ∩ η * χ√I .
This contradicts the assumption that χI is a 2-absorbing primary fuzzy
ideal. �

Remark 7.8. However, we are unable to prove or disprove that if I is a
2-absorbing ideal of L, then χI a is a 2-absorbing fuzzy ideal of L.

Lemma 7.9. If µ is a primary fuzzy ideal of L, then µ is a 2-absorbing
primary fuzzy ideal of L.

Proof. Let µ be a primary fuzzy ideal of L. Let θ ∩ η ∩ ν ⊆ µ for some
θ, η, ν ∈ FI(L). Since µ is a primary fuzzy ideal of L, either

(1) θ ∩ η ⊆ µ or ν ⊆ √µ or (2) θ ⊆ µ or η ∩ ν ⊆ √µ or

(3) θ ⊆ √µ or η ∩ ν ⊆ µ or (4) η ⊆ µ or θ ∩ ν ⊆ √µ.
These possibilities imply that either

(i) θ ∩ η ⊆ µ or (ii) η ∩ ν ⊆ √µ or (iii) θ ∩ ν ⊆ √µ.
Hence µ is a 2-absorbing primary fuzzy ideal of L. �

Lemma 7.10. If µ is a 2-absorbing fuzzy ideal of L, then µ is a
2-absorbing primary fuzzy ideal of L.

Proof. Let µ be a 2-absorbing fuzzy ideal of L. Let θ, η, ν ∈ FI(L) be
such that θ ∩ η ∩ ν ⊆ µ.
Since µ is a 2-absorbing fuzzy ideal of L, either

θ ∩ η ⊆ µ or θ ∩ ν ⊆ µ or η ∩ ν ⊆ µ.
Since µ ⊆ √µ, we get the result. �

Definition 7.11. Let µ be a fuzzy ideal of L. If δ is the only prime
fuzzy ideal containing µ, then we say that µ is a δ- primary fuzzy ideal
of L.
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Theorem 7.12. Let µ1, µ2 be fuzzy ideals and δ1, δ2 be prime fuzzy ideals
of L. Suppose that µ1 is a δ1- primary fuzzy ideal and µ2 is a δ2- primary
fuzzy ideal. Then µ1 ∩ µ2 is a 2-absorbing primary fuzzy ideal of L.

Proof. Since µ1 is a δ1-primary fuzzy ideal, we get
√
µ1 = δ1.

As µ2 is a δ2-primary fuzzy ideal, we get
√
µ2 = δ2.

Let µ = µ1 ∩ µ2. Then
√
µ = δ1 ∩ δ2.

Now suppose that θ ∩ η ∩ ν ⊆ µ for some θ, η, ν ∈ FI(L).
Assume that θ ∩ η * √µ and η ∩ ν * √µ.
Then θ, η, ν * √µ = δ1 ∩ δ2.
By Proposition 3.1,

√
µ = δ1 ∩ δ2 is a 2-absorbing fuzzy ideal of L.

Since θ ∩ η * √µ, η ∩ ν * √µ we have θ ∩ ν ⊆ √µ.
We show that θ ∩ ν ⊆ µ.
Since θ ∩ ν ⊆ √µ ⊆ δ1, we assume that θ ⊆ δ1.
As θ * √µ and θ ∩ ν ⊆ √µ ⊆ δ2, we conclude that θ * δ2 and ν ⊆ δ2.
Since ν ⊆ δ2 and ν * √µ we have ν * δ1.
If θ ⊆ µ1 and ν ⊆ µ2, then θ ∩ ν ⊆ µ and we are done.
We may assume that θ * µ1.
Since µ1 is a δ1-primary fuzzy ideal and θ * µ1, we have η ∩ ν ⊆ δ1.
Since ν ⊆ δ2 and η ∩ ν ⊆ √µ which is a contradiction.
Thus, θ ⊆ µ1.
Since µ2 is a δ2−primary fuzzy ideal of L and ν * µ2, we get θ∩ η ⊆ δ2.
Since θ ⊆ δ1 and θ∩η ⊆ δ2, we have θ∩η ⊆ √µ which is a contradiction.
Thus, ν ⊆ µ2.
Hence θ ∩ ν ⊆ µ. �

Theorem 7.13. Suppose that µ is a non-constant fuzzy ideal of L such
that

√
µ is a prime fuzzy ideal. Then µ is a 2-absorbing primary fuzzy

ideal.

Proof. Suppose that for some θ, η, ν ∈ FI(L), θ∩η∩ν ⊆ µ and θ∩η * µ.
(i): We note that θ∩ η ∩ ν ⊆ µ ⊆ √µ. Hence, if θ∩ η * √µ, then as

√
µ

is prime fuzzy we get ν ⊆ √µ and so η ∩ ν ⊆ √µ.
(ii): If θ∩η ⊆ √µ, then as

√
µ is prime fuzzy, either θ ⊆ √µ or η ⊆ √µ.

Hence either θ ∩ ν ⊆ √µ or ν ∩ η ⊆ √µ.
Thus, µ is a 2-absorbing primary fuzzy ideal of L. �

Now we give a characterization for
√
µ to be a prime fuzzy ideal.

Theorem 7.14. Let µ be a non-constant fuzzy ideal of a lattice L. Then√
µ is a prime fuzzy ideal of L if and only if

√
µ is a primary fuzzy ideal

of L.
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Proof. Let
√
µ be a prime fuzzy ideal of L. Let θ, η ∈ FI(L) be such

that θ ∩ η ⊆ √µ. As
√
µ is a prime fuzzy ideal of L, either θ ⊆ √µ or

η ⊆ √µ. Since
√
µ =

√√
µ we conclude that

√
µ is a primary fuzzy

ideal of L.
Conversely, suppose that

√
µ is a primary fuzzy ideal of L.

Let θ, η ∈ FI(L) be such that θ∩η ⊆ √µ. As
√
µ is primary fuzzy ideal,

either θ ⊆ √µ or η ⊆
√√

µ =
√
µ. Hence

√
µ is a prime fuzzy ideal of

L. �

Now we prove the following characterization.

Theorem 7.15. Let µ be a non-constant fuzzy ideal of a lattice L. Then√
µ is a 2-absorbing fuzzy ideal of L if and only if

√
µ is a 2-absorbing

primary fuzzy ideal of L.

Proof. Let
√
µ be a 2-absorbing fuzzy ideal of L. Let θ, η, ν ∈ FI(L) be

such that θ ∩ η ∩ ν ⊆ √µ. Since
√
µ is a 2-absorbing fuzzy ideal of L,

either

θ ∩ η ⊆ √µ or η ∩ ν ⊆ √µ or θ ∩ ν ⊆ √µ.
Using

√
µ =

√√
µ, we conclude that

√
µ is a 2-absorbing primary fuzzy

ideal of L.
Conversely, suppose that

√
µ is a 2-absorbing primary fuzzy ideal of

L.
Let θ, η, ν ∈ FI(L) be such that θ ∩ η ∩ ν ⊆ √µ.
As
√
µ is a 2-absorbing primary fuzzy ideal of L, either

θ ∩ η ⊆ √µ or η ∩ ν ⊆
√√

µ =
√
µ or θ ∩ ν ⊆

√√
µ =
√
µ.

Hence
√
µ is a 2-absorbing fuzzy ideal of L. �

8. Fuzzy ideals in a direct product of lattices

In this section, we consider fuzzy ideals in a direct product of lattices.
It is known that if L1, . . . , Lk are lattices, then their Cartesian product
L = L1 × L2 × . . . × Lk is a lattice under componentwise operations of
meet and join and if a = (a1, . . . , ak), b = (b1, . . . , bk) then a ≤ b iff
ai ≤ bi for i = 1, . . . , k.

Definition 8.1. Let L = L1 × L2 × . . . × Lk be a direct product of
lattices L1, . . . , Lk. A mapping µ : L→ [0, 1] is called a fuzzy set of L.

We note the following.
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Theorem 8.2. Let L = L1×L2× . . .×Lk be a direct product of lattices
L1, . . . , Lk. If µi, 1 ≤ i ≤ k are fuzzy ideals of Li respectively, then
µ : L→ [0, 1] defined by
µ(a1, . . . , ak) = µ1(a1) ∧ . . . ∧ µk(ak) is a fuzzy ideal of L.

Proof. The proof follows from the definition of the lattice operations in
a direct product of lattices and that of µ. �

Notation: We call the fuzzy set µ in Theorem 8.2 as a product of the
fuzzy sets µi, 1 ≤ i ≤ k and write µ = µ1 × . . .× µk.

Theorem 8.3. Let L = L1×L2 be a direct product of lattices L1, L2. If
µ : L→ [0, 1] is a fuzzy ideal of L, then there exist fuzzy ideals µ1, µ2 of
L1 and L2 respectively, such that µ = µ1 × µ2. Moreover, if µ is fuzzy
prime, then so are µ1 and µ2.

Proof. Define µi : Li → [0, 1] by µ1(x) = µ(x, 0) and µ2(y) = µ(0, y).
Let x, y ∈ L1. We have

µ[(x, 0) ∧ (y, 0)] = µ(x ∧ y, 0) = µ1(x ∧ y)

and

µ[(x, 0) ∨ (y, 0)] = µ(x ∨ y, 0) = µ1(x ∨ y).

Hence

µ1(x ∧ y) ∧ µ1(x ∨ y) = µ[(x, 0) ∧ (y, 0)] ∧ µ[(x, 0) ∨ (y, 0)].

As µ is a fuzzy ideal, we get

µ1(x ∧ y) ∧ µ1(x ∨ y) = µ[(x, 0) ∧ (y, 0)] ∧ µ[(x, 0) ∨ (y, 0)]

≥ µ(x, 0) ∧ µ(y, 0)

= µ1(x) ∧ µ1(y).

Also

µ1(x ∨ y) = µ[(x, 0) ∨ (y, 0)] = µ(x, 0) ∧ µ(y, 0) = µ1(x) ∧ µ1(y).

Thus µ1 is a fuzzy ideal of L1.
Similarly, we can show that µ2 is a fuzzy ideal of L2.
The second part follows from the definition of a fuzzy prime ideal.
We have

µ(x, y) = µ(x, 0) ∨ µ(0, y) = µ(x, 0) ∧ µ(0, y) = µ1(x) ∧ µ2(y).

�
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Example 8.4. Let L = L1×L2 be a direct product of lattices L1, L2. Let
µ1, µ2 be fuzzy prime ideals of L1 and L2 respectively. Then µ = µ1×µ2

need not be a fuzzy prime ideal of L.

0

a

1

b

L1 L2

Figure 6

0

1

Consider the lattices L1 and L2 as shown in Figure 6.
Define µ : L1 → [0, 1] and θ : L2 → [0, 1] as follows

µ(0) = 1, µ(a) = 1/2, µ(b) = 1, µ(1) = 0 and θ(0) = 1, θ(1) = 0.
We note that µ is a fuzzy prime ideal of L1 and θ that of L2.
We consider η : L1 × L2 → [0, 1] defined by η(x, y) = µ(x) ∧ θ(y), i.e.
η = µ× θ.
We have

η(0, 0) = µ(0) ∧ θ(0) = 1
η(a, 0) = µ(a) ∧ θ(0) = 1/2
η(b, 0) = µ(b) ∧ θ(0) = 1
η(1, 0) = µ(1) ∧ θ(0) = 0
η(0, 1) = µ(0) ∧ θ(1) = 0
η(a, 1) = µ(a) ∧ θ(1) = 0
η(b, 1) = µ(b) ∧ θ(1) = 0
η(1, 1) = µ(1) ∧ θ(1) = 0

We have η[(0, 1) ∧ (1, 0)] = η(0, 0) = 1, η(0, 1) = 0, η[(1, 0) = 0.
Thus η[(0, 1) ∧ (1, 0)] � η(0, 1) ∨ η(1, 0).
Hence η is not a fuzzy prime ideal of L.

Remark 8.5. From Example 8.4, we conclude that in general,√
µ× θ 6= √µ×

√
θ
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.

In Example 8.4, we have shown that a product of two fuzzy prime
ideals need not be a fuzzy prime ideal. However we have the following
theorem.

Theorem 8.6. Let L = L1 × L2 be a direct product of lattices L1, L2.
Let µ be a fuzzy ideal of L1. Then µ× χL2 is a fuzzy prime ideal of L,
iff µ is a fuzzy prime ideal of L1.

Proof. Suppose that µ is a fuzzy prime ideal of L1.
We have

[µ× χL2 ][(x1, y1) ∧ (x2, y2)] = [µ× χL2 ](x1 ∧ x2, y1 ∧ y2)

= µ(x1 ∧ x2) ∧ χL2(y1 ∧ y2)

= µ(x1 ∧ x2), as χL2(y1 ∧ y2) = 1.

Since µ is fuzzy prime,

µ(x1 ∧ x2) = µ(x1) ∨ µ(x2).

Thus

[µ× χL2 ](x1 ∧ x2, y1 ∧ y2) = [µ(x1) ∧ χL2 ](y1)] ∨ [µ(x2) ∧ χL2 ](y2)]

= [µ× χL2 ](x1, y1) ∨ [µ× χL2 ](x1, y2).

Hence µ× χL2 is a fuzzy prime ideal of L.
The converse can be similarly proved. �

Theorem 8.7. Let L = L1×L2 be a direct product of lattices L1, L2. Let
µ1, µ2 be fuzzy ideals of L1 and L2 respectively. Suppose that µ1(01) =
µ2(02) = 1, where 01 is the least element of L1 and 02 that of L2. If
µ = µ1 × µ2 is a fuzzy 2-absorbing ideal of L, then µ1 is a fuzzy 2-
absorbing ideal of L1 and µ2 that of L2.

Proof. Let a, b, c ∈ L1. Since µ is a fuzzy 2-absorbing ideal of L, we have

µ(a ∧ b ∧ c, 02) ≤ µ(a ∧ b, 02) ∨ µ(b ∧ c, 02) ∨ µ(a ∧ c, 02).(8.1)

By the definition of µ, we can write (8.1) as

µ1(a ∧ b ∧ c) ∧ µ2(02)

≤ [µ1(a ∧ b) ∧ µ2(02)] ∨ [µ1(b ∧ c) ∧ µ2(02)] ∨ [µ1(a ∧ c) ∧ µ2(02).

By using µ2(02) = 1, we get

µ1(a ∧ b ∧ c) ≤ µ1(a ∧ b) ∨ µ1(b ∧ c) ∨ µ1(a ∧ c).
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Thus µ1 is a fuzzy 2-absorbing ideal of L1.
Similarly, we can prove that µ2 is a fuzzy 2-absorbing ideal of L2. �

By using similar steps, we can prove the following theorem.

Theorem 8.8. Let L = L1×L2× . . .×Lk be a direct product of lattices
L1, . . . , Lk. Let µi, 1 ≤ i ≤ k be fuzzy ideals of Li respectively. Suppose
that for each i = 1, . . . , k, µi(0i) = 1, where 0i is the least element of
Li. If µ = µ1 × . . . × µk is a fuzzy 2-absorbing ideal of L, then µi, is a
fuzzy 2-absorbing ideal of Li, i = 1, . . . , k.

The following example shows that the converse of Theorem 8.7 need
not hold.

Example 8.9. Consider the lattices L1, L2 and L = L1×L2 as shown in
Figure 4.

Define µ : L1 → [0, 1] and θ : L2 → [0, 1] as follows

µ(0) = 1 θ(0) = 1
µ(a) = 1/6 θ(1) = 0
µ(b) = 1/4
µ(1) = 1/4

We note that µ is a fuzzy 2-absorbing ideal of L1 and θ that of L2.
We consider η : L1 × L2 → [0, 1] defined by η(x, y) = µ(x) ∧ θ(y).
We have

η(0, 0) = µ(0) ∧ θ(0) = 1
η(a, 0) = µ(a) ∧ θ(0) = 1/6
η(b, 0) = µ(b) ∧ θ(0) = 1/4
η(1, 0) = µ(1) ∧ θ(0) = 1/4
η(0, 1) = µ(0) ∧ θ(1) = 0
η(a, 1) = µ(a) ∧ θ(1) = 0
η(b, 1) = µ(b) ∧ θ(1) = 0
η(1, 1) = µ(1) ∧ θ(1) = 0

We have

η[(a, 1) ∧ (1, 0) ∧ (b, 1)] = η(0, 0) = 1.
η[(a, 1) ∧ (1, 0)] = η(a, 0) = 1/6.
η[(1, 0) ∧ (b, 1)] = η(b, 0) = 1/4.

η[(a, 1) ∧ (b, 1)] = η(a ∧ b, 1) = η(0, 1) = 0.
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Thus

η[(a, 1)∧(1, 0)∧(b, 1)] � η[(a, 1)∧(1, 0)]∨η[(1, 0)∧(b, 1)]∨η[(a, 1)∧(b, 1)].

Hence η is not a fuzzy 2-absorbing ideal of L.

Theorem 8.10. Let L = L1 × L2 be a direct product of lattices L1, L2.
Let µ1, µ2 be fuzzy ideals of L1 and L2 respectively. Suppose that (i)
µ1(01) = µ2(02) = 1, where 01 is the least element of L1 and 02 that of
L2 and (ii) µ1(11) = µ2(12) = 0, where 11 is the greatest element of L1

and 12 that of L2. If µ = µ1× µ2 is a fuzzy 2-absorbing ideal of L, then
µ1 is a fuzzy prime ideal of L1 and µ2 that of L2.

Proof. Suppose that µ1 is not a fuzzy prime ideal of L1.
Then there exist a, b ∈ L1 such that

µ(a ∧ b) � µ(a) ∨ µ(b).

Consider the elements x = (a, 1), y = (1, 0), z = (b, 1) from L.
We note the following.

µ(x ∧ y ∧ z) = µ(a ∧ b, 0) = µ1(a ∧ b) ∧ µ2(0) = µ1(a ∧ b).
µ(x ∧ y) = µ(a, 0) = µ1(a) ∧ µ2(0) = µ1(a).

µ(y ∧ z) = µ(b, 0) = µ1(b) ∧ µ2(0) = µ1(b).

µ(z ∧ x) = µ(a ∧ b, 1) = µ1(a ∧ b) ∧ µ2(1) = 0.

Since µ is a fuzzy 2-absorbing ideal, we have

µ(x ∧ y ∧ z) ≤ µ(x ∧ y) ∨ µ(y ∧ z) ∨ µ(z ∧ x).

i.e.
µ1(a ∧ b) ≤ µ1(a) ∨ µ1(b) ∨ 0 = µ1(a) ∨ µ1(b),

a contradiction.
Hence µ1 is a fuzzy prime ideal.
Similarly, we can show that µ2 is a fuzzy prime ideal. �

Theorem 8.11. Let L = L1 × L2 be a direct product of lattices L1, L2.
Let µ1, µ2 be fuzzy prime ideals of L1 and L2 respectively. If µ = µ1×µ2,
then µ is a fuzzy 2-absorbing ideal of L.

Proof. Let (a, x), (b, y), (c, z) ∈ L. To show that µ is fuzzy 2-absorbing,
we need to show that

µ[(a, x)∧(b, y)∧(c, z)] ≤ µ[(a, x)∧(b, y)]∨µ[(b, y)∧(c, z)]∨µ[(a, x)∧(c, z)].

i.e. to show that

(8.2) µ(a∧b∧c, x∧y∧z) ≤ µ(a∧b, x∧y)∨µ(b∧c, y∧z)∨µ(a∧c, x∧z).
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We have

µ(a ∧ b ∧ c, x ∧ y ∧ z) = µ1(a ∧ b ∧ c) ∧ µ2(x ∧ y ∧ z).

As µ1, µ2 are fuzzy prime ideals, we can write

µ1(a ∧ b ∧ c) = µ1(a) ∨ µ1(b) ∨ µ1(c)

and

µ2(x ∧ y ∧ z) = µ2(x) ∨ µ2(y) ∨ µ2(z).

Also we have

µ(a ∧ b, x ∧ y) ∨ µ(b ∧ c, y ∧ z) ∨ µ(a ∧ c, x ∧ z)
= [µ1(a ∧ b) ∧ µ2(x ∧ y)] ∨ [µ1(b ∧ c) ∧ µ2(y ∧ z)]
∨ [µ1(a ∧ c) ∧ µ2(x ∧ z).

(8.3)

Since µ1, µ2 are fuzzy prime ideals, we can write the R. H. S. of (8.2)
as

{[µ1(a) ∨ µ1(b)] ∧ [µ2(x) ∨ µ2(y)]}
∨ {[µ1(b) ∨ µ1(c)] ∧ [µ2(y) ∨ µ2(z)]}
∨ {[µ1(a) ∨ µ1(c)] ∧ [µ2(x) ∨ µ2(z)]}.

(8.4)

By applying distributivity, (8.4) can be written as

(8.5) [µ1(a) ∨ µ1(b) ∨ µ1(c)] ∧ [µ2(x) ∨ µ2(y) ∨ µ2(z)].

Thus (8.2) holds and µ is fuzzy 2-absorbing. �

Theorem 8.12. Let L = L1 × L2 be a direct product of lattices L1, L2.
Let µi, θj be fuzzy ideals of L1 and L2 respectively. Let σi,j = µi × θj.
Then ∩σi,j = ∩µi × ∩θj.

Proof. Let (x, y) ∈ L. We have

∩σi,j(x, y) = ∧i,j(µi × θj)(x, y)

= ∧i,j(µi(x) ∧ θj(y))

= ∧iµi(x) ∧ ∧jθj(y)

= (∧iµi × ∧jθj)(x, y).

Thus ∩σi,j = ∩µi × ∩θj . �

Theorem 8.13. Let L = L1 × L2 be a direct product of lattices L1, L2.
(i) Let µ be a fuzzy ideal of L1. Then

√
µ× χL2 =

√
µ× χL2.

(ii) Let θ be a fuzzy ideal of L2. Then
√
χL1 × θ = χL1 ×

√
θ.
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Proof. (i): Let η be a fuzzy prime ideal of L such that µ× χL2 ⊆ P .
By Theorem 8.3, η = θ × σ for some fuzzy prime ideal θ of L1 and σ of
L2.
Then µ ⊆ θ and χL2 ⊆ σ. It follows that σ = χL2 . Thus η ⊆ θ × χL2 .
This shows that

√
µ× χL2 =

√
µ× χL2 .

(ii) Can be similarly proved. �

Theorem 8.14. Let L = L1 × L2 be a direct product of lattices L1, L2.
Let µ be a fuzzy ideal of L1. Then µ×χL2 is a 2-absorbing fuzzy primary
ideal of L, if and only if µ is a 2-absorbing fuzzy primary ideal of L1.

Proof. Suppose that µ× χL2 is a 2-absorbing fuzzy primary ideal of L.
Let θ1, θ2, θ3 ∈ FI(L1) be such that

θ1 ∩ θ2 ∩ θ3 ⊆ µ.
Consider θi × χL2 . Then

(θ1 ∩ θ2 ∩ θ3)× χL2 ⊆ µ× χL2 .

This implies that

(θ1 × χL2) ∩ (θ2 × χL2) ∩ (θ3 × χL2) ⊆ µ× χL2 .

Since µ× χL2 is a 2-absorbing fuzzy primary ideal of L, we get either

(θ1 × χL2) ∩ (θ2 × χL2) ⊆ µ× χL2

or
(θ2 × χL2) ∩ (θ3 × χL2) ⊆

√
µ× χL2

or
(θ1 × χL2) ∩ (θ3 × χL2) ⊆

√
µ× χL2 .

Thus either
θ1 ∩ θ2 ⊆ µ

or
θ2 ∩ θ3 ⊆

√
µ

or
θ1 ∩ θ3 ⊆

√
µ.

Hence µ is a 2-absorbing fuzzy primary ideal of L1. The converse follows
by retracing similar steps. �
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