
Journal of Hyperstructures 9 (3rd CSC2019) (2020), 62-74.

ISSN: 2322-1666 print/2251-8436 online

AN EFFICIENT ITERATIVE METHOD FOR SOLVING

LARGE LINEAR SYSTEMS

ALI JAMALIAN, HOSSEIN AMINIKHAH

Abstract. This paper presents a new powerful iterative method
for solving large and sparse linear systems. Using the idea of the
Jaya method to the restarted generalized minimum residual (GM-
RES) method, we propose the Jaya-GMRES method. The Jaya-
GMRES is an efficient solver, being based mainly on matrix-vector
multiplications. Numerical results show that the Jaya-GMRES
method has found more accurate solutions and converges much reg-
ular than the GMRES method.

Key Words: GMRES method, Jaya optimization algorithm, Linear systems, Iterative

method, Non-symmetric matrix.

2010 Mathematics Subject Classification: Primary: 65F10; Secondary: 90B40.

1. Introduction

Some numerical computations in physics, mechanics, chemistry, engi-
neering, economics, finance, etc., involve numerical linear algebra, i.e.,
computations involving matrices. Many problems in applied sciences
and engineering lead to linear systems of the form

(1.1) Ax = b

where A is a n× n nonsingular real matrix, b ∈ Rn the right-hand side,
and the vector x is the solution of the linear system [4]. In general, the
linear systems are large, sparse and nonsymmetric. These systems can

Received: 14 August 2020, Accepted: 20 August 2020. Communicated by Behrouz Fathi-

Vajargah;

∗Address correspondence to Ali Jamalian; E-mail: ali.jamalian@guilan.ac.ir

c© 2020 University of Mohaghegh Ardabili.

62

Jaya-GMRES algorithm for solving large linear systems 63

be solved by making use of direct methods and iterative methods. Direct
methods are not appropriate for solving linear system of equations with
large matrices, especially for linear systems with large sparse matrix
because of the magnitude of calculations and also due to the limited
storages and speeds of the computers. Usually, iterative methods are
used for solving these types of equations. Iterative methods in compar-
ison with direct methods are more efficient for solving linear system of
equations [13, 15]. The primary use of iterative methods is for computing
the solution to large, sparse systems and for finding a few eigenvalues of
a large sparse matrix. Along with other problems, such systems occur in
the numerical solution of partial differential equations [2, 14]. In many
cases, matrices have three, four or more diagonals, are block structured,
where nonzero elements exist in blocks throughout the matrix, or have
little organized structure. Algorithms for dealing with large, sparse ma-
trices are an active area of research. A Krylov subspace-based method
does not access the elements of the matrix directly, but rather performs
matrix-vector multiplication to obtain vectors that are projections into
a lower-dimensional Krylov subspace, where a corresponding problem
is solved. The solution is then converted into a solution of the original
problem. These methods can give a good result after a relatively small
number of iterations [5].
In recent years, swarm intelligence-based algorithms and metaheuris-
tic optimization methods are considered effective tools for solving opti-
mization problems. Recently, a new global optimization method called
Jaya has generated growing interest because of its simplicity and effi-
ciency. The original Jaya algorithm has been introduced by Rao in 2016
[7, 8]. It is a population-based, derivative-free and specific parameter-
less algorithm for global optimization problems. The basic concept of
this algorithm is moving the obtained solution toward the best solution
and avoiding the worst one. It does not require any algorithm-specific
parameter except the general control parameters. Jaya is applied to
solve several single and multi-objective optimization problems. More-
over, improved versions of Jaya algorithm called as Elitist Jaya, Quasi-
Oppositional Jaya, Self-Adaptive Jaya, Self-Adaptive Multi-Population
Jaya, and Self-Adaptive Multi-Population Elitist Jaya, and Multi-Objective
Quasi-Oppositional Jaya are developed and applied to solve several en-
gineering optimization problems [8].
The cost of the full orthogonalization of the Krylov subspace is an impor-
tant factor in convergence. To avoid this disadvantage, we can restart the

64 Jamalian and Aminikhah

GMRES method, or we apply the incomplete orthogonalization[9, 10].
The convergence properties of the incomplete orthogonalization are not
well understood. A difficulty with the restarted GMRES, at the time of
the restart, is that some information is lost. This can be slow down the
convergence. Morgan improved the restarted GMRES by reducing the
ill effect of restarting [6].
The aim of this paper is to combine the GMRES algorithm with the
Jaya optimization algorithm and to try to overcome local convergence
with high accuracy. The rest of the paper is organized as follows: Sec-
tion 2 presents a short overview of the Krylov subspaces and Arnoldi
method, while an overview of the GMRES method for solving linear
systems is presented in Sections 3. A brief description of the Jaya opti-
mization method is given in Section 4. The proposed hybrid algorithm
is described in Section 5, and in Section 6, numerical examples are used
to illustrate the properties of the proposed method. Finally, we make
some concluding remarks.

2. Krylov subspaces and Arnoldi Iteration

An iterative method for solving a linear system Ax = b, is an algo-
rithm that starts with an initial guess x0 for the solution and successively
modifies that guess in an attempt to obtain improved approximate so-
lutions x1, x2, The residual at step m of an iterative method for
solving Ax = b is the vector rm = b − Axm, where xm is the approxi-
mate solution generated at step m. The initial residual is r0 = b−Ax0,
where x0 is the initial guess for the solution. The error at step m is the
difference between the true solution A−1b and the approximate solution
xm i.e., em = A−1b− xm.
A Krylov space is a space of the form span

{
q,Aq, . . . , Am−1q

}
, where A

is an n× n matrix and q is an n× 1 vector. This space will be denoted
as Km(A, q). The Arnoldi iteration is a method for constructing an or-
thonormal basis for a Krylov space that requires saving all of the basis
vectors and orthogonalizing against them at each step. This method was
developed by Arnoldi [1] in 1951. We, know A complete reduction of A
to Hessenberg form by an orthogonal similarity transformation might be
written A = QHQT , or AQ = QH. However, in dealing with iterative
methods we take the view that n is huge or infinite, so that computing
the full reduction is out of the question. Instead, we consider the first
m columns of AQ = QH. Let Qm be the n×m matrix whose columns

Jaya-GMRES algorithm for solving large linear systems 65

are the first m columns of Q

Qm =
(
q1 q2 . . . qm

)
,

and H̄m be the (m + 1) × m upper-left section of H, which is also a
Hessenberg matrix

H̄m =

h11 · · · h1m
h21 h22

. . .
. . .

...
hm,m−1 hmm

hm+1,m

 =

(
Hm

hm+1,me
T
m

)
.

Then we have

(2.1) AQm = Qm+1H̄m.

The mth column of this equation can be written as follows:

(2.2) Aqm = h1mq1 + · · ·+ hmmqm + hm+1,mqm+1.

In words, qm+1 satisfies an (m+ 1)−term recurrence relation involv-
ing itself and the previous Krylov vectors. The Arnoldi iteration is
simply the modified Gram-Schmidt iteration that implements the equa-
tion (2.2). Figure 1 depicts the decomposition. Algorithm 1 specifies the
Arnoldi process that generates an orthonormal basis {q1, q2, . . . , qm+1}
for the subspace spanned by Km+1(A, x1) and builds the matrix H̃m.

Figure 1. Arnoldi decomposition form 2

Using the Arnoldi modified Gram-Schmidt algorithm (MGS), we have
the following theorems.

66 Jamalian and Aminikhah

Algorithm 1 The Arnoldi MGS process

Input: A ∈ Rn×n, x0 ∈ Rn.
Output: Orthogonal basis {q1, q2, . . . , qm+1} of Km+1(A, r0) and an
(m+ 1)×m matrix H̄m.
Initialization: r0 = b−Ax0.
q1 = r0/‖r0‖
for k = 1, 2, . . . ,m do
wk = Aqk
for j = 1, . . . , k do
hjk = qTj wk

wk = wk − hjkqj
end for
hk+1,k = ‖wk‖2
if hk+1,k = 0 then break
else qk+1 = wk

hk+1,k

end for

Theorem 1. [11] The vectors q1, q2, . . . , qm produced by the Arnoldi
algorithm form an orthonormal basis of the subspace Km= span

{
q1, Aq1, . . . , A

m−1q1
}

.
Theorem 2. [11] Denote by Qma n×m matrix with column vectors

q1, q2, . . . , qm and by Hm a m × m Hessenberg matrix whose nonzero
entries are defined by the algorithm. Then, the following relations hold:

AQm = QmHm + hm+1,mqm+1e
T
m,

QT
mAQm ≈ Hm.

3. The GMRES method

Generalized Minimum Residual (GMRES) method [12] is to repeat-
edly approximate the solution of a linear system Eq. (1.1) by a vector
xm ∈ x0 + Km(A, r0) = x0 +Qmym, ym ∈ Rm in the sequence of Krylov
subspaces

Km(A, b) = span
{
r0, Ar0, . . . , A

m−1r0
}
,

r0 = b−Ax0,
where the columns of Qm are an n−dimensional orthogonal basis for the
Km(A, b) and x0 is an initial guess for the solution of Ax = b. At step
m, we solve a least squares problem to find the vector ym that minimizes

‖rm‖2 = ‖b−Axm‖2 = ‖b−A(x0 +Qmym)‖2 = ‖r0 −AQmym‖2 .

Jaya-GMRES algorithm for solving large linear systems 67

Solving this least squares problem directly in each iteration would be a
numerically unstable procedure. It is therefore essential to create a new
set of vectors that span the same space but have better numerical prop-
erties. This is what the Arnoldi iteration takes care of. In the Arnoldi
method, we put r0 = b− Ax0. Now that we have an orthonormal basis
{q1, q2, . . . , qm} of Km(A, r0) and let Qm be the orthogonal matrix with
q1, q2, . . . , qm as its columns. We can derive the minimization problem
that defines GMRES. In the mth iterate, xm can be written as x0+Qmym
for some ym ∈ Rm. So, for xm ∈ x0 + Km(A, r0), we have

(3.1) min
xm∈x0+Km(A,r0)

‖b−Axm‖2 = min
y∈Rm

‖r0 −AQmym‖2 .

Using Eq. (2.2), we get ‖r0 −AQmym‖2 =
∥∥∥r0 −Qm+1H̃mym

∥∥∥
2
.

Since multiplying the vectors by QT
m+1 does not change the norm, we

get

min
y∈Rm

∥∥∥QT
m+1(r0 −Qm+1H̃mym)

∥∥∥
2

= min
y∈Rm

∥∥∥QT
m+1r0 − H̃mym

∥∥∥
2
.

The product QT
m+1r0 in this equation becomes β = qT1 r0 =

‖r0‖22
‖r0‖2

= ‖r0‖2
and qTk r0 = ‖r0‖ qTk q1 = 0 for all k > 1. Thus, we must minimize∥∥βe1 − H̄mym

∥∥
2
. We use the QR decomposition approach to solving

overdetermined least-squares problems. Since H̄m in H̄mym = βe1 is an
upper Hessenberg matrix, the QR decomposition can be done by Givens
rotation. Algorithm 2 presents the GMRES method.

In the practical implementation of GMRES, one estimate xm is often
not sufficient to obtain the error tolerance desired. The restarted GM-
RES algorithm, is defined by simply restarting GMRES using the latest
iterate as the initial guess for the next GMRES iteration. Sometimes
partial information from the previous GMRES cycle is retained and used
after the restart.

4. Jaya optimization algorithm

Consider a special class of optimization problems with bounded vari-
ables in the form of

(4.1)
Min f(x)
s.t. lk ≤ xk ≤ uk k = 1, . . . ,m.

f(x) is the objective function to be minimized with a m dimensional
variable x and l, u are lower bound and upper bound of x, respectively.

68 Jamalian and Aminikhah

Algorithm 2 GMRES process

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, ε > 0.
Output: Approximate solution of Ax = b.
Initialization: r0 = b−Ax0.
β = ‖r0‖2
q1 = r0/β
ξ = (β, 0, . . . , 0)T

for k = 1, 2, . . . do
wk = Aqk
for l = 1, . . . , k do
hlk = qTl wk

wk = wk − hlkql
end for
hk+1,k = ‖wk‖2
for i = 1, 2, . . . , k − 1 do(

hik
hi+1,k

)
=

(
ci si
−si ci

)(
hik
hi+1,k

)
end for

γ =
√
h2kk + h2k+1,k, ck = hkk/γ, sk = ckhk+1,k/hkk(

ξk
ξk+1

)
=

(
ck sk
−sk ck

) (
ξk
0

)
hkk = γ, hk+1,k = 0
if |ξk+1| < ε then
for l = k, k − 1, . . . , 1 do

yl = 1
hll

(
ξl −

∑k
i=l+1 hliyi

)
end for
xk = x0 +

∑k
i=1 ykqk

break
else
qk+1 = wk

hk+1,k

end if
end for

The basic concept of Jaya algorithm is moving the obtained solution
toward the best solution and avoiding the worst one. It does not require
any algorithm-specific parameter except the general control parameters
[8]. We assume that population size of candidate solutions is n and
the best candidate obtains the best value of f(x) (i.e. f(x)best) in the

Jaya-GMRES algorithm for solving large linear systems 69

Algorithm 3 restarted GMRES

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn, j ∈ N, ε > 0.
Output: Approximate solution of Ax = b.
Initialization: r0 = b−Ax0.
Set β = ‖r0‖2
while β > ε do

Compute the GMRES approximation xj using Algorithm 2
Set x0 = xj , r0 = b−Ax0, β = ‖r0‖2

end while

entire candidate solutions and the worst candidate obtains the worst
value of f(x) (i.e. f(x)worst) in the entire candidate solutions. If xj,k,i is
the value of j th variable for kth candidate during ith iteration, then the
corresponding value of a new solution for j = 1, . . . ,m, k = 1, . . . , n, i =
1, . . . ,MaxIt, is generated by

(4.2) yj,k,i = xj,k,i + r1,j,i(xj,b,i − |xj,k,i|)− r2,j,i(xj,w,i − |xj,k,i|),
where, xj,b,i is the value of the j th variable for the best candidate during
ith iteration and xj,w,i is the value of the j th variable for the worst
candidate during ith iteration. yj,k,i is the updated value of xj,k,i and
r1,j,i and r2,j,i are the two random numbers in the range [0, 1]. The
term r1,j,i(xj,b,i− |xj,k,i|) indicates the tendency of the solution to move
closer to the best solution and the term r2,j,i(xj,w,i−|xj,k,i|) indicates the
tendency of the solution to avoid the worst solution. yj,k,i is accepted
if it gives better function value. All the accepted function values at
the end of each iteration are maintained and these values are used as
input for the next iteration. Algorithm 4 shows the steps of the Jaya
optimization method.

5. The Jaya-GMRES algorithm

A difficulty that arises when applying the restarted GMRES method
to solve large linear system of equations is that the method may diverge
before to get a good approximation to the solution or after a number
of iterations it may finds solutions but with approximation which is
not good one, because it depends on the initial vector. In Jaya-GMRES
algorithm we apply Jaya optimization algorithm as an improvement pro-
cedure to find better solutions. The proposed algorithm of Jaya-GMRES
is given in Algorithm 5.

70 Jamalian and Aminikhah

Algorithm 4 Jaya optimization method

Input parameters: choose values of m,n.
Generate the initial n candidate solutions with dimension of m, ran-
domly.
Evaluate each candidate solution with fitness function.
Identify the best and the worst solutions.
while termination criteria not reached do

for each candidate solution do
Generate the new solutions using equation (4.2)
Evaluate the new solution by the fitness function
if the new solution is better than the old one then

Update the solution with the new one.
end if

end for
Update the best and the worst solutions.

end while
Output optimal solution and optimal objective values.

In this algorithm we store the solution of system, x, and its fitness
value f(x) of each individual. We define the fitness function as

(5.1) f(x) = ‖Ax− b‖.
For termination criteria of the process at iteration iter, we can use the
following stopping criterion:

(5.2) if (f(xbest) ≤ ε or iter > MaxIter) Then stop

where ε is an arbitrary value. In addition, another termination criterion
might be used for stopping the process when the best solution is not
changed for a certain number of iterations.

6. Numerical experiments

In this section, we will show some numerical examples in order to com-
pare Jaya-GMRES algorithm and restarted GMRES algorithms. The
experiments tested here are from the Matrix Market Web server. We
have run the algorithms using MATLAB R2018b on a machine with
Intel CORE i7 2.5 GHz of CPU and with 8 GB of RAM and machine
precision 2.22× 10−16.
In all experiments, the right-hand side is a random vector with en-
tries uniformly distributed in the interval [0, 1]. The initial guess for

Jaya-GMRES algorithm for solving large linear systems 71

Algorithm 5 Jaya-GMRES method

Input parameters: choose values of m,n.
Generate the initial n individual with dimension of m, randomly.
for each individual do

Run restarted-GMRES()
Update the individual
Evaluate individual with the fitness function

end for
Identify the best and the worst individuals.
while termination criteria not met do
for each individual do

Generate the new solutions using equation (4.2)
Run restarted-GMRES() for the new solution
Update the new solution
Evaluate the new solution by the fitness function
if the new solution is better than the old one then

Update the individual with the new one.
end if

end for
Update the best and the worst solutions.

end while
Output best solution of Ax = b with least residual.

restarted GMERS is x0 = (0, · · · , 0) and initial individuals of Jaya-
GMRES choosed randomly. The termination criteria include both max-
imum number of iterations (MaxIter) and accuracy level. Hence, the
Jaya-GMRES continues until

iter ≤MaxIterJaya and ‖Axbest − b‖2 ≤ tol,

where, best stands for index of the best agent in all iterations and
MaxIterJaya is maximum number of iterations of the Jaya-GMRES.
As well, the restarted GMRES method iterates until

iter ≤MaxIterGMRES and
∥∥∥Ax(iter) − b∥∥∥

2
≤ tol,

where, x(iter) stands for the solution generated by GMRES method at
iteration iter and MaxIterGMRES is maximum number of iterations
for the GMRES method. In all experiments, the population size, the

72 Jamalian and Aminikhah

MaxIterJaya and the MaxIterGMRES, are set as 5, 300, 30, respec-
tively.

Example 1. The matrix add20. This is a 2395×2395 matrix from the
HAMM group, from the independent sets and generators of the Matrix
Market, with 17319 nonzero entries. The estimated condition number
is 1.76 × 104. This example was tested with various values of m. The
Jaya-GMRES method was always better than restarted GMRES and
MATLAB operator (\). In order to illustrate this example, Table 1
gives the obtained results with tol = 10−24.

Table 1. Comparing results of Jaya-GMRES, restarted
GMRES and MATLAB for the matrix add20

m
Jaya-GMRES restarted GMRES MATLAB operator

Error CPU Error CPU Error CPU

2 1.45e-24 1.36 3.6636e-15 0.050305 2.3754e-24 0.0079786

3 1.59e-24 0.0434974 3.6636e-15 0.0762023 2. 3754e -24 0.01232

4 1.07e-24 0.06441310 3.6636e-15 0.0562137 2. 3754e -24 0.0083116

5 1.38e-24 1.3657489 3.6636e-15 0.0507335 2. 3754e -24 0.0073797

10 9.72e-25 0.1149018 3.6636e-15 0.0699647 2. 3754e -24 0.0081065

15 1.44e-24 1.4879709 3.6636e-15 0.0616817 2. 3754e -24 0.0085716

20 1.04e-24 0.2812876 3.6636e-15 0.0626403 2. 3754e -24 0.011704

Example 2. The matrix memplus. This is a 17758 × 17758 matrix
from the set HAMM, from the independent sets and generators of the
Matrix Market with 126150 nonzero entries. The estimated condition
number is 2.67×105. The results are given in Table 2, with tol = 10−24.

Table 2. Comparing results of Jaya-GMRES, restarted
GMRES and MATLAB for the matrix memplus

m
Jaya-GMRES restarted GMRES MATLAB operator

Error CPU Error CPU Error CPU

2 1.5914e-25 14.4467814 5.1034e-14 0.4582524 1.6155e-25 0.0834938

5 1.5692e-25 15.541664 5.1034e-14 0.4264089 1.6155e-25 0.0966378

10 1.5882e-25 876.2163249 5.1034e-14 0.4692447 1.6155e-25 0.0952062

15 1.5202e-25 1314.4889132 5.1034e-14 0.5116114 1.6155e-25 0.0841371

30 1.5561e-25 3304.7236516 5.1034e-14 0.5020445 1.6155e-25 0.0938476

Jaya-GMRES algorithm for solving large linear systems 73

7. Conclusions

In this paper, we proposed a novel and powerful method, called Jaya-
GMRES, for solving large linear system of equations. The Jaya-GMRES
is based on the original Jaya optimization algorithm, a population-based
metaheuristic introduced recently for optimization problems and has
attracted researchers’ attention because of simple implementation and
computational efficiency. The Jaya-GMRES employs restarted GMRES
method and it enhances quality of obtained solution from GMRES,
based on optimization process of the Jaya algorithm. To verify the
efficiency of the Jaya-GMRES algorithm, some test problems were eval-
uated. The performance of the Jaya-GMRES algorithm was compared
with restarted GMRES method and MATLAB operator (back-slash).
Numerical results indicate that the Jaya-GMRES algorithm provides
superior performance.

References

[1] W. E. Arnoldi, The principle of minimized interations in the solution of the
matrix eigenvalue problem, Quarterly of applied mathematics, 9 (1) (1951) 17-
29.

[2] P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cam-
bridge Texts in Applied Mathematics, Cambridge University Press, Cambridge,
(1989).

[3] I. S. Duff, R. G. Grimes and J. G. Lewis, User’s guide for the Harwell–Boeing
sparse matrix collection (Release I), Technical Report TR/PA/92/86, CER-
FACS, Toulouse, France (1992).

[4] W. Ford, Numerical Linear Algebra with Applications, Academic Press, USA,
(2015).

[5] L. Hogben, Handbook of linear algebra, Chapman & Hall/CRC, New York, USA,
(2007).

[6] R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM
Journal on Matrix Analysis and Applications, 16 (4) (1995) 1154-1171.

[7] R. Rao, Jaya: A simple and new optimization algorithm for solving constrained
and unconstrained optimization problems, International Journal of Industrial En-
gineering Computations, 7 (1) (2016) 19-34.

[8] R. V. Rao, Jaya: an advanced optimization algorithm and its engineering appli-
cations, Cham: SpringerInternational Publishing, (2019).

[9] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices, Linear algebra and its applications, 34 (1980) 269-295.

[10] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems,
Mathematics of computation, 37 (155) (1981) 105-126.

[11] Y. Saad, Iteractive Method for Sparse Linear Systems, PWS Publishing Com-
pany, a division of International Thomson Publishing Inc., USA, (1996).

74 Jamalian and Aminikhah

[12] Y. Saad, Schultz, Martin, H. GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems, SIAM Journal on scientific
and statistical computing, 7 (1986) 856-869.

[13] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, (1997).
[14] D. S. Watkins, Fundamentals of Matrix Computations, third ed.,Wiley, Hoboken,

NJ, (2010).
[15] H. Wendland, Numerical Linear Algebra, Cambridge Texts in Applied Mathe-

matics. Cambridge University Press, (2018).

Ali Jamalian
Department of Computer Science, University of Guilan, P.O.Box 41335-19141, Rasht,
Iran
Email: ali.jamalian@guilan.ac.ir, a.jamalian.math@gmail.com

Hossein Aminikhah
Department of Applied Mathematics and Department of Computer Science, Univer-
sity of Guilan, P.O.Box 41335-19141, Rasht, Iran
Center of Excellence for Mathematical Modelling, Optimization and Combinational
Computing (MMOCC), University of Guilan, P.O.Box 41938-19141, Rasht, Iran.
Email: aminikhah@guilan.ac.ir

	1. Introduction
	2. Krylov subspaces and Arnoldi Iteration
	3. The GMRES method
	4. Jaya optimization algorithm
	5. The Jaya-GMRES algorithm
	6. Numerical experiments
	7. Conclusions
	References

