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NEW APPROACH FOR SOLUTION OF VOLTERRA

INTEGRAL EQUATIONS USING SPLINE

QUASI-INTERPOLANT

MARYAM DERAKHSHAN KHANGHAH AND MOHAMMAD ZAREBNIA

Abstract. In this paper, we present quadratic rule for approxi-
mate solution of integrals using spline quasi-interpolant. The method
is applied for solving the linear Volterra integral equations. Also the
convergence analysis of the method is given. The method is applied
to a few examples to illustrate the accuracy and implementation of
the method.
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1. Introduction

Integral and integro-differential equations are mathematical tools in
many branches of science and engineering. The numerical methods for
linear integral equations of the second kind studied in Delves [6]. Among
these equations, Volterra integral equations arise from multiple appli-
cations, for example physics and engineering such as potential theory,
Dirichlet problems, electrostatics, the particle transport problems and
heat transfer problems [3, 9]. Several numerical methods have been
considered to approximate the solution of Volterra integral equations
such as the papers [1, 4, 5, 7, 10] that are concerned respectively with
rational basis functions with product integration methods, collocation
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methods in certain polynomial and polynomial spline spaces with uni-
form and graded meshes, the generalized Newton-Cotes formulae com-
bined with product integration rules, mathematical programming meth-
ods and fractional linear multistep methods. In [17], Riley approxi-
mated the Volterra integral equations by sinc approximation methods.
Reihani have solved Fredholm and Volterra integral equations by ratio-
nalized Haar functions method [16]. Simpson’s quadrature method [13],
Galerkin method with the Chebyshev polynomials [15] and repeated
Simpson’s and Trapezoidal quadrature rule [2] are other works on de-
veloping and analyzing numerical methods for solving Volterra integral
equations.

Moreover, one can refer to other methods such as [14, 19, 20]. The
linear Volterra integral equation is considered as

(1.1) u−Ku = g,

where linear integral operator K is defined as

(1.2) (Ku)(x) =

∫ x

a
k(x, t)u(t)dt,

g(x) and k(x, t) are known continuous functions and u(x) is the unknown
function to be determined. Integration of a function is an important
operation for many physical problems.
The organization of the paper is as follows. In Section 2, we describe
the construction of quadrature rule based on spline quasi-interpolant. In
Section 3, we give an application of the quadrature rule of Section 2 to
the numerical solution of Volterra integral equations. In Section 4, the
convergence and error analysis of the numerical solution are provided. At
the end we give some numerical examples which confirm our theoretical
results.

2. Quadrature rule based on a quadratic spline
quasi-interpolant

Let Xn := {xk, 0 ≤ k ≤ n} be the uniform partition of the interval
I = [a, b] into n equal subintervals, i.e. xk := a + kh, with h = b−a

n .

We consider the space S2 = S2(I,Xn) of quadratic splines of class C1

on this partition. Canonical basis is formed by the n + 2 normalized
B-splines, {Bk, k ∈ J}, J := {1, 2, · · · , n + 2}. Consider the quadratic
spline quasi-interpolant (dQI) of a function f defined on I and given in
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[18], that is

(2.1) ϕ2f =
∑
k∈J

υk(f)Bk,

where
υ1(f) = f1, υn+2(f) = fn+2,

υ2(f) = −1/3f1 + 3/2f2 − 1/6f3 = β1f1 + β2f2 + β3f3,

(2.2) υn+1(f) = −1/6fn+3/2fn+1−1/3fn+2 = β3fn+β2fn+1+β1fn+2,

and for 3 ≤ j ≤ n,

(2.3) υj(f) = −1/8fj−1 + 5/4fj − 1/8fj+1 = γ1fj−1 + γ2fj + γ3fj+1,

with fi = f(ti), t1 = a, tn+2 = b, ti = a+(i−3/2)h, 2 ≤ i ≤ n+ 1. The
quadratic B-spline functions at knots are defined as

Bi(x) =



(x−xi−3)
2

(xi−1−xi−3)(xi−2−xi−3)
, xi−3 ≤ x < xi−2,

(xi−x)(x−xi−2)
(xi−xi−2)(xi−1−xi−2)

+ (x−xi−3)(xi−1−x)
(xi−1−xi−3)(xi−1−xi−2)

, xi−2 ≤ x < xi−1,

(xi−x)2

(xi−xi−2)(xi−xi−1)
, xi−1 ≤ x < xi.

We consider the quadrature rule defined by

(2.4) Iϕ2f (x) :=

∫ x

a
Q2f(â)dâ.

By considering
∫ x
a Bj for h = 1, n = 10 we can get

∫ x

a
B1(ξ)dξ =


0, x ≤ 0,
x− x2 + 1

3x
3, 0 < x ≤ 1,

1
3 , else,

∫ x

a
B2(ξ)dξ =


0, x ≤ 0,
1
2(2x

2 − x3), 0 < x ≤ 1,
−2

3 + 2x− x2 + 1
6x

3, 1 < x ≤ 2,
2
3 , else,

∫ x

a
B11(ξ)dξ =


0, x ≤ 8,
−256

3 + 32x− 4x2 + 1
6x

3, 8 < x ≤ 9,
1202
3 − 130x+ 14x2 − 1

2x
3, 9 < x ≤ 10,

2
3 , else,
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∫ x

a
B12(ξ)dξ =


0, x ≤ 9,
−243 + 81x− 9x2 + 1

3x
3, 9 < x ≤ 10,

1
3 , else,

and for 3 ≤ j ≤ n,∫ x

a
Bj(ξ)dξ =

0 for 3− j + x ≤ 2,
−4

3 + 2(x+ 3− j)− (x+ 3− j)2 + 1
6(x+ 3− j)3

for 2 < x+ 3− j ≤ 3,
73
6 − 23

2 (x+ 3− j) + 7
2(x+ 3− j)2 + 1

3(x+ 3− j)3

for 3 < x+ 3− j ≤ 4,
−119

6 + 25
2 (x+ 3− j)− 5

2(x+ 3− j)2 + 1
6(x+ 3− j)3

for 4 < x+ 3− j ≤ 5,
1, else.

Quadrature formula Iϕ2f (x) can be obtained as

Iϕ2f (x) = ζ̃1(x)f1 +
3∑

j=1

βj(ζ̃2(x)fj + ζ̃n+2(x)fn+3−j)

+
n∑

j=3

ζ̃j(x)(γ1fj−1 + γ2fj + γ3fj+1) + ζ̃n+2(x)fn+2,(2.5)

where

ζ̃1(x) =

∫ x

a
B1(ξ)dξ =

{
x− 1

hx
2 + 1

3h2x
3, 0 ≤ x &&h− x > 0,

0, else,

ζ̃2(x) =

∫ x

a
B2(ξ)dξ =
0, x ≤ 0,
1

2h2 (2hx
2 − x3), 0 ≤ x &&h− x > 0,

2x− 1
hx

2 + 1
6h2x

3, h− x ≤ 0&&2h− x > 0,
0, else,
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ζ̃n+1(x) =

∫ x

a
Bn+1(ξ)dξ =

− (n−2)2

2 x− (n−2)
2h x2 + 1

6h2x
3, (n− 2)h− x ≤ 0&&(n− 1)h− x > 0,

−3n2−4n
2 x+ (3n−2)

2h x2 − 1
2h2x

3, (n− 1)h− x ≤ 0&&nh− x > 0,
0, else,

ζ̃n+2(x) =

∫ x

a
Bn+2(ξ)dξ ={

(n− 1)2x− (n−1)
h x2 + 1

3h2x
3, (n− 1)h− x ≤ 0&&nh− x > 0,

0, else,

and for 3 ≤ j ≤ n,

ζ̃j(x) =

∫ x

a
Bj(ξ)dξ

=



1
6h2 (x+ 3h− jh)3

for x+ 3h− jh ≥ 0&&− x− 2h+ jh > 0,
−3

2(x+ 3h− jh) + 3
2h(x+ 3h− jh)2 − 1

3h2 (x+ 3h− jh)3

for −x− 2h+ jh ≤ 0&&− x− h+ jh > 0,
9
2(x+ 3h− jh)− 3

2h(x+ 3h− jh)2 + 1
6h2 (x+ 3h− jh)3

for −x− h+ jh ≤ 0&&− x+ jh > 0,
0, else.

This quadrature formula can be written as

(2.6) Iϕ2f (x) =

3∑
j=1

ψj(x)fj +

n−1∑
j=4

ηj(x)fj +

n+2∑
j=n

θj(x)fj ,

where

ψ1(x) =ζ̃1(x)−
1

3
ζ̃2(x), θn(x) = ζ̃n+2(x)−

1

3
ζ̃n+1(x),

ψ2(x) =
3

2
ζ̃2(x)−

1

8
ζ̃3(x), θn+1(x) =

3

2
ζ̃n+1(x)−

1

8
ζ̃n(x),

ψ3(x) =− 1

6
ζ̃2(x) +

5

4
ζ̃3(x)−

1

8
ζ̃4(x), θn+2(x) = −1

6
ζ̃n+1(x) +

5

4
ζ̃n(x)−

1

8
ζ̃n−1(x),

ηj(x) =− 1

8
ζ̃j+1(x) +

5

4
ζ̃j(x)−

1

8
ζ̃j−1(x), 4 ≤ j ≤ n− 1.

(2.7)
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Theorem 2.1. For any partition X of I, the infinity norm of Q is uni-
formly bounded by 3. If the partition is uniform, one has ∥ ϕ ∥∞= 305

207 ≈
1.4734.

Proof. For proof, refer to [18]. □

According [18], there exists a constant C such that

∥ f − ϕ2f ∥∞≤ Ch3 ∥ D3f ∥∞ .

3. Application to Volterra integral equations

In this section, we illustrate an application of the quadrature rule to
numerical solution of Volterra integral equation

u(x)−
∫ x

a
k(x, t)u(t)dt = g(x),

where k(., .) ∈ C([a, b]× [a, b]) and g(x) ∈ C([a, b]) are known functions
and u(x) is the unknown function to be determined. We use spline
quasi-interpolant method for Volterra integral equation. The method
associated with the quadrature formula

(3.1) (Knu)(x) =

∫ x

a
ϕ2(k(x, .)u(.))(â)dâ = Iϕ2ku(x),

we obtain

u(x)− (Knu)(x) = g(x),

consists in looking for a solution u satisfying

u(x)− (

3∑
j=1

ψj(x)k(x, tj)uj +

n−1∑
j=4

ηj(x)k(x, tj)uj(3.2)

+
n+2∑
j=n

θi(x)k(x, tj)uj) = g(x).

In summary, we can write

u(x)−
n+2∑
j=1

𝟋j(x)k(x, tj)uj = g(x),

where

𝟋j =

 ψj(x), 1 ≤ j ≤ 3
ηj(x), 4 ≤ j ≤ n− 1,
θj(x), n ≤ j ≤ n+ 2.
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By replacing xi, we have

(3.3) u(xi)−
n+2∑
j=1

𝟋j(xi)k(xi, tj)uj = g(xi).

Equation (3.3) can be simplified in the matrix form

(3.4) (I −K∗)U = G,

where

U = [u1, u2, . . . , un+2]
T ,

K∗ = [𝟋j(xi)k(xi, tj)]i,j , i, j = 1, . . . , n+ 2,

G = [g(x1), g(x2), . . . , g(xn+2)]
T .

Having used the solution uj , j = 1, . . . , n + 2, in the system (3.4), we
employ a method similar to the Nystrom’s idea for the Volterra integral
equation, i.e. we used

(3.5) un(x) =
n+2∑
j=1

𝟋j(x)k(x, tj)u(tj) + g(x).

4. Convergence Analysis

In this section, we shall provide the convergence analysis of the pro-
posed method. For this purpose, we consider the following theorem.

Theorem 4.1. Let r̃n error term for the spline quasi interpolant method.
Furthermore, let M0 = max |𝟋j(xi)||k(xi, tj)| and χj = max |k(xi, tj)|.
Then

|ϵn,i| ≤
O(h4)

1−M0
exp(

n+1∑
j=1

χj

1−M0
).

Proof. In fact

un(xi) =
n+2∑
j=1

𝟋j(xi)k(xi, tj)u(tj) + g(xi).
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Thus

un(xi)− u(xi) =

n+2∑
j=1

𝟋j(xi)k(xi, tj)(un(tj)− uj)+

n+2∑
j=1

𝟋j(xi)k(xi, tj)u(xi)−
∫ xi

a
k(xi, s)u(s)ds.

Let

ϵn,i = un(xi)− u(xi),

and

r̃n(xi) =
n+2∑
j=1

𝟋j(xi)k(xi, tj)u(xi)−
∫ xi

a
k(xi, s)u(s)ds.

Hence

ϵn,i =
n+2∑
j=1

𝟋j(xi)k(xi, tj)ϵn,j + r̃n(xi).

Thus

|ϵn,i| ≤
n+2∑
j=1

|𝟋j(xi)||k(xi, tj)||ϵn,j |+ |r̃n(xi)|,

so that

|ϵn,i| ≤
n+1∑
j=1

|𝟋j(xi)||k(xi, tj)||ϵn,j |+ |𝟋n(xi)k(xi, tn)||ϵn,n|+ |r̃n(xi)|.

Now using the Gronwall Lemma [8], we obtain

|ϵn,i| ≤
O(h4)

1−M0
exp(

n+1∑
j=1

χj

1−M0
).

□

Theorem 4.2. Let k ∈ C([a, b]× [a, b]) and u ∈ C[a, b]. Then we have

∥ un − u ∥∞≤∥ (I −Kn)
−1 ∥∥ (Kn −K)u ∥∞ .

Proof. For each x ∈ [a, b], Let κ(., .) set by

κ(x, t) =

{
k(x, t), a ≤ t ≤ x,
0, x < t ≤ b.
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The method associated with the quadrature formula

(Knu)(x) =

∫ b

a
ϕ2(k(x, .)u(.))(t)dt =

n+2∑
j=1

𝟋j(x)k(x, tj)u(tj), a ≤ x ≤ b.

There exists a constant M such that

n+2∑
j=1

|𝟋j(x)| ≤M, a ≤ x ≤ b.

We get

∥ Knu ∥∞≤Mmax|κ(x, t)| ∥ u ∥∞ .

Further, for all x1, x2 ∈ [a, b], we have

∥ Knu(x1)−Knu(x2) ∥∞≤Mmax|κ(x1, t)− κ(x2, t)| ∥ u ∥∞ .

On the other

I −Kn = I −K +K −Kn.

Then

I −Kn = (I −K)[I + (I −K)−1(K −Kn)].

From equation (3.4) we obtain

un − u = (I −Kn)
−1g − (I −K)−1g.

Thus

un − u = (I −Kn)
−1(Kn −K)(I −K)−1g

= (I −K)−1(I + (I −K)−1(K −Kn))
−1g − (I −K)−1g

= ((I + (I −K)−1(K −Kn))
−1 − I)(I −K)−1g

= (((I −Kn)(I −K)−1)−1 − I)(I −K)−1g

= (I −Kn)
−1(Kn −K)(I −K)−1g.

Hence

un − u = (I −Kn)
−1(Kn −K)u,

and we deduce

∥ un − u ∥∞≤∥ (I −Kn)
−1 ∥∥ (Kn −K)u ∥∞ .

□
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5. Numerical example

In this section, in order to illustrate the performance of the presented
method in solving Volterra integral equations and justify the accuracy
and efficiency of the method, we consider the following examples.

Example 5.1. Consider the following Volterra integral equation

u(x)−
∫ x

0
(x+ t)u(t)dt =

7

12
x4 +

5

3
x3 +

5

2
x2 + 2x+ 1,

where the exact solution is u(x) = (1 + x)2. In Table 1, numerical re-
sults are presented for rules Iϕ2f . We obtain an approximation to the
solution of (3.4). Numerical results illustrate accuracy of the proposed
quadrature rule. By increasing the value of n, the errors have been de-
creased. In Table 2, we present the absolute errors of algorithm combines
Trapezoidal and Simpson rules [12] for different values of n. A numeri-
cal comparison between Tables 1, 2 shows that spline quasi-interpolant
method is more accurate than of algorithm combines Trapezoidal and
Simpson rules [12].

Table 1. Max. Abs. Err. for Example 5.1 (IQ2f )

n ∥ u− un ∥∞ order
19 7.43928× 10−7 −
23 3.48711× 10−7 3.96587
35 6.55478× 10−8 3.98106
45 2.40445× 10−8 3.99051
55 1.0788× 10−8 3.99397
65 5.534× 10−9 3.99585
75 3.12346× 10−9 3.99697
85 1.89379× 10−9 3.99767
95 1.21395× 10−9 3.99818

Example 5.2. Consider the following Volterra integral equation

u(x) +

∫ x

0
(xt2 + x2t)u(t)dt = x+

7

12
x5,

where the exact solution is u(x) = x. In Table 3, numerical results are
presented for rule Iϕ2f . In table 4, we compare the absolute errors of the
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Table 2. Max. Abs. Err. [12]

n ∥ u− un ∥∞
19 8.36× 10−5

23 4.77× 10−5

35 1.33× 10−5

45 6.29× 10−6

55 3.44× 10−6

65 2.08× 10−6

75 1.36× 10−6

85 9.35× 10−7

95 6.70× 10−7

spline quasi-interpolant method for n = 32 with numerical expansion-
iterative method [11]. The results show the efficiency and rate of con-
vergence of the method. Figure 1 shows the maximum absolute errors
for the proposed method.

Table 3. Max. Abs. Err. for Example 5.2 (IQ2f )

n ∥ u− un ∥∞
20 3.88179× 10−7

40 2.42884× 10−8

60 4.79842× 10−9

80 1.5183× 10−9

100 6.21901× 10−10

Example 5.3. Consider the following Volterra integral equation

u(x) +

∫ x

0
xtu(t)dt = e−x2

+
x(1− e−x2

)

2
,

where the exact solution is u(x) = e−x2
. In Table 5, numerical results are

presented for rule Iϕ2f . In table 6, we compare the absolute errors of the
spline quasi-interpolant method for n = 32 with numerical expansion-
iterative method [11]. Figure 2 shows the maximum absolute errors for
the proposed method.
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Table 4. Numerical results for Example 5.2

x Absolute error Absolute error[11]
0 0 1.5625× 10−2

0.1 8.55709× 10−9 9.375× 10−3

0.2 1.86236× 10−8 3.125× 10−3

0.3 2.78283× 10−8 3.125× 10−3

0.4 3.36708× 10−8 9.375× 10−3

0.5 3.80447× 10−8 1.5625× 10−2

0.6 4.72105× 10−8 9.375× 10−3

0.7 5.65627× 10−8 3.68045× 10−3

0.8 5.83707× 10−8 3.125× 10−3

0.9 4.9622× 10−8 9.375× 10−3

50 60 70 80 90 100
n

5.´ 10-9

1.´ 10-8

1.5´ 10-8

2.´ 10-8

error

Figure 1. The absolute error ∥ u−un ∥∞ for different values of

n for Example 5.2.

Example 5.4. Consider the following Volterra integral equation

u(x) +

∫ x

0
(x− t) cos(x− t)u(t)dt = cos(x),

where the exact solution is u(x) = 1
3(2 cos

√
3t+1). In Table 7, numerical

results are presented for rule Iϕ2f . In table 8, we compare the absolute
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Table 5. Max. Abs. Err. for Example 5.3 (IQ2f )

n ∥ u− un ∥∞
20 4.78517× 10−7

40 3.07465× 10−8

60 6.10838× 10−9

80 1.93431× 10−9

100 7.92292× 10−10

Table 6. Numerical results for Example 5.3

x Absolute error Absolute error[11]
0 0 3.25× 10−4

0.1 7.99755× 10−9 2.02× 10−3

0.2 1.41309× 10−8 1.28× 10−3

0.3 1.37384× 10−8 1.647× 10−3

0.4 5.21359× 10−9 6.295× 10−3

0.5 8.52356× 10−9 1.2284× 10−2

0.6 2.59421× 10−8 7.87× 10−3

0.7 4.61481× 10−8 2.669× 10−3

0.8 6.24702× 10−8 2.661× 10−3

0.9 6.84528× 10−8 7.562× 10−3

errors of the spline quasi-interpolant method for n = 64 with Rational-
ized Haar functions method [16]. Figure 3 shows the maximum absolute
errors for the proposed method.

Table 7. Max. Abs. Err. for Example 5.4 (IQ2f )

n ∥ u− un ∥∞
20 8.97969× 10−7

40 5.75157× 10−8

60 1.14124× 10−8

80 3.61664× 10−9

100 1.48246× 10−9
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Table 8. Numerical results for Example 5.4

x Absolute error Absolute error[16]
0 0 0.6× 10−5

0.1 8.57026× 10−9 4.23× 10−4

0.2 7.42193× 10−9 3.45× 10−4

0.3 6.67605× 10−9 4.55× 10−4

0.4 6.28758× 10−9 2.7× 10−5

0.5 4.13835× 10−9 0.7× 10−4

0.6 3.59153× 10−9 3.7× 10−4

0.7 1.79297× 10−9 1.52× 10−4

0.8 2.97626× 10−10 6.7× 10−5

0.9 1.00404× 10−9 2.4× 10−4

6. Conclusion

In this article, we illustrated a rule based on spline quasi-interpolant.
In following, we employed this rule to the solution of a Volterra inte-
gral equation. The numerical examples were presented to illustrate the
accuracy and the implementation of the method.

50 60 70 80 90 100
n

5.´ 10-9

1.´ 10-8

1.5´ 10-8

2.´ 10-8

2.5´ 10-8

3.´ 10-8

error

Figure 2. The absolute error ∥ u−un ∥∞ for different values of

n for Example 5.3.
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40 50 60 70 80
n

5.´10-8

1.´10-7

1.5 ´10-7

error

Figure 3. The absolute error ∥ u−un ∥∞ for different values of

n for Example 5.4.
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