ASYMPTOTIC STABILITY OF SOME EQUATIONS

ARAM MOHARRAMNIA AND NASRIN EGHBALI

Abstract. In this paper, we investigate asymptotic stability of several integral and differential equations.

Key Words: Asymptotic stability; Fractional Volterra type integral equation; Fractional differential equation with modification of the argument; Differential equations with fractional integrable impulses.
2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 13F30, 13G05.

1. Introduction

Asymptotic stability is a kind of stability that is studied recently, there are different kind of definition of asymptotic stability [3], [2]. In this paper we have presented and studied one kind of that [1] on three equations below:

Fractional Volterra type integral equation with delay of the form

$$
y(x)=\frac{1}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1} f(x, s, y(s), y(\alpha(s))) d s, \beta \in(0,1) .
$$

Fractional differential equation with modification of the argument of the form:

$$
{ }^{c} D_{t}^{\alpha} x(t)=f(t, x(t), x(g(t))), t \in I \subset \mathbb{R}, \alpha \in(0,1) .
$$

Differential equations with fractional integrable impulses of the form:

$$
\left\{\begin{array}{lr}
x^{\prime}(t)=f(t, x(t)), & t \in\left(s_{i}, t_{i+1}\right], i=0,1,2, \cdots, m \\
x(t)=I_{t_{i}, t}^{\alpha} g_{i}(t, x(t)), & t \in\left(t_{i}, s_{i}\right], i=1,2, \cdots, m, \alpha \in(0,1)
\end{array}\right.
$$

[^0]
2. Preparation of manuscript

The concept of the asymptotic stability of a solution of equation is understood in the following sense givin by Banas and Rzepka.

Definition 2.1. Let $B(x, r)$ denotes the closed ball centered at x with radius $r,(r>0)$ the symbol B_{r} stands the ball $B(0, r)$. For any $\varepsilon>0$ there exist $T(\varepsilon)>0$ and $r(\varepsilon)>0$ such that, if $y_{1}, y_{2} \in B_{r}$ and $y_{1}(t)$, $y_{2}(t)$ are solutions of equation, then $\left|y_{1}(t)-y_{2}(t)\right| \leq \varepsilon$ for $t \geq T(\varepsilon)$.
Definition 2.2. For a function h given on the interval $[a, b]$, the α th Riemann-Liouville fractional order derivative of h, is defined by

$$
\left(D_{a^{+}}^{\alpha} h\right)(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{a}^{t}(t-s)^{(n-\alpha-1)} h(s) d s
$$

where $n=[\alpha]+1$ and $[\alpha]$ denotes the integer part of α, where $\Gamma($.$) is$ the Gamma function.

Definition 2.3. For a function h given on the interval $[a, b]$, the Caputo fractional order derivative of h, is defined by

$$
{ }^{c} D_{a^{+}}^{\alpha} h(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t}(t-s)^{n-\alpha-1} h^{(n)}(s) d s
$$

where $n=[\alpha]+1$.
Definition 2.4. Given an interval $[a, b]$ of \mathbb{R}, then the Riemann-Liouville fractional order integral of a function $h \in L^{1}([a, b], \mathbb{R})$ of order $\gamma \in \mathbb{R}_{+}$ is defined by

$$
I_{a^{+}}^{\gamma} h(t)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t}(t-s)^{\gamma-1} h(s) d s .
$$

Definition 2.5. Fractional Volterra type integral equation with the delay is defined
$y(x)=I_{c^{+}}^{\beta} f(x, x, y(x), y(\alpha(x)))=\frac{1}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1} f(x, s, y(s), y(\alpha(s))) d s$,
for $\beta \in(0,1)$, where $f:[a, b] \times[a, b] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function, a, b and c are fixed real numbers such that $-\infty<a \leq x \leq$ $b<+\infty$, and $c \in(a, b)$, and $\alpha:[a, b] \longrightarrow[a, b]$ is a continuous delay function which therefore fulfills $\alpha(x) \leq x$, for all $x \in[a, b]$.

Definition 2.6. Fractional- order delay differential equation with modification of the argument is defined

$$
\begin{equation*}
{ }^{c} D_{t}^{\alpha} x(t)=f(t, x(t), x(g(t))), t \in I \subset \mathbb{R}, \alpha \in(0,1) . \tag{2.2}
\end{equation*}
$$

where $f \in C\left(I \times \mathbb{R}^{2}, \mathbb{R}\right), g \in C(I,[-h, b])$ with $g(t) \leq t, I=[0, b], b \in \mathbb{R}_{+}$ and $h>0$.

Definition 2.7. Differential equation with fractional integrable impulses is defined

$$
\left\{\begin{array}{lr}
x^{\prime}(t)=f(t, x(t)), & t \in\left(s_{i}, t_{i+1}\right], i=0,1,2, \cdots, m, \tag{2.3}\\
x(t)=I_{t_{i}, t}^{\alpha} g_{i}(t, x(t)), & t \in\left(t_{i}, s_{i}\right], i=1,2, \cdots, m, \alpha \in(0,1) .
\end{array}\right.
$$

where $0=t_{0}=s_{0}<t_{1} \leq s_{1} \leq t_{2}<\cdots<t_{m} \leq s_{m} \leq t_{m+1}=T$ are prefixed numbers, $f:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $g_{i}:\left[t_{i}, s_{i}\right] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous for all $i=1,2, \cdots, m$ and the symbol $I_{t_{i}, t}^{\alpha} g_{i}$ is so-called Riemann- Liouville fractional integrals of the order α and is given by

$$
I_{t_{i}, t}^{\alpha} g_{i}(t, x(t))=\frac{1}{\Gamma(\alpha)} \int_{t_{i}}^{t}(t-s)^{\alpha-1} g_{i}(s, x(s)) d s
$$

Theorem 2.8. Assume that $\alpha:[a, b] \longrightarrow[a, b]$ is a continuous function such that $\alpha(x) \leq x$, for all $x \in[a, b]$ and $f:[a, b] \times[a, b] \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function which additionally satisfies the Lipschitz condition

$$
\left|f\left(x, s, y_{1}(s), y_{1}(\alpha(s))\right)-f\left(x, s, y_{2}(s), y_{2}(\alpha(s))\right)\right| \leq L_{f}\left|y_{1}(s)-y_{2}(s)\right|,
$$

for any $x, s \in[a, b]$ and $y_{1}, y_{2} \in \mathbb{R}$, then equatin (2.1) is asymptotic atable.

Proof. Soppose y_{1} and $y_{2} \in B_{r}$ be two solutions of equation (2.1), i.e. $\left|y_{1}\right|<r$ and $\left|y_{2}\right|<r$, hence $\left|y_{1}-y_{2}\right|<2 r$ which $r=\frac{\beta \Gamma(\beta)}{2 L_{f}(x-c)^{\beta}} \varepsilon$, then
$\left|y_{1}(s)-y_{2}(s)\right|=\left\lvert\, \frac{1}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1} f\left(x, s, y_{1}(s), y_{1}(\alpha(s))\right) d s\right.$
$\left.-\frac{1}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1} f\left(x, s, y_{2}(s), y_{2}(\alpha(s))\right) d s \right\rvert\,$
$\leq \frac{1}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1}\left|f\left(x, s, y_{1}(s), y_{1}(\alpha(s))\right)-f\left(x, s, y_{2}(s), y_{2}(\alpha(s))\right)\right| d s$
$\leq \frac{L_{f}}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1}\left|y_{1}(s)-y_{2}(s)\right| d s$
$\leq \frac{L_{f} 2 r}{\Gamma(\beta)} \int_{c}^{x}(x-s)^{\beta-1} d s=\frac{L_{f} 2 r}{\Gamma(\beta)} \cdot \frac{(x-c)^{\beta}}{\beta}=\varepsilon$
so that $\left|y_{1}(s)-y_{2}(s)\right|<\varepsilon$, which implies that the the solution of (2.1) are asymptotically stable.
Example 2.9. Let

$$
y(x)=\frac{1}{\Gamma\left(\frac{1}{3}\right)} \int_{0}^{t} \frac{|x(s)| e^{-3 t-s}+\frac{1}{1+5 t^{\frac{7}{3}}}}{(t-s)^{\frac{2}{3}}} d s
$$

that

$$
f(x, s, y(s))=|y(s)| e^{-3 x-s}+\frac{1}{1+5 x^{\frac{7}{3}}}, x \neq-1
$$

is continuous function that satisfies Lipschitz condition, because
so f satisfies Lipschitz condition with $L=e^{-3 x-s}$, according to the previous theorem we put

$$
r=\frac{\frac{1}{3} \Gamma\left(\frac{1}{3}\right)}{2 e^{-3 x-s}(x-c)^{\frac{1}{3}}} \varepsilon
$$

then this equation is asymptotic stable.
Lemma 2.10. From theorem 3.4 [6] for $f \in C\left(I \times \mathbb{R}^{2}, \mathbb{R}\right)$, the following equations:
$\left\{\begin{array}{lr}{ }^{c} D_{t}^{\alpha} x(t)=f(t, x(t), x(g(t))), & t \in I, \\ x(t)=\psi(t), & t \in[-h, 0] .\end{array}\right.$
are equivalent to the singular integral system:

$$
\left\{\begin{array}{lr}
x(t)=\psi(t), & t \in[-h, 0], \\
\psi(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s, x(s), x(g(s))) d s, & t \in I .
\end{array}\right.
$$

Theorem 2.11. Assume that $f \in C\left(I \times \mathbb{R}^{2}, \mathbb{R}\right)$ is a continuous function which additionally satisfies the Lipschitz condition

$$
\left|f\left(t, y_{1}(t), y_{1}(g(t))\right)-f\left(t, y_{2}(t), y_{2}(g(t))\right)\right| \leq L_{f}\left|y_{1}(t)-y_{2}(t)\right|
$$

and $g \in C(I,[-h, b]), g(t) \leq t$ and $h>0$, then (2.2) is asymptotic stable.
Proof. Soppose y_{1} and $y_{2} \in B_{r}$ be two solutions of equation (2.2), i.e. $\left|y_{1}\right|<r$ and $\left|y_{2}\right|<r$, hence $\left|y_{1}-y_{2}\right|<2 r$ which $r=\frac{\varepsilon \alpha \Gamma(\alpha)}{2 L_{f} t^{\alpha}}$, then
$\left|y_{1}(s)-y_{2}(s)\right|$
$\leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(x-s)^{\alpha-1}\left|f\left(s, y_{1}(s), y_{1}(g(s))\right)-f\left(s, y_{2}(s), y_{2}(g(s))\right)\right| d s$
$\leq \frac{L_{f}}{\Gamma(\alpha)} \int_{0}^{t}(x-s)^{\alpha-1}\left|y_{1}(s)-y_{2}(s)\right| d s$
$\leq \frac{L_{f} 2 r}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} d s=\frac{L_{f} 2 r}{\Gamma(\alpha)} \cdot \frac{t^{\alpha}}{\alpha}=\varepsilon$
so that $\left|y_{1}(s)-y_{2}(s)\right|<\varepsilon$, which implies that the solution of (2.2) are asymptotically stable.

Lemma 2.12. [5] A function x is called a classical solution of the problem
$\left\{\begin{array}{l}x^{\prime}(t)=f(t, x(t)), \\ x(t)=I_{t_{i}, t}^{\alpha} g_{i}(t, x(t)), \quad t \in\left(t_{i}, s_{i}\right], i=\left(s_{i}, t_{i+1}\right], i=0,1,2, \cdots, m, \\ x(0)=x_{0} \in \mathbb{R},\end{array}\right.$
if x satisfies

$$
\left\{\begin{array}{lr}
x(0)=x_{0} ; & t \in\left(t_{i}, s_{i}\right], i=1,2, \cdots, m \\
x(t)=I_{t_{i}, t}^{\alpha} g_{i}(t, x(t)), & t \in\left(0, t_{1}\right) \\
x(t)=x_{0}+\int_{0}^{t} f(s, x(s)) d s, & t \in\left(s_{i}, t_{i+1}\right], i=1,2, \cdots, m \\
x(t)=I_{t_{i}, s_{i}}^{\alpha} g_{i}\left(s_{i}, x\left(s_{i}\right)\right)+\int_{s_{i}}^{t} f(s, x(s)) d s, &
\end{array}\right.
$$

Theorem 2.13. Assume that $f:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ and $g_{i}:\left[t_{i}, s_{i}\right] \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous for all $i=1,2, \cdots, m$ where $0=t_{0}=s_{0}<t_{1} \leq s_{1} \leq t_{2}<$ $\cdots<t_{m} \leq s_{m} \leq t_{m+1}=T$ are pre-fixed numbers, which additionally satisfies the Lipschitz condition

$$
\begin{aligned}
\left|f\left(t, y_{1}(t)\right)-f\left(t, y_{2}(t)\right)\right| & \leq L_{f}\left|y_{1}(t)-y_{2}(t)\right| \\
\left|g_{i}\left(t, y_{1}(t)\right)-g_{i}\left(t, y_{2}(t)\right)\right| & \leq L_{g_{i}}\left|y_{1}(t)-y_{2}(t)\right|
\end{aligned}
$$

and let

$$
M:=L g_{i} \frac{\left(s_{i}-t_{i}\right)^{\alpha}}{\alpha}+L_{f}\left(t-s_{i}\right)
$$

then (2.3) is asymptotic stable.
Proof. Soppose y_{1} and $y_{2} \in B_{r}$ be two solutions of equation (2.3), i.e. $\left|y_{1}\right|<r$ and $\left|y_{2}\right|<r$, hence $\left|y_{1}-y_{2}\right|<2 r$ which $r:=\frac{\varepsilon \Gamma(\alpha)}{2 M}$, then
$\left|y_{1}(s)-y_{2}(s)\right|$

$$
\begin{aligned}
& \leq \frac{1}{\Gamma(\alpha)}\left(L g_{i} \int_{t_{i}}^{s_{i}}\left(s_{i}-s\right)^{\alpha-1}\left|y_{1}(s)-y_{2}(s)\right| d s+L_{f} \int_{s_{i}}^{t}\left|y_{1}(s)-y_{2}(s)\right| d s\right) \\
& \leq \frac{1}{\Gamma(\alpha)}\left(2 r L g_{i} \int_{t_{i}}^{s_{i}}\left(s_{i}-s\right)^{\alpha-1} d s+2 r L_{f} \int_{s_{i}}^{t} d s\right) \\
& =\frac{2 r}{\Gamma(\alpha)}\left(L g_{i} \frac{\left(s_{i}-t_{i}\right)^{\alpha}}{\alpha}+L_{f}\left(t-s_{i}\right)\right)=\frac{2 r}{\Gamma(\alpha)} M=\varepsilon
\end{aligned}
$$

so that $\left|y_{1}(s)-y_{2}(s)\right|<\varepsilon$, which implies that the the solution of (2.3) are asymptotically stable.

REFERENCES

[1] M. Abdolla Darwish and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fractional calculus and applied analysis, 12 (2009), 71-86.
[2] M. Derakhshan, M. Ahmadi Darani, A. Ansari and R. khoshsiar Ghaziani, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, J. Math, 63 (2014), 1181-1190.
[3] N. Dinh Cong, T. Son Doan, S. Siegmund and Hoang The Tuan, On asymptotic stability of Prabhakar fractional differential systems, Computational Methods for Differential Equations, 4 (2016), 276-284.
[4] N. Eghbali, V. Kalvandi and J. M. Rassias, A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation, Open Math, 14 (2016), 237-246.
[5] J. Wang and Y. Zhang, A class of nonlinear differential equations with fractional integrable impulses, ScienceDirect, 39 (2014), 3001-3010.
[6] J. Wang and Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, J. Math, 63 (2014), 1181-1190.

Aram Moharramnia

Department of Mathematics, University of Mohaghegh Ardabili, P.O.Box 5619911367, Ardabil, Iran
Email: aramnia@yahoo.com

Nasrin Eghbali

Department of Mathematics, University of Mohaghegh Ardabili, P.O.Box 5619911367, Ardabil, Iran
Email: nasrineghbali@gmail.com;eghbali@uma.ac.ir

[^0]: Received: 16 January 2020, Accepted: 9 February 2020. Communicated by Mohammad Zarebnia
 *Address correspondence to Nasrin Eghbali; E-mail: nasrineghbali@gmail.com (C) 2019 University of Mohaghegh Ardabili.

