Journal of Hyperstructures 8 (2) (2019), 112-122. ISSN: 2322-1666 print/2251-8436 online

HYPER UP-ALGEBRAS

DANIEL A. ROMANO

ABSTRACT. In this paper, the concept of hyper UP-algebras is introduced and some related properties are investigated. Also, the concepts of hyper UP-ideals have been introduced and analyzed. In addition, the concept of homomorphisms between hyper UPalgebras is also considered.

Key Words: UP-algebra, Hyper UP-algebra, Hyper UP-ideal of type 1 (2,3,4 res.), Hyper UP-homomorphism.

2010 Mathematics Subject Classification: Primary: 06F35; Secondary: 03G25.

1. INTRODUCTION

The hyper structures theory (called also multialgebras) is introduced in 1934 by F. Marty [10] at the 8th congress of Scandinavian Mathematicians. Hyper structures have many applications to several sectors of both pure and applied parts of mathematics ([3]. A good reference for the theory of hyper-structures and its applications to Mathematics and Computer Science can be found in [11, 12]. In [19], Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzooei applied the hyper structures to BCK-algebras, and introduced the concept of hyper BCK-algebras which is a generalization of BCK-algebras and investigated some related properties. They also introduced the concept of hyper BCK-ideals. For more about hyper BCK- algebra we refer the reader to [15, 2]. Hyper BCC-algebras were introduced and analyzed by R. A. Borzooei, W. A. Dudek and N. Koohestani. in the article [16]. The properties of the hyper BCC-algebra were analyzed by D. S. Uzay and A. Firat in the text

Received: 28 May 2019, Accepted: 19 September 2019. Communicated by Mirela Stefanescu *Address correspondence to D.A.Romano; E-mail: bato49@hotmail.com.

^{© 2019} University of Mohaghegh Ardabili.

¹¹²

[9] also. Hyper BE algebras were investigated by A. Radfar, A. Rezaei and A. B. Saeid in [1] and hyper BCI-algebras were analyzed by X. L. Xin in [18]. In [17], S. M. Mostafa, F. F. Kareem and B. Davvaz applied the hyper structures to KU-algebras.

Iampan [4] introduced a new algebraic structure which is called UPalgebras as a generalization of KU-alebras. He studied ideals and congruences in UP-algebras. He also introduced the concept of homomorphism of UP-algebras and investigated some related properties. Moreover, he derived some straightforward consequences of the relations between quotient UP-algebras and isomorphism. In the study of these algebraic structures, this author took part also ([6, 7, 8]). In this paper we introduced the concept of hyper UP-algebras and some types properties of hyper UP-algebras are studied. Also, homomorphisms between hyper UP-algebras are analyzed.

2. Preliminaries

2.1. **UP-algebras.** In this subsection we will describe some elements of UP-algebras and their substructures from the literature [4, 5, 14] necessary for our intentions in this text.

Definition 2.1. ([4]) An algebra $A = (A, \cdot, 0)$ of type (2,0) is called a UP-algebra where A is a nonempty set, ' · ' is a binary operation on A, and 0 is a fixed element of A (i.e. a nullary operation) if it satisfies the following axioms:

- $(\text{UP-1}) \ \ (\forall x,y \in A)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0),$
- $(\text{UP-2}) \quad (\forall x \in A)(0 \cdot x = x),$

(UP-3) $(\forall x \in A)(x \cdot 0 = 0)$, and

 $(\text{UP-4}) \ \ (\forall x, y \in A)((x \cdot y = 0 \ \land \ y \cdot x = 0) \implies x = y).$

On a UP-algebra $A = (A, \cdot, 0)$, we define the UP-ordering \leq on A as follows:

$$(\forall x, y \in A)(x \leqslant y \iff x \cdot y = 0).$$

Proposition 2.2 ([4]). In a UP-algebra A, the following properties hold:

- (1) $(\forall x \in A)(x \leq x),$
- $(2) \ (\forall x, y \in A)((x \leqslant y \land y \leqslant x), \Longrightarrow x = y),$
- (3) $(\forall x, y, z \in A)((x \leq y \land y \leq z) \Longrightarrow x \leq z),$
- $(4) \ (\forall x, y, z \in A) (x \leqslant y \implies z \cdot x \leqslant z \cdot y),$
- (5) $(\forall x, y, z \in A)(x \leq y \implies y \cdot z \leq x \cdot z),$
- (6) $(\forall x, y \in A)(x \leq y \cdot x)$ and
- (7) $(\forall x \in A)(x \leq 0).$

Definition 2.3. A nonempty subset S of a UP-algebra $(A, \cdot, 0)$ is called (a) ([4]) a UP-subalgebra of A if $(\forall x, y \in S)(x \cdot y \in S)$.

- (b) ([4]) a UP-ideal of A if
- (i) $0 \in S$; and
- (ii) $(\forall x, y, z \in A)((x \cdot (y \cdot z) \in S \land y \in S) \Longrightarrow x \cdot z \in S);$
- (c) ([6]) a proper UP-filter if
- (iii) $\neg (0 \in S)$ and
- (iv) $(\forall x, y, z \in A)((\neg (x \cdot (y \cdot z) \in S) \land x \cdot z \in S) \Longrightarrow y \in S).$

The set $\{0\}$ is a trivial UP-subalgebra (trivial UP-ideal) of A. The set $A \setminus \{0\}$ is a trivial proper UP-filter in A.

In the article [8], Theorem 3.3, it has been shown that the conditions (i) and (ii) in the point (b) of the preceding definition are equivalent to the following conditions:

- (i') $(\forall x, y \in A)((x \cdot y \in S \land x \in S) \Longrightarrow y \in S),$
- (ii') $(\forall x, y \in A)(y \in S \implies x \cdot y \in S).$

In the article [7], Theorem 3.1, it has been shown that the conditions (iii) and (iv) in the point (c) of the preceding definition are equivalent to the following conditions:

(iii') $(\forall x, y \in A)(\neg (x \cdot y \in S) \land y \in S) \implies x \in S),$ (iv') $(\forall x, y \in A)(x \cdot y \in S \implies y \in S).$

Definition 2.4. ([4]) Let $(A, \cdot, 0_A)$ and $(B, \cdot', 0_B)$ be two UP-algebras. A mapping $f : A \longrightarrow B$ is called a UP-homomorphism if

$$(\forall x, y \in A)(f(x \cdot y) = f(x) \cdot f(y)).$$

A UP-homomorphism $f: A \longrightarrow B$ is called

- a UP-epimorphism if f is surjective,

- a UP-monomorphism if f is injective, and
- a UP-isomorphism if f is bijective.

Let f be a mapping form UP-algebra A to UP-algebra B, and let C and D be nonempty subsets of A and of B, respectively. The set $\{f(x)|x \in C\}$ which denoted by f(C) is called the image of C under f. In particular, f(A) which denoted by Im(f) is called the image of f. The dually set $\{x \in A | f(x) \in D\}$ which denoted by $f^{-1}(D)$ is called the inverse image of D under f. Especially, the set $f^{-1}(\{0_B\})$ which written by Ker(f) is called the kernel of f.

Proposition 2.5 ([4]). Let $(A, \cdot, 0_A)$ and $(B, \cdot', 0_B)$ be UP-algebras and let $f : A \longrightarrow B$ be a UP-homomorphism. Then the following statements hold:

(8) $f(0_A) = 0_B;$

(9) $(\forall x, y \in A)(x \leq_A y \implies f(x) \leq_B f(y));$

(10) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of B. In particular, Im(f) is a UP-subalgebra of B;

(11) if D is a UP-subalgebra of B, then the inverse image $f^{-1}(D)$ is a UP-subalgebra of A. In particular, Ker(f) is a UP-subalgebra of A;

(12) if D is a UP-ideal of B, then the inverse image $f^{-1}(D)$ is a UP-ideal of A. In particular, Ker(f) is a UP-ideal of A;

(13) if C is a UP-ideal of A such that $Ker(f) \subseteq C$, then the image f(C) is a UP-ideal of Im(f); and

(14) $Ker(f) = \{0_A\}$ if and only if f is an injective mapping.

2.2. **Designing of hyper-structures.** Hyper-structures (also known as hyperalgebras, or non-deterministic algebras) has been studied from different standpoints over the last several decades. A survey which covers a part of the historical development of the theory of hyper-algebras, presenting the main approaches of important concepts on the hyper-structure theory from the point of view of universal algebra, it can be found in [13, 3]. In ordinary algebras the concept of internal binary operations is a fundamental. If it generalized to multi-operation, these leads to the concepts of multi-algebras. An operation in a set X is a total function $w : X \times X \longrightarrow X$ that manipulate elements of a set $X \times X$ and returns the unique value in set X. A multi-operation (or hyper-operation) is a generalization of an operation when it returns a set of values instead of a single value. The class of structures composed by a set and at least one multi-operation is what we call of algebraic hyper-structure ([3], pp. 2).

Let X be a nonempty set and $P^*(X) = P(X) \setminus \{\emptyset\}$ the family of all nonempty subsets of X. A multi-valued operation (said also hyper operation) ' \circ ' on X is a function, which associates with every pair $(x, y) \in X \times X$ a nonempty subset of X denoted by $x \circ y$. An algebraic hyper structure or simply a hyper structure is a nonempty set X endowed with one or more hyper operations. Note that if $A, B \subseteq X$, then by $A \circ B$ we mean the subset $\bigcup_{a \in A} \bigcup_{b \in B} a \circ b$ of X.

Let (X, \circ) be a hyper-structure such that $0 \in X$. First, let us determine the relation of hyper order $' \ll '$ in hyper-structure (X, \circ) . We define

 $(\forall A, B \in P^*(X))(A \ll B \iff (\forall a \in A)(\exists b \in B)(0 \in a \circ b)).$ This relationship is called *hyper-order*. Let $x \ll y$ be instead of $\{x\} \ll \{y\}$. Then

D.A.Romano

$$(\forall x, y \in X)(x \ll y \iff 0 \in x \circ y).$$

3. Hyper UP-Algebras

3.1. The concept of hyper UP-algebras. In the following definition, the concept of hyper UP-algebras is introduced.

Definition 3.1. Let X be a nonempty set such that $0 \in X$ and $(X, \circ, \ll, 0)$ be a hyper-structure. Then, $(X, \circ, \ll, 0)$ is called a *hyper UP-algebra* if the following formulas are valid:

 $\begin{array}{l} (\mathrm{HUP1}) \ (\forall x,y,z\in X)(y\circ z\ll (x\circ y)\circ (x\circ z)),\\ (\mathrm{HUP2}) \ (\forall x\in X)(x\circ 0=\{0\}),\\ (\mathrm{HUP3}) \ (\forall x\in X)(0\circ x=\{x\}), \ \mathrm{and}\\ (\mathrm{HUP4}) \ (\forall x,y\in X)((x\ll y\wedge y\ll x)\Longrightarrow x=y). \end{array}$

Example 3.2. Let $X = \{0, a, b\}$ be a set. If we define a hyper operation \circ on X as following

0	0	a	b
0	{0}	$\{a\}$	$\{b\}$
a	{0}	$\{0,a\}$	$\{a,b\}$
b	{0}	$\{0,a\}$	$\{0, a, b\}$

then (X, \circ, \ll) is a hyper UP-algebra.

Our first proposition shows some of the basic properties of the relationship \ll in any hyper UP algebra (X, \circ, \ll) .

Proposition 3.3. Let (X, \circ, \ll) be a hyper UP-algebra. Then, the following statements hold:

 $\begin{array}{ll} (15) \ (\forall A, B \subseteq X) (A \subseteq B \Longrightarrow A \ll B), \\ (16) \ 0 \circ 0 = \{0\}, \\ (17) \ (\forall x \in X) (x \ll 0), \\ (18) \ (\forall x \in X) (x \ll x), \ i.e. \ (\forall x \in X) (0 \in x \circ x), \\ (19) \ (\forall x, z \in X) (z \ll x \circ z), \\ (20) \ (\forall A \subseteq X) (A \circ 0 = \{0\}), \\ (21) \ (\forall B \subseteq X) (0 \circ B = B) \\ (22) \ (\forall x \in X) ((0 \circ 0) \circ x = \{x\}). \end{array}$

Proof. (16) If we put x = 0 in the formula (HUP2), we get $0 \circ 0 = \{0\}$.

(17) Since $x \circ 0 = \{0\}$ for any $x \in X$, according to (HUP2), we have $0 \in x \circ 0$. So, $x \ll 0$ according to the definition of the relation \ll .

(15) Let A and B be subsets of X such that $A \subseteq B$. In order for $A \ll B$ to be valid have to be $(Va \in A)(\exists b \in B)(a \ll b)$ valid. Since A

is a subset of B, we can take b = a for a pre-selected a. Then we have $a \ll a = b$ by (17) which is sufficient for $A \ll B$.

(18) If we put y = x = 0 and z = x, in the formula (HUP1), we get $0 \circ x \ll (0 \circ 0) \circ (0 \circ x)$. Thus $\{x\} \ll \{0\} \circ \{x\}$ by (HUP3) and (16). Then we obtain $\{x\} \ll \{x\}$ by the definition of the operation \circ . So, the formula (18) is a valid formula.

(19) If we put y = 0 in the formula (HUP1), we get $0 \circ z \ll (x \circ 0) \circ (x \circ z)$. z). Thus $\{z\} \ll \{0\} \circ (x \circ z)$ by (HUP3) and (HUP2) and $\{z\} \ll x \circ z$ by the definition of the operation \circ . Therefore, the formula (19) is proven.

(20) Formula (20) is a direct consequence of the formula (HUP2).

(21) Formula (21) is a direct consequence of the formula (HUP3).

(22) $(0 \circ 0) \circ x = \{0\} \circ x = \{x\}$ by (14), the definition of the operation \circ and (HUP3) for any $x \in X$.

Definition 3.4. For hyper algebra X, it is said that it is a *diagonal* hyper UP-algebra if

(HUP5) $(\forall x \in X)(x \circ x = \{0\})$

is true.

In the next proposition, we show the left compatibility of the hyperorder relation with a hyper operation in hyper UP-algebras.

Proposition 3.5. In any hyper UP-algebra $(X, \circ, \ll, 0)$, the following formula is valid

 $(23) \ (\forall x, y, z \in X)(y \ll z \implies (x \circ y) \ll (x \circ z)).$

Proof. Let $x, y, z \in X$ be arbitrary elements such that $y \ll z$. Thus $0 \in y \circ z$. On the other hand, if the axiom (HUP1) is written in the form $0 \in (y \circ z) \circ ((x \circ y) \circ (x \circ z))$, we have $0 \in y \circ z$ and $0 \in (y \circ z) \circ ((x \circ y) \circ (x \circ z))$. From here it follows that $0 \in (x \circ y) \circ (x \circ z)$ according to the definition of the operation \circ and to (HUP3). So, $x \circ y \ll x \circ z$.

In the next proposition we prove one specificity of hyper UP algebras.

Proposition 3.6. In any hyper UP-algebra $(X, \circ, \ll, 0)$), the following formula is valid

 $(24) \ (\forall x,y,z \in X)((x \ll y \land y \ll z) \Longrightarrow x \ll z).$

Proof. Let $x, y, z \in X$ artbitrary elements such that $x \ll y$ and $y \ll z$. This means $0 \in x \circ y$ and $0 \in y \circ z$. From (HUP1) in the form $0 \in (y \circ z \circ z)((x \circ y) \circ (x \circ z))$ follows $0 \in (x \circ y) \circ (z \circ z)$ by a hypothesis $0 \in y \circ z$. Now, from $0 \in (x \circ y) \circ (z \circ z)$ follows $0 \in x \circ z$ by a hypothesis $0 \in x \circ y$. So, $x \ll z$. **Theorem 3.7.** The relation \ll in a hyper UP-algebra $(X, \circ, 0, \ll)$ is a partial order.

Proof. The relation \ll is a reflexive relation according to (18), an antisymmetric relation by (HUP4), and a transitional relation by (24). Therefore, it is a partial order.

The following theorem is an important result about connection between hyper KU-algebras ([17], Definition 3.1) and hyper UP-algebras. We draw attention to the reader that the relation \ll in the article [17] is determined as follows

 $(\forall a, b \in K) (x \ll y \iff 0 \in y \circ x).$

Theorem 3.8. Let $(X, \circ, \ll, 0)$ be a hyper KU-algebra. Then $(X, \circ, \ll^{-1}, 0)$ is a hyper UP-algebra.

Proof. Let X be hyper KU-algebra. To show that the $(X, \circ, \ll^{-1}, 0)$ is a hyper UP algebra it is sufficient to show that in the system (HKU1), (HKU2), (HKU3), (HKU4) axiom (HUP1) is a valid formula. Since in every hyper KU algebra $(X, \circ, \ll, 0)$ the following formula

 $(\forall x, y, z \in X)(z \circ (x \circ y) = y \circ (z \circ x))$

is valid by Lemma 3.6 in [17], we have the following deduction

 $\begin{array}{l} (\forall x, y, z \in X)((y \circ z) \circ (x \circ z) \ll x \circ y) & ((\mathrm{HKU1}) \text{ - hypothesis}) \\ (\forall x, y, z \in X)(0 \in (x \circ y) \circ ((y \circ z) \circ (x \circ z))) & (\mathrm{by \ definition \ of} \ll \mathrm{in} \\ [17]) \end{array}$

 $\begin{array}{ll} (\forall x, y, z \in X) (0 \in (y \circ z) \circ ((x \circ y) \circ (x \circ z))) & (\text{by Lemma 3.6 in [17]}) \\ (\forall x, y, z \in X) (y \circ z \ll^{-1} (x \circ y) \circ (x \circ z)) & (\text{by definition of } \ll \text{ in } \\ [17]) \end{array}$

which was to be proven. Therefore, $(X, \circ, \ll^{-1}, 0)$ is a hyper UP-algebra.

3.2. Concept of hyper UP-subalgebras.

Definition 3.9. Let $(X, \circ, \ll, 0)$ be a hyper UP-algebra and let S be a subset of X containing 0. If S is a hyper UP-algebra with respect to the hyper operation ' \circ ' on X, we say that S is a hyper UP-subalgebra of X.

Lemma 3.10. Let S be a non-empty subset of a hyper UP-algebra $(X, \circ, \ll, 0)$. If $x \circ y \subseteq S$ for all $x, y \in S$, then $0 \in S$.

Proof. Assume that $x \circ y \subseteq S$ for all $x, y \in S$. Since S is non-empty, this means that there is an element $a \in S$. Since $a \ll a$ by (18), we have $0 \in a \circ a \subseteq S$.

Proposition 3.11. Let S be a non-empty subset of a hyper UP-algebra $(X, \circ, \ll, 0)$. Then S is a hyper UP-subalgebra of X if and only if $(\forall x, y \in S)(x \circ y \subseteq S)$ holds.

Proof. (\Longrightarrow) If S is a hyper UP-subalgebra of UP-algebra X, then it is clear, by definition, that the given formula is valid.

(\Leftarrow) Assume that $(\forall x, y \in S)(x \circ y \subseteq S)$ holds. Then $0 \in S$ by Lemma 3.10. For any $x, y, z \in S$, we have $x \circ z \subseteq S$, $y \circ z \subseteq S$ and $x \circ y \subseteq S$. Hence

$$(x \circ y) \circ (x \circ z) = \bigcup_{a \in x \circ y} \bigcup_{b \in x \circ z} a \circ b \subseteq S.$$

Since (HUP1) is valid in X and since all products $z \circ y$, $x \circ y$ and $x \circ z$ lie in S, this means that (HUP1) is valid in S. Similarly we can prove that the axioms (HUP2), (HUP3) and (HUP4) are true in S. Therefore S is a hyper UP-subalgebra of X.

3.3. Concept of hyper UP-ideals. In this subsection, the concept of hyper UP-ideals in the hyper UP-algebra was introduced in an analogous way, as was done in the article [16], Definition 4.1, by defining the concept of the hyper BCC-ideals in hyper BCC algebras. Analogously, the concept of hyper KU-ideals of type 1 (2, 3, 4) is determined in article [17], Definition 5.1.

Definition 3.12. A subset S of a hyper UP-algebra $(X, \circ, \ll, 0)$ such that $0 \in S$ is called the following:

(i) a hyper UP-ideal of type 1, if

- $(25) \ (\forall x,y,z \in X)((x \circ (y \circ z) \ll S \ \land \ y \in S) \implies x \circ z \subseteq S);$
 - (ii) a hyper UP-ideal of type 2, if
- $(26) \ (\forall x, y, z \in X)((x \circ (y \circ z) \subseteq S \land y \in S) \Longrightarrow x \circ z \subseteq S);$

(iii) a hyper UP-ideal of type 3, if

- $(27) \ (\forall x,y,z\in X)((x\circ (y\circ z)\ll S\,\wedge\,y\in S)\implies x\circ z\ll S);$
 - (iv) a hyper UP-ideal of type 4, if
- $(28) \ (\forall x,y,z \in X)((x \circ (y \circ z) \subseteq S \land y \in S) \Longrightarrow x \circ z \ll S).$

The set $\{0\}$ is trivial hyper UP-ideal of type 1 in X.

The following theorems describes the basic properties of these UPideals.

Theorem 3.13. Let S be a hyper UP-ideal of a hyper UP-algebra $(X, \circ, \ll, 0)$. Then, the following are valid:

- Any hyper UP-ideals of type 1 is a hyper UP-ideal of type 2, 3 and 4.

- Any hyper UP-ideals of type 2 is a hyper UP-ideal of type 4.

- Any hyper UP-ideals of type 3 is a hyper UP-ideal of type 4.

Proof. Each of the assertions in the theorem is proved by relying on (15).

Theorem 3.14. Let S be a hyper UP-ideal of type 1 of a hyper UPalgebra $(X, \circ, \ll, 0)$. Then, the following are valid:

 $(25a) \ (\forall x, y \in X)((x \circ y \ll S \land x \in S) \Longrightarrow y \subseteq S).$

If X is a diagonal hyper UP-algebra, then holds (25b) $(\forall x, y \in X)(y \in S \implies x \circ y \subseteq S).$

Proof. (1) If in (25) we put x = 0, y = x and z = y, we get $(\forall x, y \in X)((0 \circ (x \circ y) \ll S \land x \in S) \Longrightarrow 0 \circ y \subseteq S).$

From here, according to (HYP3) and (21), follows

 $(\forall x, y \in X)((x \circ y \ll S \land x \in S) \Longrightarrow y \subseteq S).$

which needed to be proved. Thus, formula (25a) is a valid formula.

(2) Assume that X is a diagonal hyper UP-algebra. If in (25) we put z = y, we get

 $(\forall x, y \in X)((x \circ (y \circ y) \ll S \land y \in S) \Longrightarrow x \circ y \subseteq S).$

Since $y \circ y = \{0\}$ and $x \circ \{0\} = \{0\} \subseteq S$ is true because S is a hyper UP-ideal in the diagonal hyper UP-algebra X, we get

 $(\forall x, y \in X)(x \in S \implies x \circ y \subseteq S).$

Remark 3.15. As a hyper UP-ideal S of type 1, at the same time is a hyper UP-ideal of type 2, 3 and 4, then the analogues assertions expressed in the previous theorem can apply to the hyper UP-ideals of type 2, 3 and 4 respectively.

3.4. Concept of hyper homomorphism of hyper UP-algebras.

Definition 3.16. Let $(X, \circ, \ll, 0)$ and $(Y, \circ', \ll', 0')$ be hyper UP-algebras. A mapping $f : X \longrightarrow Y$ is called a *hyper homomorphism* if (29) f(0) = 0', and

 $(29) f(0) \equiv 0$, and

(30) $(\forall a, b \in X)(f(a \circ b) = f(a) \circ' f(y)).$

Theorem 3.17. Let $f : X \longrightarrow Y$ be a hyper homomorphism of hyper UP-algebras. Then holds

 $(31) \ (\forall x, y \in X)(x \ll y \implies f(y) \ll' f(y)).$

Proof. Let $x, y \in X$ arbitrary elements such that $x \ll y$. Then, $0 \in x \circ y$, and by previous definition $0' = f(0) \subseteq f(x \circ y) = f(x) \circ' f(y)$. Thus $f(x) \ll' f(x)$.

Theorem 3.18. Let $f : X \longrightarrow Y$ be a hyper homomorphism of hyper UP-algebras. If T is a hyper UP-ideal of type 1 in Y, then $f^{-1}(T)$ is a hyper UP-ideal of type 1 in X.

Proof. Let T be a hyper UP-ideal of type 1 in Y. Since $f(0) = 0' \in T$ by Definition 3.12 and (29), we have $0 \in f^{-1}(0') \subseteq f^{-1}(T)$.

Let $x, y, z \in X$ be arbitrary elements such that $x \circ (y \circ z) \ll f^{-1}(T)$ and $y \in f^{-1}(T)$. Then there exists an element $a \in f^{-1}(T)$ such that $0 \in (x \circ (y \circ z)) \circ a$ Thus

$$0'=f(0)\in f((x\circ (y\circ z))\circ a)=f(x\circ (y\circ z))\circ' f(a).$$

So, $f(x) \circ (f(y) \circ' f(z)) \ll T$ and $f(y) \in T$. Since T is a hyper UP-ideal of type 1 in Y, follows $f(x \circ z) = f(x) \circ' f(z) \subseteq T$. Thus $x \circ z \subseteq f^{-1}(T)$. Therefore, the subset $f^{-1}(T)$ is a hyper UP-ideal of type 1 in X. \Box

Corollary 3.19. Let $f : X \longrightarrow Y$ be a hyper UP-homomorphism between hyper UP-algebras. Then Ker(0') is a hyper UP-ideal in X.

Proof. Since $\{0'\}$ is a trivial hyper UP-ideal of type 1 in Y, then $Kerf = \{x \in X : f(x) = 0'\} = f^{-1}(\{0'\})$ is a hyper UP-ideal of type 1 in X by previous theorem.

Remark 3.20. In accordance with the Remark 3.15, corresponding assertion also applies to the hyper UP-ideals of the remaining types, respectively.

References

- A. Radfar, A. Rezaei and A. B. Saeid. Hyper BE-algebras. Novi Sad J. Math., 44(2)(2014), 137–147.
- [2] A. T. Surdive, N. Slestin and L. Clestin. Coding theory and hyper BCK-algebras. J. Hyperstructures, 7(2)(2018), 82–93.
- [3] A. C. Golzio. A brief historical survey on hyperstructures in Algebra and Logic. South Am. J. Logic, 4(1)(2018), pp. 1-29.
- [4] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat Top., 5(1)(2017), 35-54.
- [5] A. Iampan. The UP-isomorphism theorems for UP-algebras. Discuss. Math. General Al. Appl., 39(1)(2019), 113–123.
- [6] D. A. Romano. Proper UP-filters in UP-algebra. Universal J. Math. Appl., 1(2)(2018), 98–100.

- [7] D. A. Romano. Some properties of proper UP-filters of UP-algebras. Fund. J. Math. Appl., 1(2)(2018), 109–111.
- [8] D. A. Romano. Notes on UP-ideals in UP-algebras. Comm. Adv. Math. Sci., 1(1)(2018), 35–38.
- D. S. Uzay and A. Firat. On multipliers of hyper BCC-algebras. Sigma J. Eng. Nat. Sci., 9(1)(2018), 127–132.
- [10] F. Marty. Sur une généralisation de la notion de groupe. in Proceedings of the 8th Congress des Mathematiciens Scandinave (pp. 45–49) Stockholm 1934.
- [11] P. Corsini. Prolegomena of hypergroup theory. Aviani Editore, Tricesimo, 2003.
- [12] P. Corsini and V. Leoreanu. Applications of hyper-structure theory. Advances in Mathematics, Kluwer Academic Publisher, 2003.
- P. Corsini. History and new possible research directions of hyperstructures. Ratio Mathematica, 21(2011), 3–26.
- [14] P. Mosrijai, A. Satirad and A. Iampan. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UPhomomorphism. Fund. J. Math. Appl., 1(1)(2018), 12–17.
- [15] R. A. Borzooei and M. Bakhshi. Some results on hyper BCK-algebras. Quasigroups and Related Systems, 11(1)(2004), 9–24.
- [16] R. A. Borzooei, W. A. Dudek and N. Koohestani. On hyper BCC-algebras. Int. J. Math. Math. Sci., Volume 2006, Article ID 49703, Pages 118.
- [17] S. M. Mostafa, F. F. Kareem and B. Davvaz. Hyper structure theory applied to KU-algebras. J. Hyperstructures, 6(2)(2017), 82–95.
- [18] X. L. Xin. Hyper BCI-algebras. Discuss. Math. General Al. Appl., 36(1)(2006), 5–19.
- [19] Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzooei. On hyper BCK-algebras. Italian J. Pure App. Math., 10(2000), 127–136.

Daniel A. Romano

International Mathematical Virtual Institute, 6, Kordunaška Street, 78000 Banja Luka, Bosnia and Herzegobina Email: bato49@hotmail.com