PSEDUO-INEQUALITY APPLICATION IN CODING THEORY USING δ-NORM INACCURACY MEASURE

LITEGEBE WONDIE ALAMIREW

Abstract

In this paper we prove two pseudo-generalizations of Shannon inequality for the case of norm Inaccuracy Measure and norm entropy. Further, we establish a result on noiseless coding theorem for the proposed mean code length interms of generalized inaccuracy measure.

Key Words: Shannon inequality, δ-norm inaccuracy, δ-norm entropy, Codeword length, Kerridges inaccuracy.
2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 13F30, 13 G 05.

1. Introduction

Let

$$
L_{n}=\left\{A=\left(a_{1}, \ldots, a_{n}\right): a_{k} \geqslant 0, \sum_{k=1}^{n} a_{k}=1\right\}, n \geqslant 2
$$

be sets of n - complete probability distributions. For

$$
\left(a_{1}, \ldots, a_{n}\right)=A \in L_{n}
$$

Shannons measure of information [15] is defined as

$$
\begin{equation*}
I_{S}(A)=-\sum_{k=1}^{n} a_{k} \log _{2} a_{k} \tag{1.1}
\end{equation*}
$$

[^0]The measure (1.1) has been generalized by various authors and has found applications in various disciplines such as economics, accounting, crime, physics, etc. For

$$
A, B \in L_{n},
$$

Kerridge [10] introduced a quantity known as inaccuracy defined as

$$
\begin{equation*}
I_{k}(A ; B)=-\sum_{k=1}^{n} a_{k} \log _{2} a_{k} \tag{1.2}
\end{equation*}
$$

There is well- known relation between

$$
I_{s}(A)
$$

and

$$
I_{k}(A ; B)
$$

which is given by

$$
\begin{equation*}
I_{s}(A) \leq I_{k}(A ; B) \tag{1.3}
\end{equation*}
$$

. The relation (1.3) is known as Shannon inequality and its importance is well known in coding theory.Van der Lubbe [17] generalized (1.3) in the another form, which he called a pseudo generalization of (1.3). In fact he proved the following:

$$
\begin{align*}
I_{1}(A ; \delta)= & \frac{1}{\delta-1}\left(1-\sum_{k=1}^{n} a_{k}^{\delta}\right) \leq I_{k, 1}(A ; B, \delta) \\
& =\frac{1}{\delta-1}\left(1-\left(\sum_{k=1}^{n} a_{k} b_{k}^{\left(\frac{\delta-1}{\delta}\right)}\right)\right)^{\delta}, \quad \delta>0(\neq 1) \tag{1.4}
\end{align*}
$$

The equality holds in (1.4) if and only if $b_{k}=\frac{a_{k}^{\delta}}{\sum_{k=1}^{n} a_{k}^{\delta}}, k=1,2,3, \ldots, n$. In fact $I_{k, 1}(A ; B, \delta)$ is not a measure of inaccuracy in its usual sense $\left[\right.$ i.e., $\left.I_{k, 1}(A ; A, \delta) \neq I_{1}(A, \delta)\right]$, but as $\delta \rightarrow 1, \lim I_{k, 1}(A ; B, \delta)=I_{k}(A ; B)$. Where $I_{1}(A ; \delta)=\frac{1}{\delta-1}\left(1-\sum_{k=1}^{n} a_{k}^{\delta}\right)$ is the Tsallis entropy which is also generalized by Litegebe and Satish [11]. For $A, B \epsilon L_{n}$, we define a δ norm inaccuracy measure of type β as

$$
\begin{equation*}
I_{k, 2}(A ; B, \delta, \beta)=\frac{\delta}{\delta-1}\left(1-\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)\right)^{\frac{1}{\delta}} \tag{1.5}
\end{equation*}
$$

for $\delta>0(\neq 1), \beta>0$.
(1) If $b_{k}=a_{k}$, (1.5) reduces to a non-additive δ-norm entropy of type β. i.e.

$$
\begin{equation*}
I_{k, 2}(A ; A, \delta, \beta)=\frac{\delta}{\delta-1}\left(1-\left(\frac{\sum_{k=1}^{n} a_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)\right)^{\frac{1}{\delta}} \tag{1.6}
\end{equation*}
$$

for $\delta>0(\neq 1)$, which is studied by Satish and Arun [13].
(2) If $b_{k}=a_{k}$ and $\beta=1$, (1.5) becomes δ-norm entropy [4].
i.e.

$$
\begin{equation*}
I(A ; \delta)=\frac{\delta}{\delta-1}\left(1-\left(\sum_{k=1}^{n} a_{k}^{\delta}\right)\right)^{\frac{1}{\delta}}, \delta>0(\neq 1) \tag{1.7}
\end{equation*}
$$

(3) If $b_{k}=a_{k}, \beta=1$ and $\delta \rightarrow 1$, (1.5) becomes (1.1). Further, if $\beta=1$ and $\delta \rightarrow 1$, (1.5) becomes (1.2).

2. PSEUDO - INEQUALITY

For $A, B \in L_{n}$ define a measure of inaccuracy, denoted by $I_{k, 3}(A ; B, \delta, \beta)$ as

$$
\begin{equation*}
I_{k, 3}(A ; B, \delta, \beta)=\frac{\delta}{\delta-1}\left[1-\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right)\right], \tag{2.1}
\end{equation*}
$$

where $\delta>0(\neq 1), \beta>0$. Since $I_{k, 3}(A ; A, \delta, \beta) \neq I_{k, 2}(A ; A, \delta, \beta)$ and $I_{k, 3}(A ; B, \delta, \beta) \neq I_{k, 2}(A ; B, \delta, \beta)$, we will not interpret (2.1) as a measure of inaccuracy. But $I_{k, 3}(A ; B, \delta, \beta)$ is a pseudo- generalization of the measure of inaccuracy defined in (1.5) and (1.6). In the following theorems, we will determine two relations between (1.5) and (2.1), and (1.6) and (2.1) of the type (1.3).

Theorem 1. Let $A, B \in L_{n}$ then

$$
\begin{equation*}
I_{k, 2}(A ; B, \delta, \beta) \leqslant I_{k, 3}(A ; B, \delta, \beta), \delta>0(\neq 1) \tag{2.2}
\end{equation*}
$$

with equality holds if $b_{k}=\frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta^{(\delta-1)}}}, k=1,2,3, \ldots, n$, under the condition

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{1-\beta} \leqslant 1 \tag{2.3}
\end{equation*}
$$

Proof. By Hölders inequality, we have

$$
\begin{equation*}
\left(\sum_{k=1}^{n} x_{k}^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n} y_{k}^{q}\right)^{\frac{1}{q}} \leqslant \sum_{k=1}^{n} x_{k} y_{k} \tag{2.4}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1 ; p(\neq 0)<1, q<0$ or $q(\neq 0)<1, p<0 ; x_{k}, y_{k}>0$ for each k. Note that the direction of Hölders inequality is the reverse of the usual one for $p<1$ (see Beckenbach and Bellman [3]). Let $p=$ $\frac{\delta-1}{\delta}, q=\delta-1, x_{k}=a_{k}^{\frac{\delta \beta}{\delta-1}}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta-1}} b_{k}, y_{k}=a_{k}^{\frac{\beta}{1-\delta}}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{1-\delta}} b_{k}^{-\beta}$, where $(k=1,2,3, \ldots, n)$. Subsituting all these values into (2.4), we get

$$
\begin{aligned}
\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right)^{\frac{\delta}{\delta-1}} & \left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{1-\delta}} \\
& \leqslant \sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{1-\beta} \leqslant 1 ; \quad \delta>0
\end{aligned}
$$

where we used (2.3) too. This implies

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right)^{\frac{\delta}{\delta-1}} \leqslant\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta-1}} \tag{2.5}
\end{equation*}
$$

For $\delta>1$ (2.5) becomes

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right) \leqslant\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} \tag{2.6}
\end{equation*}
$$

using (2.6) and the fact that $\delta>1$ we get $I_{k, 2}(A ; B, \delta, \beta) \leqslant I_{k, 3}(A ; B, \delta, \beta)$. For $0<\delta<1$ the above inequality can be proved in a similar way.
Theorem 2. Let $A, B \in L_{n}$. Then

$$
\begin{equation*}
I_{k, 2}(A ; A, \delta, \beta) \leqslant I_{k, 3}(A ; B, \delta, \beta), \delta>0(\neq 1) \tag{2.7}
\end{equation*}
$$

with equality holds if $b_{k}=\frac{a_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta \beta}}, k=1,2,3, \ldots, n$.
Proof. Substituting $p=\frac{\delta-1}{\delta}, q=1-\delta, x_{k}=a_{k}^{\frac{\delta \beta}{\delta-1}}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta-1}} b_{k}, y_{k}=$ $a_{k}^{\frac{\beta \delta}{1-\delta}}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{1-\delta}},(k=1,2,3, \ldots, n)$, in to (2.4), we get $\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right)^{\frac{\delta}{\delta-1}}\left(\frac{\sum_{k=1}^{n} a_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{1-\delta}} \leqslant \sum_{k=1}^{n} b_{k}=1$.

This implies

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right)^{\frac{\delta}{\delta-1}} \leqslant\left(\frac{\sum_{k=1}^{n} a_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta-1}} \tag{2.8}
\end{equation*}
$$

For $\delta>1$, (2.8) becomes

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} b_{k}^{\frac{\delta-1}{\delta}}\right) \leqslant\left(\frac{\sum_{k=1}^{n} a_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} \tag{2.9}
\end{equation*}
$$

using (2.9) and the fact that $\delta>1$, we get $I_{k, 2}(A ; A, \delta, \beta) \leqslant I_{k, 3}(A ; B, \delta, \beta)$ For $0<\delta<1$ the above inequality can be proved in a similar way.
Now we discuss an application of inequality (2.2) in coding theory for $L_{n}=\left\{A=\left(a_{1}, a_{2}, \cdots, a_{n}\right) ; 0<a_{k} \leqslant 1, \sum_{k=1}^{n} a_{k}=1\right\}$. Let a finite set of n input symbols $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be encoded using alphabet of D symbols, then it has been shown by Feinstien [7] that there is a uniquely decipherable code with lengths $N_{1}, N_{2}, \cdots, N_{n}$ iff the Kraft inequality holds. That is,

$$
\begin{equation*}
\sum_{k=1}^{n} D^{-N_{k}} \leqslant 1 \tag{2.10}
\end{equation*}
$$

where D is the size of code alphabet. Furthermore, if

$$
\begin{equation*}
L=\sum_{k=1}^{n} N_{k} a_{k} \tag{2.11}
\end{equation*}
$$

is the average codeword length, then for a code satisfying (2.10), the inequality

$$
\begin{equation*}
L \geqslant I_{s}(A) \tag{2.12}
\end{equation*}
$$

is also fulfilled and equality holds if and only if

$$
\begin{equation*}
N_{k}=-\log _{D}\left(a_{k}\right),(k=1,2,3, \cdots, n), \tag{2.13}
\end{equation*}
$$

and that by suitable encoded into words of long sequences, the average length can be made arbitrarily close to $I_{s}(A)$, (see Feinstein [7]). This is Shannons noiseless coding theorem. Let us introduce another measure of length:

$$
\begin{equation*}
L(\delta, \beta)=\frac{\delta}{\delta-1}\left[1-\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{N_{k}\left(\frac{1-\delta}{\delta}\right)}\right)\right], \tag{2.14}
\end{equation*}
$$

where $\delta>0(\neq 1)$ and $A=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in L_{n}$ and $D, N_{1}, N_{2}, \cdots, N_{n}$ are positive integers so that

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{-\beta} D^{-N_{k}} \leqslant 1 \tag{2.15}
\end{equation*}
$$

Since (2.15) reduces to Kraft inequality when $a_{k}=b_{k}, \forall k=1,2,3, \cdots, n$, therefore it is called generalized Kraft inequality and codes obtained under this generalized inequality are called personal codes.
Theorem 3. Let $n \in N, \delta>0(\neq 1)$ be arbitrarily fixed. Then there exist code length $N_{1}, N_{2}, \cdots, N_{n}$ so that

$$
\begin{align*}
& I_{k, 2}(A ; B, \delta, \beta) \leq L(\delta, \beta)<D^{\frac{1-\delta}{\delta}} I_{k, 2}(A ; B, \delta, \beta) \tag{2.16}\\
& \quad+\frac{\delta}{\delta-1}\left(1-D^{\frac{1-\delta}{\delta}}\right)
\end{align*}
$$

holds under the condition (2.15) and equality holds if and only if

$$
\begin{equation*}
N_{k}=-\log _{D}\left(\frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}\right) ; k=1,2,3, \cdots, n . \tag{2.17}
\end{equation*}
$$

Where $I_{k, 2}(A ; B, \delta, \beta)$ and $L(\delta, \beta)$ are given by (1.5) and (2.14) respectively.
Proof. First of all we shall prove the lower bound of $L(\delta, \beta)$.
Let $p=\frac{\delta-1}{\delta}, q=1-\delta, x_{k}=a_{k}^{\frac{\delta \beta}{\delta-1}}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta-1}} D^{-N_{k}}, y_{k}$
, $=a_{k}^{\frac{\beta}{1-\delta}}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{1-\delta}} b_{k}^{-\beta},(k=1,2,3, \ldots, n)$. Putting these values into (2.4), we get

$$
\begin{gathered}
\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{-N_{k}\left(\frac{\delta-1}{\delta}\right)}\right)^{\frac{\delta}{\delta-1}}\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{1-\delta}} \\
\leqslant \sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{-\beta} D^{-N_{k}} \leqslant 1
\end{gathered}
$$

where we used (2.15) too. This implies

$$
\begin{align*}
&\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{-N_{k}\left(\frac{\delta-1}{\delta}\right)}\right)^{\frac{\delta}{\delta-1}} \leqslant \\
&\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta-1}} \tag{2.18}
\end{align*}
$$

For $\delta>1$ (2.18) becomes

$$
\begin{aligned}
&\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{-N_{k}\left(\frac{\delta-1}{\delta}\right)}\right) \\
& \leqslant\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}}
\end{aligned}
$$

using (2.19) and the fact that $\delta>1$, we get

$$
\begin{equation*}
I_{k, 2}(A ; B, \delta, \beta) \leq L(\delta, \beta) \tag{2.19}
\end{equation*}
$$

For $0<\delta<1$ the inequality (2.20) can be proved in a similar way, by noting that the inequality sign of (2.19) is reversed since $\frac{\delta}{\delta-1}<0$ for $0<\delta<1$. From (2.17) and after simplification, we get

$$
D^{-N_{k}\left(\frac{\delta-1}{\delta}\right)}=\left(\frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}\right)^{\frac{\delta-1}{\delta}}
$$

This implies

$$
\begin{aligned}
&\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{-N_{k}\left(\frac{\delta-1}{\delta}\right)}\right) \\
&=\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}}
\end{aligned}
$$

which gives $L(\delta, \beta)=I_{k, 2}(A ; B, \delta, \beta)$. Then equality sign holds in (2.20). Now we will prove the inequality (2.16) for upper bound of $L(\delta, \beta)$. We
choose the code word lengths $N_{k}, k=1,2,3, \cdots, n$ in such a way that

$$
\begin{aligned}
-\log _{D}\left(\frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}\right) & \leq N_{k} \\
& <-\log _{D}\left(\frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}\right)+1
\end{aligned}
$$

is fulfilled for all $k=1,2,3, \cdots, n$. From the left inequality of (2.22), we have

$$
\begin{equation*}
D^{-N_{k}} \leq \frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}} \tag{2.21}
\end{equation*}
$$

multiplying both sides by $a_{k}^{\beta} b_{k}^{-\beta}$ and then taking sum over k, we get the generalized inequality (2.15).So there exists a generalized code with code lengths $N_{k}, k=1,2,3, \cdots, n$.
From right-hand side of (2.22), we have

$$
\begin{equation*}
D^{-N_{k}}>\left(\frac{b_{k}^{\delta \beta}}{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}\right) D^{-1} \tag{2.22}
\end{equation*}
$$

Since $\delta>1$, (2.24) leads to

$$
\begin{align*}
&\left(\sum_{k=1}^{n} a_{k}^{\beta}\left(\frac{1}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{-N_{k}\left(\frac{\delta-1}{\delta}\right)}\right) \\
&>\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)} D^{(1-\delta)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} \tag{2.23}
\end{align*}
$$

Finally we find

$$
\begin{equation*}
L(\delta, \beta) \leq \frac{\delta}{\delta-1}\left(1-\left(\frac{\sum_{k=1}^{n} a_{k}^{\beta} b_{k}^{\beta(\delta-1)}}{\sum_{k=1}^{n} a_{k}^{\beta}}\right)^{\frac{1}{\delta}} D^{\left(\frac{1-\delta}{\delta}\right)}\right) \tag{2.24}
\end{equation*}
$$

where the right- hand side of (2.26) is equivalent to the right- hand side in (2.16). For $0<\delta<1$, the proof of the upper bound of $L(\delta, \beta)$ follows along similar lines. Since $D \geq 2$, we have $\frac{\delta}{\delta-1}\left(1-D^{\frac{1-\delta}{\delta}}\right)$ from which it follows that the upper bound of $L(\delta, \beta)$ in (2.16) is greater than unity.

Particular cases:

(i). For $\beta=1, a_{k}=b_{k}, k=1,2,3, \cdots, n$ and $\delta \rightarrow 1$ then (2.16) becomes

$$
\frac{I_{s}(A)}{\log D} \leq L<\frac{I_{s}(A)}{\log D}+1
$$

which is the well-known result due to Shannon (see Aczel (1975)). (ii). For $\beta=1, a_{k}=b_{k}, k=1,2,3, \cdots, n$, then (2.16) becomes

$$
I(A ; \delta) \leq L(\delta)<D^{\frac{1-\delta}{\delta}} I(A ; \delta)+\frac{\delta}{\delta-1}\left(1-D^{\frac{1-\delta}{\delta}}\right)
$$

which is the well known result studied by Boekee and Lubbe [4].
(iii). For $a_{k}=b_{k}, k=1,2,3, \cdots, n,(2.16)$ becomes

$$
I(A ; A, \delta, \beta) \leq L(\delta, \beta)<D^{\frac{1-\delta}{\delta}} I(A ; A, \delta, \beta)+\frac{\delta}{\delta-1}\left(1-D^{\frac{1-\delta}{\delta}}\right)
$$

Acknowledgments

The author wish to thank my family being on the side of me while I am doing this research

References

[1] J. Aczel and Z. Darocczy, On Measures of Information and Their Characterizations, Academic, New York(1975).
[2] C. Arndt, Information Measure-Information and its Description in Science and Engineering, Springer: Berlin (2001).
[3] E.F. Beckenbach and R. Bellman, Inequalities, Springer: Berlin (1961).
[4] D. E. Boekee and J. C. A. Van Der Lubbe, The R-Norm Information Measure, Information and Control, $\mathbf{4 5}$ (1980), 136-155.
[5] L.L. Campbell, A coding theorem and Renyis entropy, Information and Control, 8 (1965), 423-429.
[6] Dagmar Markechova et.al., R-norm entropy and R-norm Divergence in fuzzy probability spaces, Entropy, 20(4)(2018), 272.
[7] A. Feinstein, Foundation of Information Theory, McGraw Hill, New York (1956).
[8] Gur Dial, On a Coding Theorems Connected with Entropy of order α and type β, Information Sciences, $\mathbf{3 0}(1983)$, 55-65.
[9] D.S. Hooda and D.K. Sharma, Generalized R-norm Information Measures, J.Appl. Math.Stat.Inform., 4(2008), 153-168.
[10] D.F. Kerridge, Inaccuracy and Inference, Jour. Roy. Statist. Soc. Ser B, 23(1961), 184-196.
[11] L. Wondie and S. Kumar, Some Inequalities in Information Theory Using Tsallis Entropy, International Journal of Mathematics and Mathematical Sciences, 2018, 4 pages.
[12] Om Parkash and Priyanka Kakkar, Development of two mean codeword lengths, Information Science, 207(2012), 92-97.
[13] Satish Kumar and Arun Choudhary, Some More Noiseless Coding Theorem on Generalized R-Norm Entropy, Journal of Mathematics Research, 3(1)(2011), 125 - 130.
[14] Satish Kumar, Arun Choudhary and Arvind Kumar, Some Source Coding Theorems and 1:1 Coding Based on Generalized Inaccuracy Measure of Order α and Type β, Commun. Math. Stat., DOI 10.1007/s 40304-014-0032-z 2(2014), 125138.
[15] C.E. Shannon, A Mathematical Theory of Communication, Bell System Tech. J. ,27(1948), 379-423, 623-656.
[16] C. Tsallis, Possible Generalization of Boltzmann Gibbs Statistics, J. Stat. Phy., 52(1988), 479.
[17] J. C. A. Van der Lubbe, On certain coding theorems for the information of order α and type β, In Information Theory, Statistical Functions, Random Processes,Transactions of the Eighth Prague Conference, C.Prague(1978), 253-266.

Litegebe Wondie Alamirew

Department of Mathematics, University of Gondar, P.O.Box + 251196, Gondar, Ethiopia
Email: litgebihw2010@gmail.com

[^0]: Received: 1 December 2018, Accepted: 25 December 2019. Communicated by Ahmad Yousefian Darani
 *Address correspondence to Litegebe Alamirew; E-mail: litgebihw2010@gmail.com (C) 2019 University of Mohaghegh Ardabili.

