
Journal of Hyperstructures 8 (2) (2019), 94-103 .

ISSN: 2322-1666 print/2251-8436 online

PSEDUO-INEQUALITY APPLICATION IN CODING

THEORY USING δ-NORM INACCURACY MEASURE

LITEGEBE WONDIE ALAMIREW

Abstract. In this paper we prove two pseudo-generalizations of
Shannon inequality for the case of norm Inaccuracy Measure and
norm entropy. Further, we establish a result on noiseless coding
theorem for the proposed mean code length interms of generalized
inaccuracy measure.
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1. Introduction

Let

Ln = {A = (a1, . . . , an) : ak ⩾ 0,

n∑
k=1

ak = 1} , n ⩾ 2

be sets of n - complete probability distributions. For

(a1, . . . , an) = A ∈ Ln,

Shannons measure of information [15] is defined as

Is(A) = −
n∑

k=1

ak log2 ak(1.1)
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The measure (1.1) has been generalized by various authors and has found
applications in various disciplines such as economics, accounting, crime,
physics, etc. For

A,B ∈ Ln,

Kerridge [10] introduced a quantity known as inaccuracy defined as

(1.2) Ik(A;B) = −
n∑

k=1

ak log2 ak

There is well- known relation between

Is(A)

and

Ik(A;B)

which is given by

(1.3) Is(A) ≤ Ik(A;B)

. The relation (1.3) is known as Shannon inequality and its importance
is well known in coding theory.Van der Lubbe [17] generalized (1.3) in
the another form, which he called a pseudo generalization of (1.3). In
fact he proved the following:

I1(A; δ) =
1

δ − 1
(1−

n∑
k=1

aδk) ≤ Ik,1(A;B, δ)

=
1

δ − 1

(
1−

( n∑
k=1

akb
( δ−1

δ
)

k

))δ

, δ > 0 ( ̸= 1)(1.4)

The equality holds in (1.4) if and only if bk =
aδk∑n

k=1 a
δ
k

, k = 1, 2, 3, ..., n.

In fact Ik,1(A;B, δ) is not a measure of inaccuracy in its usual sense
[i.e.,Ik,1(A;A, δ) ̸= I1(A, δ) ], but as δ → 1, lim Ik,1(A;B, δ) = Ik(A;B).

Where I1(A; δ) =
1

δ−1(1−
∑n

k=1 a
δ
k) is the Tsallis entropy which is also

generalized by Litegebe and Satish [11]. For A,BϵLn, we define a δ-
norm inaccuracy measure of type β as

Ik,2(A;B, δ, β) =
δ

δ − 1

(
1−

(∑n
k=1 a

β
kb

β(δ−1)
k∑n

k=1 a
β
k

)) 1
δ

,(1.5)

for δ > 0 ( ̸= 1), β > 0.
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(1) If bk = ak, (1.5) reduces to a non-additive δ-norm entropy of type
β. i.e.

Ik,2(A;A, δ, β) =
δ

δ − 1

(
1−

(∑n
k=1 a

δβ
k∑n

k=1 a
β
k

)) 1
δ

,(1.6)

for δ > 0 ( ̸= 1), which is studied by Satish and Arun [13].
(2) If bk = ak and β = 1, (1.5) becomes δ-norm entropy [4].
i.e.

I(A; δ) =
δ

δ − 1

(
1−

( n∑
k=1

aδk

)) 1
δ

, δ > 0 ( ̸= 1)(1.7)

(3) If bk = ak,β = 1 and δ → 1, (1.5) becomes (1.1).
Further,if β = 1 and δ → 1, (1.5) becomes (1.2).

2. PSEUDO - INEQUALITY

ForA,B ∈ Ln define a measure of inaccuracy, denoted byIk,3(A;B, δ, β)
as

Ik,3(A;B, δ, β) =
δ

δ − 1

[
1−

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

)]
,(2.1)

where δ > 0 ( ̸= 1), β > 0. Since Ik,3(A;A, δ, β) ̸= Ik,2(A;A, δ, β) and
Ik,3(A;B, δ, β) ̸= Ik,2(A;B, δ, β), we will not interpret (2.1) as a measure
of inaccuracy. But Ik,3(A;B, δ, β) is a pseudo- generalization of the mea-
sure of inaccuracy defined in (1.5) and (1.6). In the following theorems,
we will determine two relations between (1.5) and (2.1), and (1.6) and
(2.1) of the type (1.3).
Theorem 1. Let A,B ∈ Ln then

Ik,2(A;B, δ, β) ⩽ Ik,3(A;B, δ, β), δ > 0 ( ̸= 1)(2.2)

with equality holds if bk =
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

, k = 1, 2, 3, ..., n, under the

condition
n∑

k=1

aβkb
1−β
k ⩽ 1(2.3)

Proof. By Hölders inequality, we have( n∑
k=1

xpk

) 1
p
( n∑

k=1

yqk

) 1
q

⩽
n∑

k=1

xkyk(2.4)
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where 1
p + 1

q = 1; p(̸= 0) < 1, q < 0 or q(̸= 0) < 1, p < 0;xk, yk > 0

for each k. Note that the direction of Hölders inequality is the reverse
of the usual one for p < 1 (see Beckenbach and Bellman [3]). Let p =

δ−1
δ , q = δ − 1, xk = a

δβ
δ−1

k

(
1∑n

k=1 a
β
k

) 1
δ−1

bk, yk = a
β

1−δ

k

(
1∑n

k=1 a
β
k

) 1
1−δ

b−β
k ,

where (k = 1, 2, 3, ..., n). Subsituting all these values into (2.4), we get

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

) δ
δ−1(∑n

k=1 a
β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
1−δ

⩽
n∑

k=1

aβkb
1−β
k ⩽ 1; δ > 0

where we used (2.3) too. This implies

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

) δ
δ−1

⩽
(∑n

k=1 a
β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
δ−1

(2.5)

For δ > 1 (2.5) becomes

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

)
⩽
(∑n

k=1 a
β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
δ

(2.6)

using (2.6) and the fact that δ > 1 we get Ik,2(A;B, δ, β) ⩽ Ik,3(A;B, δ, β).
For 0 < δ < 1 the above inequality can be proved in a similar way.
Theorem 2. Let A,B ∈ Ln.Then

Ik,2(A;A, δ, β) ⩽ Ik,3(A;B, δ, β), δ > 0 ( ̸= 1)(2.7)

with equality holds if bk =
aδβk∑n

k=1 a
ββ
k

, k = 1, 2, 3, ..., n.

Proof. Substituting p = δ−1
δ , q = 1− δ, xk = a

δβ
δ−1

k

(
1∑n

k=1 a
β
k

) 1
δ−1

bk, yk =

a
βδ
1−δ

k

(
1∑n

k=1 a
β
k

) 1
1−δ

, (k = 1, 2, 3, ..., n), in to (2.4), we get(∑n
k=1 a

β
k

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

) δ
δ−1(∑n

k=1 a
δβ
k∑n

k=1 a
β
k

) 1
1−δ

⩽
∑n

k=1 bk = 1.
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This implies( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

) δ
δ−1

⩽
(∑n

k=1 a
δβ
k∑n

k=1 a
β
k

) 1
δ−1

(2.8)

For δ > 1, (2.8) becomes( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

b
δ−1
δ

k

)
⩽
(∑n

k=1 a
δβ
k∑n

k=1 a
β
k

) 1
δ

(2.9)

using (2.9) and the fact that δ > 1, we get Ik,2(A;A, δ, β) ⩽ Ik,3(A;B, δ, β)
For 0 < δ < 1 the above inequality can be proved in a similar way.
Now we discuss an application of inequality (2.2) in coding theory for
Ln = {A = (a1, a2, · · · , an); 0 < ak ⩽ 1,

∑n
k=1 ak = 1}. Let a finite set of

n input symbols X = {x1, x2, · · · , xn} be encoded using alphabet of D
symbols, then it has been shown by Feinstien [7] that there is a uniquely
decipherable code with lengths N1, N2, · · · , Nn iff the Kraft inequality
holds. That is,

n∑
k=1

D−Nk ⩽ 1,(2.10)

where D is the size of code alphabet. Furthermore, if

L =
n∑

k=1

Nkak(2.11)

is the average codeword length, then for a code satisfying (2.10), the
inequality

L ⩾ Is(A)(2.12)

is also fulfilled and equality holds if and only if

Nk = − logD(ak), (k = 1, 2, 3, · · · , n),(2.13)

and that by suitable encoded into words of long sequences, the average
length can be made arbitrarily close to Is(A), (see Feinstein [7]). This is
Shannons noiseless coding theorem. Let us introduce another measure
of length:

| L(δ, β) =
δ

δ − 1

[
1−

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

DNk(
1−δ
δ

)

)]
,(2.14)
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where δ > 0 ( ̸= 1) and A = (a1, a2, · · · , an) ∈ Ln and D,N1, N2, · · · , Nn

are positive integers so that

n∑
k=1

aβkb
−β
k D−Nk ⩽ 1(2.15)

Since (2.15) reduces to Kraft inequality when ak = bk, ∀k = 1, 2, 3, · · · , n,
therefore it is called generalized Kraft inequality and codes obtained un-
der this generalized inequality are called personal codes.
Theorem 3. Let n ∈ N, δ > 0(̸= 1) be arbitrarily fixed. Then there exist
code length N1, N2, · · · , Nn so that

Ik,2(A;B, δ, β) ≤ L(δ, β) < D
1−δ
δ Ik,2(A;B, δ, β)(2.16)

+ δ
δ−1

(
1−D

1−δ
δ

)
holds under the condition (2.15) and equality holds if and only if

Nk = − logD

(
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

)
; k = 1, 2, 3, · · · , n.(2.17)

Where Ik,2(A;B, δ, β) and L(δ, β) are given by (1.5) and (2.14) respec-
tively.
Proof. First of all we shall prove the lower bound of L(δ, β).

Let p = δ−1
δ , q = 1− δ, xk = a

δβ
δ−1

k

(
1∑n

k=1 a
β
k

) 1
δ−1

D−Nk , yk

, = a
β

1−δ

k

(
1∑n

k=1 a
β
k

) 1
1−δ

b−β
k , (k = 1, 2, 3, ..., n). Putting these values

into (2.4), we get

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

D−Nk(
δ−1
δ

)

) δ
δ−1(∑n

k=1 a
β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
1−δ

⩽
n∑

k=1

aβkb
−β
k D−Nk ⩽ 1
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where we used (2.15) too. This implies

( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

D−Nk(
δ−1
δ

)

) δ
δ−1

⩽

(∑n
k=1 a

β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
δ−1

(2.18)

For δ > 1 (2.18) becomes( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

D−Nk(
δ−1
δ

)

)

⩽
(∑n

k=1 a
β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
δ

using (2.19) and the fact that δ > 1, we get

Ik,2(A;B, δ, β) ≤ L(δ, β)(2.19)

For 0 < δ < 1 the inequality (2.20) can be proved in a similar way, by
noting that the inequality sign of (2.19) is reversed since δ

δ−1 < 0 for

0 < δ < 1. From (2.17) and after simplification, we get

D−Nk(
δ−1
δ

) =

(
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

) δ−1
δ

This implies ( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

D−Nk(
δ−1
δ

)

)

=

(∑n
k=1 a

β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
δ

which gives L(δ, β) = Ik,2(A;B, δ, β). Then equality sign holds in (2.20).
Now we will prove the inequality (2.16) for upper bound of L(δ, β). We
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choose the code word lengths Nk, k = 1, 2, 3, · · · , n in such a way that

− logD

(
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

)
≤ Nk

< − logD

(
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

)
+ 1(2.20)

is fulfilled for all k = 1, 2, 3, · · · , n. From the left inequality of (2.22),
we have

D−Nk ≤
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

(2.21)

multiplying both sides by aβkb
−β
k and then taking sum over k, we get

the generalized inequality (2.15).So there exists a generalized code with
code lengths Nk, k = 1, 2, 3, · · · , n.
From right-hand side of (2.22), we have

D−Nk >

(
bδβk∑n

k=1 a
β
kb

β(δ−1)
k

)
D−1(2.22)

Since δ > 1, (2.24) leads to( n∑
k=1

aβk

(
1∑n

k=1 a
β
k

) 1
δ

D−Nk(
δ−1
δ

)

)

>

(∑n
k=1 a

β
kb

β(δ−1)
k D(1−δ)∑n
k=1 a

β
k

) 1
δ

(2.23)

Finally we find

L(δ, β) ≤ δ

δ − 1

(
1−

(∑n
k=1 a

β
kb

β(δ−1)
k∑n

k=1 a
β
k

) 1
δ

D( 1−δ
δ

)

)
(2.24)

where the right- hand side of (2.26) is equivalent to the right- hand side
in (2.16). For 0 < δ < 1, the proof of the upper bound of L(δ, β) follows

along similar lines. Since D ≥ 2, we have δ
δ−1

(
1−D

1−δ
δ

)
from which it

follows that the upper bound of L(δ, β) in (2.16) is greater than unity.
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Particular cases:
(i). For β = 1, ak = bk, k = 1, 2, 3, · · · , n and δ → 1 then (2.16) becomes

Is(A)

logD
≤ L <

Is(A)

logD
+ 1

which is the well-known result due to Shannon (see Aczel (1975)).
(ii). For β = 1, ak = bk, k = 1, 2, 3, · · · , n, then (2.16) becomes

I(A; δ) ≤ L(δ) < D
1−δ
δ I(A; δ) +

δ

δ − 1

(
1−D

1−δ
δ

)
,

which is the well known result studied by Boekee and Lubbe [4].
(iii). For ak = bk, k = 1, 2, 3, · · · , n, (2.16) becomes

I(A;A, δ, β) ≤ L(δ, β) < D
1−δ
δ I(A;A, δ, β) +

δ

δ − 1

(
1−D

1−δ
δ

)
.
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