Journal of Hyperstructures 8 (1) (2019), 81-93. ISSN: 2251-8436 print/2322-1666 online

f-DERIVATIONS ON RESIDUATED MULTILATTICES

LINE NZODA MAFFEU, CELESTIN LELE, ETIENNE ALOMO TEMGOUA AND STEFAN $$\rm SCHMIDT$$

ABSTRACT. In this paper, we introduce as a generalization of the concept of derivation, the notion of f-derivation on residuated multilattices and investigate several of its properties. Then, we study good ideal f-derivations and make the connection with the complemented elements. Moreover, special sub-classes like the set of f-fixed points, the Kernel are found to have nice substructures.

Key Words: Multilattice, residuated multilattice, filter, complemented elements, ideal derivation.2010 Mathematics Subject Classification: Primary: 06C15, 06D50; Secondary: 06D20, 06E75.

1. INTRODUCTION AND PRELIMINARIES

Residuated multilattices have been introduced by Cabrera et al in [4] as a generalization of residuated lattices. It is an algebraic hyperstructure where a residuated operation is combining with a multilattice structure.

The concept of derivation have been introduced on commutative rings [3, 9], lattices [5, 11, 13], hyperlattices [12], BCI-algebras [14] and most recently on residuated lattices [6, 10]. Furthermore, the notion of derivation have been generalized to f-derivation [1, 2, 15].

In this work, we extend the concept of f-derivation to residuated multilattices, formulate the definitions and study its first properties. We show that the set of good ideal f-derivations is a boolean algebra and we characterize every good ideal f-derivation. Moreover, we prove that the set of f-fixed points of a good ideal f-derivation is a full sub-multilattice.

The paper is organizing as follows: In section 2, we define multiplicative ideal f-derivation, study its properties and illustrate each property with examples. In

Received: 2019-03-14, Accepted: 2019-03-28. Communicated by: Mirela Stefanescu

^{*}Address correspondence to: Celestin Lele; Department of Mathematics and Computer Science, University of Dschang, Cameroon. E-mail: celestinlele@yahoo.com

^{© 2019} University of Mohaghegh Ardabili.

section 3, we study good ideal f-derivation and show the connection with the complemented elements of the residuated multilattice. We also prove that the set of f-fixed points of a good ideal f-derivation has the structure of multilattice.

We start by briefly recalling the basic definitions needed in the paper.

Definition 1.1. [4]

A **pocrim** is a quadruple $\mathcal{A} := (\mathbb{A}, \top, \odot, \rightarrow)$ consisting of a poset $\mathbb{A} := (A, \leq)$ with a greatest element \top and two binary operations \odot and \rightarrow on A such that (A, \top, \odot) is a commutative monoid satisfying $a \odot c \leq b$ if and only if $c \leq a \rightarrow b$ for all $a, b, c \in A$.

A pocrim is said to be bounded if it has a least element.

The following properties hold in any pocrim \mathcal{A} .

For all $a, b, c \in A$, we have:

P1 $a \odot b \le a, a \odot b \le b;$ **P2** $a \odot (a \rightarrow b) \le a \le b \rightarrow (a \odot b)$ and $b \odot (a \rightarrow b) \le b \le a \rightarrow (a \odot b);$ **P3** If $a \le b$, then $a \odot c \le b \odot c, c \rightarrow a \le c \rightarrow b$, and $b \rightarrow c \le a \rightarrow c;$ **P4** $a \rightarrow (b \rightarrow c) = b \rightarrow (a \rightarrow c);$ **P5** $(a \rightarrow b) \odot (b \rightarrow c) \le a \rightarrow c;$ **P6** $a \rightarrow b \le (a \odot c) \rightarrow (b \odot c);$ **P7** $a \rightarrow b \le (c \rightarrow a) \rightarrow (c \rightarrow b)$ and $a \rightarrow b \le (b \rightarrow c) \rightarrow (a \rightarrow c).$

Let $\mathbb{M} := (M, \leq_{\mathbb{M}})$ be a poset. For $X \subseteq M$, $U_{\mathbb{M}}X$ and $L_{\mathbb{M}}X$ are upper bounds and lower bounds of X in \mathbb{M} .

A multi-supremum (resp. multi-infimum) of X is a minimal (resp. maximal) element of $U_{\mathbb{M}}X$ (resp. $L_{\mathbb{M}}X$). The set of multi-suprema (resp. multi-infima) of X is denoted by Multisup(X) (resp. Multinf(X)).

For simplicity, we write $x \sqcup y$, (resp. $x \sqcap y$) for Multisup($\{x, y\}$), Multinf($\{x, y\}$) in this order for $x, y \in M$.

When $x \sqcup y$ (resp. $x \sqcap y$) is singleton $\{a\}$ (resp. $\{b\}$), we write $x \lor y = a$ (resp. $x \land y = b$). Note that for every $x, y \in M, x \leq y$ if and only if $x \land y = x$ if and only if $x \lor y = y$. We denote the set of natural numbers by \mathbb{N} and we set $x^0 = \top$ and $x^n = x^{n-1} \odot x$, for $n \geq 1$ and $x \in M$.

For a bounded pocrim $\mathcal{M} := (\mathbb{M}, \top, \odot, \rightarrow)$ with $\mathbb{M} := (\mathbb{M}, \leq)$ and a least element \bot , we set $x^* = x \rightarrow \bot$ for every $x \in M$ and let $X^* = \{x^*, x \in X\}$ for every $X \subseteq M$. For $a \in M, \downarrow_{\mathbb{M}} a = \{x \in M, x \leq a\}$ and $\uparrow_{\mathbb{M}} a = \{x \in M, a \leq x\}$. For $X \subseteq M$, the upper closure of X is $\uparrow_{\mathbb{M}} X = \bigcup_{x \in X} \uparrow_{\mathbb{M}} x$ and the lower closure of X is

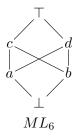
$$\downarrow_{\mathbb{M}} X = \bigcup_{x \in X} \downarrow_{\mathbb{M}} x.$$

Definition 1.2. [4] A poset, (M, \leq) , is a **multilattice** if and only if it satisfies that, for all $a, b, c \in M$, $a \leq c$ and $b \leq c$ implies that there exists $x \in a \sqcup b$ such that $x \leq c$ and its dual version for $a \sqcap b$.

A multilattice \mathbb{M} is said to be **full** if $a \sqcap b \neq \emptyset$ and $a \sqcup b \neq \emptyset$ for all $a, b \in M$.

 $f\text{-}\mathrm{derivations}$ on $\mathcal{RML}\mathrm{s}$

An example of a bounded (full) multilattice which is not a lattice is the multilattice with the following Hasse diagram:



It is usually denoted by ML_6 .

A residuated multilattice $\mathcal{M} := (\mathbb{M}, \top, \odot, \rightarrow)$ (\mathcal{RML} for short) is a pocrim whose underlying poset is a multilattice.

A \mathcal{RML} is called bounded if it has a lower bound \perp .

For convenience and to increase the readability, we summarize the main properties of residuated multilattices needed throughout the paper. These can be either found or derived from some properties in [4].

Proposition 1.3. [4] The following conditions hold in a $\mathcal{RML} \mathcal{M}$.

For all $x, y, z \in M$ M1 $x \odot y, x \odot (x \rightarrow y) \in \downarrow_{\mathbb{M}} (x \sqcap y);$ M2 $(x \odot y) \sqcup (x \odot z) \subseteq x \odot (y \sqcup z);$ M3 $(x \sqcap y) \rightarrow z \subseteq \uparrow_{\mathbb{M}} [(x \rightarrow z) \sqcup (y \rightarrow z)];$ M4 $(x \sqcup y) \rightarrow z \subseteq \downarrow_{\mathbb{M}} [(x \rightarrow z) \sqcap (y \rightarrow z)];$ M5 $(x \rightarrow z) \sqcap (y \rightarrow z) \subseteq (x \sqcup y) \rightarrow z;$ M6 $x \rightarrow y = \max\{(x \sqcup y) \rightarrow y\} = \max\{x \rightarrow (x \sqcap y)\};$ M7 $x \le x^{**}, x^* = x^{***}, x^{**} \rightarrow y^{**} = y^* \rightarrow x^*, (x \odot y)^* = x \rightarrow y^*;$ M8 $(x \sqcap y)^* \subseteq \uparrow_{\mathbb{M}} (x^* \sqcup y^*);$ M9 $(x \sqcup y)^* \subseteq \downarrow_{\mathbb{M}} (x^* \sqcap y^*);$ M10 $(x^* \sqcap y^*) \subseteq (x \sqcup y)^*.$

Definition 1.4. [4] Given a $\mathcal{RML} \mathcal{M}$, a non-empty subset F of M is called:

- 1) **deductive system** (ds, for short) if (ds-1) $\top \in F$ and (ds-2) for all $x, y \in A$, if $x, x \to y \in F$, then $y \in F$, or equivalently (i) for all $x, y \in F$, $x \odot y \in F$ and (ii) for all $x, y \in A$, if $x \leq y$ and $x \in F$, then $y \in F$.
- 3) **m-filter** if
 - (i) $x, y \in F$ implies $\emptyset \neq x \sqcap y \subseteq F$;
 - (ii) $x \in F$ implies $x \sqcup a \subseteq F$ for all $a \in M$;
 - (iii) for all $a, b \in M$, if $(a \sqcup b) \cap F \neq \emptyset$ then $a \sqcup b \subseteq F$.
- 2) **Filter** if F is a ds satisfying: for all $x, y \in M$, if $x \to y \in F$, then $x \sqcup y \to y \subseteq F$ and $x \to x \sqcap y \subseteq F$.

Definition 1.5. [8] Let \mathbb{M} be a multilattice and X be a non-empty subset of M. (SML-1) X is called a **full sub-multilattice** (*f*-Sub-multilattice) of M if for all $x, y \in X, x \sqcup y \subseteq X$ and $x \sqcap y \subseteq X$; (SML-2) X is called a **restricted sub-multilattice** (r-Sub-multilattice) of M if for all $x, y \in X, (x \sqcup y) \cap X \neq \emptyset$ and $(x \sqcap y) \cap X \neq \emptyset$.

Definition 1.6. [4] Let $h: M \to M'$ be a map between residuated multilattices, h is said to be a **homomorphism** if h satisfies $h(x \sqcup y) \subseteq h(x) \sqcup h(y), h(x \sqcap y) \subseteq h(x) \sqcap h(y), h(x \odot y) = h(x) \odot h(y)$ and $h(x \to y) = h(x) \to h(y)$ for all $x, y \in M$.

For all homomorphism h between residuated multilattices, one can observe that $h(\top) = \top$ and h is isotone.

Definition 1.7. [7] Let \mathcal{M} be a \mathcal{RML} and X a subset of M. X is a **full sub** residuated multilattice (or f-Sub- \mathcal{RML} for short) if the following conditions hold.

S1. $\top \in X$; S2. for every $x, y \in X, x \odot y \in X, x \to y \in X$; S3. X is an f-Sub-multilattice.

If we replace S3 in the definition above by X is a restricted sub-multilattice, we obtain the definition of restricted sub residuated multilattice (or r-Sub- \mathcal{RML} for short).

In [7], the author proved that the set of complemented elements of a bounded residuated multilattice is a Boolean algebra. Here we summarize all the results on the set of complemented elements needed throughout this work. Let \mathcal{M} be a bounded residuated multilattice. An element $c \in \mathcal{M}$ is called **complemented** if there is an element c' such that $\top \in c \sqcup c'$ and $\perp \in c \sqcap c'$ (or equivalently $c \lor c' = \top$ and $c \land c' = \bot$). We call c' **complement** of c in \mathcal{M} . We denote by $C(\mathcal{M})$ the set of all complemented elements of \mathcal{M} .

Proposition 1.8. [7] Let \mathcal{M} be a \mathcal{RML} and $c \in C(\mathcal{M})$ an element which has a complement $c' \in M$.

- (i) If c'' is another complement of c then c' = c'';
- (ii) $c = c'^*$, $c' = c^*$ and $c = c^{**}$;
- (iii) $c \odot c = c;$
- (iv) $e \in C(\mathcal{M})$ and $x \in M$, $e \odot x \in e \sqcap x$, in particular $e \land x$ exists in M and $e \land x = e \odot x$;
- (v) for every $e, f \in C(\mathcal{M}), e \wedge f, e \vee f$ exist and belong to $C(\mathcal{M})$. Moreover, $e \wedge f = e \odot f \in C(\mathcal{M}), and e \vee f = e^* \to f;$
- (vi) for every $e \in M$, $e \in C(M)$ if and only if $e \lor e^* = \top$.

 $f\text{-}\mathrm{derivations}$ on $\mathcal{RML}\mathrm{s}$

2. f-derivations on residuated multilattices

Definition 2.1. Let \mathcal{M} be a \mathcal{RML} and $d: \mathcal{M} \to \mathcal{M}$ be a map. We call d an f-multiplicative derivation (or simply f-derivation) on \mathcal{M} , if there exists a homomorphism $f: \mathcal{M} \to \mathcal{M}$ such that the following condition is satisfied:

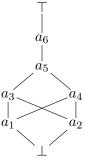
$$d(x \odot y) \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y))$$
 for all $x, y \in M$.

It is worth noting that the notion of f-derivation on residuated multilattices generalizes that of derivation on residuated lattices given in [6] and derivation on residuated multilattices given in [7].

Example 2.2. Let \mathcal{M} be a bounded \mathcal{RML} . We define $d_{\perp}, f_{\top}, d_{id}, d, f$ mappings from M to M by: $d_{\perp}(x) = \perp$, $f_{\top}(x) = \top$ and $d_{id}(x) = x$ for all $x \in M$. d_{\perp} and d_{id} are f_{\top} -derivations on M which shall be called respectively least element f_{\top} -derivation, identity f_{\top} -derivation and d is an f-identity f-derivations on M.

If f is an homomorphism, then f is an f-derivation on M.

Example 2.3. Let \mathcal{M} be the multilattice depicted in the following Hasse Diagram:



We define the operations \odot and \rightarrow as follows:

$$x \odot y = \begin{cases} \bot & \text{if } x, y \in M \setminus \{\top\} \\ x & \text{if } y = \top \\ y & \text{if } x = \top \end{cases} \qquad \qquad x \to y = \begin{cases} \top & \text{if } x \le y \\ y & \text{if } x = \top \\ a_6 & \text{otherwise} \end{cases}$$

Then, \mathcal{M} is a \mathcal{RML} . We define functions d and f on M by:

$$d(x) = \begin{cases} \bot & \text{if } x \in M \setminus \{\top\} \\ a_2 & \text{if } x = \top \end{cases} \qquad f(x) = \begin{cases} \bot, & \text{if } x \in M \setminus \{a_6, \top\} \\ \top, & \text{otherwise} \end{cases}$$

Then, it can be easily verified that d is an f-derivation on M.

Example 2.4. Let $f: M \to M$ be a homomorphism of the \mathcal{RML} M and $t \in M$. We define the map $f_t: M \to M$ by: $f_t(x) = f(x) \odot t$ for each $x \in M$. It is easy to prove that f_t is an f-derivation on M which will be called principal f-derivation on M generated by t.

Proposition 2.5. Let \mathcal{M} be a bounded residuated multilattice and d an f-derivation on M. Then, for all $x, y \in M$,

- (i) $d(\perp) \leq f(\perp)$, moreover if $f(\perp) = \perp$, then $d(\perp) = \perp$;
- (ii) $d(x) \ge f(x) \odot d(\top);$
- (iii) for $n \ge 2$, $d(x^n) = d(x) \odot f(x^{n-1})$;
- (iv) If $d(\perp) = \perp$ and $x \leq y^*$, then $d(y) \leq (f(x))^*$ and $d(x) \leq (f(y))^*$;
- (v) If $d(\perp) = \perp$ then $d(x^*) \leq (f(x))^*$ and $d(x) \leq (f(x^*))^*$.
- (vi) If $f(\perp) = \perp$ then $d(x) \leq (f(x))^{**}$.

Proof. (i) $d(\perp) = d(\perp \odot \perp) \in (d(\perp) \odot f(\perp)) \sqcup (f(\perp) \odot d(\perp)) = d(\perp) \odot f(\perp)$. Then, $d(\perp \odot \perp) = d(\perp) \odot f(\perp)$ and $d(\perp) \le f(\perp)$.

- (ii) Let $x \in M$, since \top is the neutral element, we have $d(x) = d(x \odot \top) \in (d(x) \odot f(\top)) \sqcup (f(x) \odot d(\top))$. Hence, $d(x) \ge f(x) \odot d(\top)$.
- (iii) Straightforward by induction
- (iv) Given $x, y \in M$, it follows from the inequality $x \leq y^*$ that $x \odot y = \bot$. Applying the definition of the derivation, $\bot = d(\bot) = d(x \odot y) \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y))$. We obtain $d(x) \odot f(y) = f(x) \odot d(y) = \bot$ and $d(y) \leq (f(x))^*, d(x) \leq (f(y))^*$.
- (v) and (vi) Follow from (iv).

Definition 2.6. Let \mathcal{M} be a \mathcal{RML} and d an f-derivation on \mathcal{M} . We say that d is:

- (i) isotone if $x \leq y$ implies $d(x) \leq d(y)$ for all $x, y \in M$;
- (ii) *f*-contractive if $d(x) \le f(x)$ for all $x \in M$;
- (iii) an **ideal** f-derivation if d is both isotone and f-contractive.

Example 2.7. Let \mathcal{M} be the residuated multilattice depicted in Example 2.3. Then, it is easy to verify that d is an ideal f-derivation on \mathcal{M} . We can also observe that every homomorphism f of $\mathcal{M} f : \mathcal{M} \to \mathcal{M}$ is an ideal f-identity $(f(x) = x \text{ for all} x \in \mathcal{M}) f$ -derivation on \mathcal{M} .

Proposition 2.8. Let \mathcal{M} be a \mathcal{RML} and d an isotone derivation on M, we have:

- (i) if $z \le x \to y$, then $f(z) \le d(x) \to d(y)$ and $f(x) \le d(z) \to d(y)$ for all $x, y, z \in M$;
- (ii) $f(x \to y) \le d(x) \to d(y), \ d(x \to y) \le f(x) \to d(y) \ for \ all \ x, y, z \in M.$
- *Proof.* (i) Let $x, y, z \in M$, $z \leq x \to y$ implies $x \odot z \leq y$ by the isotonicity of *d*, we have $d(x \odot z) \leq d(y)$ since $d(x \odot z) \in (d(x) \odot f(z)) \sqcup (f(x) \odot d(z))$, we obtain that $d(x) \odot f(z), f(x) \odot d(z) \leq d(x \odot z) \leq d(y)$. Hence, by the adjointness conditions, $f(z) \leq d(x) \to d(y)$ and $f(x) \leq d(z) \to d(y)$;
 - (ii) It is similar to the proof of (i) using the inequality $x \odot (x \to y) \le y$.

Proposition 2.9. Let \mathcal{M} be a \mathcal{RML} and d an f-contractive derivation on M. We have the following properties:

(i) for all $x, y \in M$, $d(x) \odot d(y) \le d(x \odot y)$;

86

f-derivations on \mathcal{RMLs}

- (ii) let $x, y \in M$, for all $b \in d(x) \sqcup d(y)$, there exists $a \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y))$ such that $a \leq b$;
- (iii) if d is isotone, then $d(x \to y) \le d(x) \to d(y) \le d(x) \to f(y)$ for all $x, y \in M$;
- (iv) if $d(\top) = \top$, then d is an f-identity f-derivation on M;
- (v) if for every $x \in M$, $f(x) \odot d(\top) = d(\top)$, then $d(x) \ge d(\top)$.
- *Proof.* (i) Since d is an f-contractive derivation and \odot is monotone in both arguments, we obtain $d(x) \odot d(y) \le d(x) \odot f(y)$ and $d(x) \odot d(y) \le f(x) \odot d(y)$ for all $x, y \in M$. Therefore, $d(x) \odot d(y) \le a$, for any $a \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y))$. Hence, $d(x) \odot d(y) \le d(x \odot y)$.
 - (ii) Let $b \in d(x) \sqcup d(y)$. Since $d(x) \odot f(y) \le d(x)$ and $f(x) \odot d(y) \le d(y)$, there exists $a \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y))$ such that $a \le b$.
 - (iii) Let $x, y \in M$. Then, by **P2** and the fact that d is isotone, we obtain $d(x \odot (x \to y)) \le d(y)$. It follows from (i) that $d(x) \odot d(x \to y) \le d(x \odot (x \to y))$. Therefore, $d(x \to y) \le d(x) \to d(y)$. Moreover, combining the fact that d is contractive and **P3**, we have $d(x) \to d(y) \le d(x) \to f(y)$ and $d(x \to y) \le d(x) \to d(y) \le d(x) \to f(y)$.
 - (iv) It follows from Proposition 2.5 (ii).
 - (v) Since $d(x) = d(x \odot \top) \in (d(x) \odot f(\top)) \sqcup d(\top) = d(x) \sqcup d(\top)$, we obtain $d(\top) \leq d(x)$.

Proposition 2.10. Let \mathcal{M} be a \mathcal{RML} and d an f-contractive f-derivation on \mathcal{M} . We have the following properties:

- (i) For $x, y \in M$. If $y \leq x$, d(x) = f(x) and there exists $u \in M$ such that $x \odot u = y$ then d(y) = f(y);
- (ii) $\operatorname{Fix}_d(M) = \{x \in M, d(x) = f(x)\}$ is closed under \odot ;
- (iii) if $d(\top) = \top$ and $f(\bot) = \bot$, then $\operatorname{Fix}_d(C(\mathcal{M})) = \{x \in C(\mathcal{M}), d(x) = f(x)\}$ is a full sub residuated multilattice of M;
- (iv) $d(\top) = \top$ if and only if $\operatorname{Fix}_d(M) = M$.
- Proof. (i) Let $x, y \in M$ and $y \leq x$ with $u \in M$ such that $x \odot u = y$. Assume that d(x) = f(x). By definition $d(y) = d(x \odot u) \in (d(x) \odot f(u)) \sqcup (f(x) \odot d(u)) = (f(x) \odot f(u)) \sqcup (d(x) \odot d(u)) = f(x) \odot f(u)$ since d(x) = f(x) and d is f-contractive. We obtain $d(y) = f(x \odot u) = f(y)$.
 - (ii) Let $x, y \in \operatorname{Fix}_d(M)$, $d(x \odot y) \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y)) = f(x) \odot f(y) = f(x \odot y)$.
 - (iii) It is obvious that $\top \in \operatorname{Fix}_d(C(\mathcal{M}))$. Proposition 1.8 assure that \odot and \land coincide and by (ii), $\operatorname{Fix}_d(C(\mathcal{M}))$ is closed under \land . Let $x, y \in C(\mathcal{M})$, we have $x \sqcup y = x \lor y = x^{**} \lor y^{**} = (x^* \land y^*)^* \in \operatorname{Fix}_d(C(\mathcal{M}))$ by (iii). Moreover, by Proposition 1.8 (iv) and (v) $x \to y = x^* \lor y = (x \land y^*)^* = (x \odot y^*)^*$ which implies that $(x \odot y^*)^* \in \operatorname{Fix}_d(C(\mathcal{M}))$. Therefore, $d((x \odot y^*)^*) = f((x \odot y^*)^*) = f(x^* \lor y) = f(x^*) \lor f(y) = f(x)^* \lor f(y) = f(x) \to f(y) = d(x) \to d(y)$. Hence, $\operatorname{Fix}_d(C(\mathcal{M}))$ is a full sub residuated multilattice of \mathcal{M} .

(v) Straightforward.

Proposition 2.11. Let \mathcal{M} be a bounded \mathcal{RML} and d an f-derivation on $C(\mathcal{M})$. We have the following properties:

- (i) $d(x) = d(x) \odot f(x)$, for all $x \in C(\mathcal{M})$;
- (ii) if $f(\perp) = \perp$ and $d(\top) = \top$, then the f-derivation in the set of all complemented elements of a residuated multilattice \mathcal{M} coincide with the f-derivation in lattice.

Proof. (i) It follows from Proposition 2.5 (iii).

(ii) Firstly, we will prove that $f(C(\mathcal{M})) \subseteq C(\mathcal{M})$. From Proposition 1.8 (vi), we need only to prove that $f(x) \sqcup f(x)^* = \top$ for all $x \in C(\mathcal{M})$ and it is obvious since $f(x) \sqcup f(x)^* \supseteq f(x \sqcup x^*) = f(\top) = \top$. Secondly by Definition 2.1 $d(x) \in d(x) \sqcup f(x)$ and $f(x) \leq d(x)$. Moreover, because $d(x) = d(x) \odot f(x)$, we have $d(x) \leq f(x)$. Hence, $d(x) = f(x) \in C(\mathcal{M})$. $d(x \odot y) \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y)) = (d(x) \land f(y)) \sqcup (f(x) \land d(y)) = (d(x) \land f(y)) \lor (f(x) \land d(y)) = d(x \land y)$.

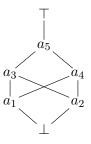
3. Principal, ideal and good ideal f-derivations

In this section, we study the importance of complemented elements in the study of principal, ideal and good ideal f-derivations of a residuated multilattice.

We denote by M^M the set of all maps from M to M. We define a binary relation \leq by $f \leq g \Leftrightarrow f(x) \leq g(x)$ for every $x \in M$. It is easy to see that (M^M, \leq) is a poset. We define the hyperoperations \sqcup and \sqcap by $f \sqcup g, f \sqcup g : M \to 2^M$ by $(f \sqcup g)(x) = f(x) \sqcup g(x)$ and $(f \sqcap g)(x) = f(x) \sqcap g(x)$, for every $f, g \in M^M$. It is clear that (M^M, \sqcup, \sqcap) is a multilattice.

Definition 3.1. An ideal f-derivation d is said to be good if $d(\top) \in C(\mathcal{M})$.

Example 3.2. Let $\mathbf{2}$ be the two-element Boolean algebra and M be the residuated multilattice depicted in the following figure:



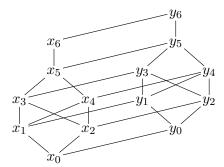
88

$f\text{-}\mathrm{derivations}$ on $\mathcal{RML}\mathrm{s}$

Consider the subsets: $C = \{a_2, a_3, a_4, a_5\}$. The operations \odot and \rightarrow are defined as follows:

$$x \odot y = \begin{cases} a_2 & \text{if } x, y \in C \\ x & \text{if } y = \top \\ y & \text{if } x = \top \\ \bot & \text{otherwise} \end{cases} \quad x \to y = \begin{cases} \top & \text{if } x \leq y \\ a_1 & \text{if } x \in C \text{ and } y \in \{\bot, a_1\} \\ y & \text{if } x = \top \\ a_5 & \text{otherwise} \end{cases}$$

The direct product $M \times \mathbf{2}$ of M and $\mathbf{2}$ is a \mathcal{RML} . Note that if one sets $x_0 = (\perp, 0), x_i = (a_i, 0)(1 \le i \le 5), x_6 = (\top, 0), y_0 = (\perp, 1), y_i = (a_i, 1)(1 \le i \le 5), y_6 = (\top, 1)$, then the multilattice structure of $M \times \mathbf{2}$ is described in the following Hasse diagram.



Multiplication by x_6 , i.e., $d_{x_6}(x) = x_6 \odot f(x)$ yields a principal *f*-derivation on $M \times \mathbf{2}$.

We denote by $PD_f(M^M)$ and $GID_f(M^M)$ respectively the set of all principal f-derivations from M to M and the set of all good ideal f-derivations from M to M.

Remark 3.3. Let \mathcal{M} be a bounded \mathcal{RML} and $f: \mathcal{M} \to \mathcal{M}$ a homomorphism. We can notice that every principal f-derivation is isotone and the homomorphism f is the greatest element in $PD_f(\mathcal{M}^M)$.

Proposition 3.4. Let $f: M \to M$ be a map. Then:

- (i) $GID_f(M^M)$ is an f-Sub-multilattice of M^M ;
- (ii) $(GID_f(C(\mathcal{M})^{C(\mathcal{M})}), \odot, \mapsto, \sqcup, \sqcap, d_\perp, f)$ is a bounded residuated multilattice where, $d_\perp(x) = \bot$, $(d_1 \mapsto d_2)(x) = d_1(x) \to d_2(x)$ and $(d_1 \odot d_2)(x) = d_1(x) \odot d_2(x)$ for all $x \in C(\mathcal{M})$.
- *Proof.* (i) Let d_1, d_2 be two good ideal f-derivations on M and $x \in M$. By the definition of f-derivation and Theorem 1.8 (iv) we have,

Using Theorem 1.8 (iv) $f(x) \odot (d_1 \sqcap d_2)(\top) = f(x) \odot ((d_1(\top) \sqcap d_2(\top)) = f(x) \odot ((d_1(\top) \land d_2(\top))) = f(x) \land ((d_1(\top) \land d_2(\top))) = f(x) \land f(x) \land ((d_1(\top) \land d_2(\top))) = f(x) \land d_2(\top)) = (f(x) \land d_2(\top)) \land (f(x) \land d_1(\top)) = (f(x) \land d_2(\top)) \sqcap (f(x) \land d_1(\top)) = (d_1 \sqcap d_2)(x).$

Hence, $d_1 \sqcap d_2$ is a good ideal *f*-derivation on *M*. In addition,

$$\begin{aligned} (d_1 \sqcup d_2)(x) &= d_1(x) \sqcup d_2(x) = (f(x) \odot d_1(\top)) \sqcup (f(x) \odot d_2(\top)) \\ &\subseteq f(x) \odot (d_1(\top) \sqcup d_2(\top)) = f(x) \odot (d_1(\top) \lor d_2(\top)) \\ &= f(x) \odot (d_1 \sqcup d_2)(\top) \text{ By M2 Proposition 1.3}. \end{aligned}$$

We have $d_1 \sqcup d_2$ is a good ideal *f*-derivation on *M* and we conclude that $GID_f(M^M)$ is an *f*-Sub-multilattice of M^M .

(ii) From (i) $(GID_f(C(\mathcal{M})^{C(\mathcal{M})}), \sqcup, \sqcap)$ is a multilattice. It is easy to prove that $(GID_f(C(\mathcal{M})^{C(\mathcal{M})}, \odot, f))$ is a commutative monoid with the neutral element f and (\odot, \rightarrow) is an adjoint pair.

Theorem 3.5. Let \mathcal{M} be a \mathcal{RML} and d an f-contractive derivation on M with $d(x) \in C(\mathcal{M})$ for all $x \in M$. The following propositions are equivalent:

- (i) d is an isotone f-derivation;
- (ii) for all $x, y \in M$, $d(x \odot y) = d(x) \odot d(y) = d(x) \odot f(y)$.

Proof. (i) \Rightarrow (ii) Let $x, y \in M$; by the hypothesis $d(x \odot y) \leq d(x), d(y)$. Then, there exists $a \in d(x) \sqcap d(y)$ such that $d(x \odot y) \leq a$. As $d(x), d(y) \in C(\mathcal{M})$, we obtain by Proposition 1.8 (iv) that $d(x) \sqcap d(y) = d(x) \land d(y) = d(x) \odot d(y)$ and $d(x \odot y) \leq d(x) \odot d(y)$. Furthermore, by Proposition 2.9 we have $d(x \odot y) =$ $d(x) \odot d(y)$. Hence, $d(x) \odot d(y) = d(x \odot y) \in (d(x) \odot f(y)) \sqcup (f(x) \odot d(y))$. Therefore $d(x) \odot f(y), f(x) \odot d(y) \leq d(x) \odot d(y)$. By the fact that d is f-contractive and \odot monotone, we obtain, $d(x) \odot f(y), f(x) \odot d(y) \leq d(x) \odot d(y) \leq d(x) \odot f(y), f(x) \odot d(y)$. Hence, $d(x \odot y) = d(x) \odot f(y)$ for all $x, y \in M$.

(ii) \Rightarrow (i) Let $x, y \in M$ and $a \in x \sqcap y$, by the hypothesis $d(a) = d(\top) \odot f(a) \in d(\top) \odot (f(x) \sqcap f(y))$. Furthermore, $d(\top) \odot (f(x) \sqcap f(y)) \subseteq \downarrow_{\mathbb{M}} [(d(\top) \odot f(x)) \sqcap (d(\top) \odot f(y))] = \downarrow_{\mathbb{M}} [d(x) \sqcap d(y)]$. So, there exists $z \in d(x) \sqcap d(y)$ such that $d(a) = d(\top) \odot f(a) \leq z$. In particular, for $x \leq y$ we have $d(x) = d(\top) \odot f(x) \leq z$ where $z \in d(x) \sqcap d(y)$. Hence, $d(x) \leq d(y)$.

Theorem 3.6. Let \mathcal{M} be a \mathcal{RML} and d an f-contractive derivation on M which satisfies $d(\top) \in C(\mathcal{M})$ for all $x \in M$. Then, the following are equivalent:

- (i) d is an ideal f-derivation;
- (ii) $d(x) \leq d(\top)$ for all $x \in M$;
- (iii) for all $x \in M$, $d(x) = f(x) \odot d(\top)$;

f-derivations on \mathcal{RMLs}

- (iv) for all $x, y \in M$, if $a \in x \sqcap y$ then there exists $z \in d(x) \sqcap d(y)$ such that $d(a) \leq z$;
- (v) for all $x, y \in M$, $d(x \sqcup y) \subseteq d(\top) \odot (f(x) \sqcup f(y))$;
- (vi) $d(x \odot y) = d(x) \odot d(y)$ for all $x, y \in M$.

Proof. $(i) \Rightarrow (ii)$ straightforward. (ii) \Rightarrow (iii) Let $x \in M$, $d(x) \leq d(\top)$ implies $d(x) = d(x) \wedge d(\top) = d(x) \odot$ $d(\top) \leq d(\top) \odot f(x)$. Proposition 2.5 (ii) yields, $d(\top) \odot f(x) \leq d(x)$; so $d(x) = d(\top) \odot f(x).$ (iii) \Rightarrow (i) Follow from the fact that \odot is increasing in both arguments and f is isotone. (iii) \Rightarrow (iv) Let $x, y \in M$ and $a \in x \sqcap y$, from (ii) we have $d(a) = d(\top) \odot f(a)$. Furthermore, $d(\top) \odot f(a) \in d(\top) \odot (f(x) \sqcap f(y)) \subseteq \downarrow_{\mathbb{M}} [(d(\top) \odot f(x)) \sqcap$ $(d(\top) \odot f(y)) = \downarrow_{\mathbb{M}} [d(x) \sqcap d(y)]$. So, there exists $z \in d(x) \sqcap d(y)$ such that $d(a) = d(\top) \odot a \le z.$ $(iv) \Rightarrow (i)$ Let $x, y \in M$ such that $x \leq y$, thus $x \in x \sqcap y$. Using hypothesis, there exists $z \in d(x) \sqcap d(y)$ such that $d(x) \leq z$. Hence, $d(x) \leq d(y)$. (iii) \Rightarrow (v) By the definition of d and the hypothesis, $d(x \sqcup y) = d(\top) \odot f(x \sqcup y)$ $y) \subseteq d(\top) \odot (f(x) \sqcup f(y))$ $(\mathbf{v}) \Rightarrow (\mathbf{i})$ Let $x \leq y$, then $x \sqcup y = y$. By hypothesis $d(y) = d(x \sqcup y) \subseteq d(x \sqcup y)$ $d(\top) \odot (f(x) \sqcup f(y))$ which implies that there exists $a \in (f(x) \sqcup f(y))$ such that $d(y) = d(\top) \odot a \ge d(\top) \odot f(x) = d(x)$. Hence, $d(x) \le d(y)$. (iii) \Rightarrow (vi) Let $x, y \in M$ $d(x \odot y) = d(\top) \odot f(x \odot y) = d(\top) \odot d(\top) \odot f(x) \odot$ $f(y) = (d(\top) \odot f(x)) \odot (d(\top) \odot f(y)) = d(x) \odot d(y).$ (vi) \Rightarrow (ii) Let $x \in M$, we have $d(x) = d(x \odot \top) = d(x) \odot d(\top)$, hence $d(x) \le d(\top).$

The next result shows that good ideal f-derivations on a \mathcal{RML} are in one-to-one correspondence with the complemented elements of the \mathcal{RML} .

Proposition 3.7. A f-derivation d on M is a good ideal f-derivation if and only if there exists a unique $a \in C(M)$ such that $d = d_a$

Proof. Let d be a good ideal f-derivation on M. By Theorem 3.6 (iii) $d(x) = f(x) \odot d(\top)$. It is obvious that $a = d(\top)$ is unique. Conversely, assume that there exists a unique $a \in C(M)$ such that $d = d_a$. By definition we have $d_a(x) = a \odot f(x)$ which is an f-contractive and an isotone f-derivation. We can conclude that $d = d_a$ is a good ideal f-derivation on M due to $a \in C(M)$.

Let $GID_f(M^M)$ denotes the set of all good ideal f-derivations on M. Then by the preceding Proposition, $GID_f(M^M) = \{d_x : x \in C(M)\}$. In addition, define $\preceq, \otimes, \twoheadrightarrow$ on $GID_f(M^M)$ by $d_x \preceq d_{x'}$ if $x \leq x'$, $d_x \otimes d_{x'} = d_{x \odot x'}$ and $d_x \twoheadrightarrow d_{x'} = d_{x \to x'}$. Then

it is straightforward to see that $(GID_f(M^M), \preceq, \otimes, \twoheadrightarrow, d_{\perp}, d_{\perp})$ is a Boolean algebra that is naturally isomorphic to the Boolean algebra C(M).

In the remaining section, we show that the set of f-fixed points of an ideal fderivation is a multilattice.

Proposition 3.8. Let \mathcal{M} be a \mathcal{RML} and d a good ideal f-derivation on \mathcal{M} . Then, $\operatorname{Fix}_d(\mathcal{M})$ is closed under the product. Moreover, $\operatorname{Fix}_d(\mathcal{M})$ is a full sub-multilattice.

Proof. Let $x, y \in \text{Fix}_d(M)$. Since d is f-contractive, $d(x \odot y) \leq x \odot y$. It follows from Proposition 2.9 that $f(x \odot y) = f(x) \odot f(y) = d(x) \odot d(y) \leq d(x \odot y)$. Hence $x \odot y \in \text{Fix}_d(M)$.

Let $x, y \in \operatorname{Fix}_d(M)$, $d(x \sqcup y) = d(\top) \odot f(x \sqcup y) \subseteq d(\top) \odot (f(x) \sqcup f(y)) = d(\top) \odot (d(x) \sqcup d(y)) = d(\top) \wedge (d(x) \sqcup d(y)) = d(x) \sqcup d(y)$. Furthermore, $f(x \sqcup y) \subseteq f(x) \sqcup f(y) = d(x) \sqcup d(y)$. Using the fact that d is a contractive f-derivation, we have $d(a) \leq f(a)$ with $d(a), f(a) \in d(x) \sqcup d(y)$ and d(a) = f(a) for all $a \in x \sqcup y$. Therefore, $x \sqcup y \subseteq \operatorname{Fix}_d(M)$.

For all $x, y \in M$, $d(x \sqcap y) = d(\top) \odot f(x \sqcap y) \subseteq d(\top) \odot (f(x) \sqcap f(y)) = d(\top) \odot (d(x) \sqcap d(y))$. For every $a \in d(x) \sqcap d(y)$, $a \leq d(x)$, $d(y) \leq d(\top)$ and $d(\top) \odot a = d(\top) \land a = a$. This implies that $d(\top) \odot (d(x) \sqcap d(y)) = d(x) \sqcap d(y)$ and $d(x \sqcap y) \subseteq d(x) \sqcap d(y)$. But, $f(x \sqcap y) \subseteq f(x) \sqcap f(y) = d(x) \sqcap d(y)$. Using the fact that d is f-contractive, we obtain $d(x \sqcap y) = f(x \sqcap y)$.

4. CONCLUSION AND FINAL REMARKS

The notion of derivation is a powerful tool for studying structural properties of different algebras. We initiated the study of f-derivations on residuated multilattices as a natural generalization of derivations on residuated multilattices and residuated lattices by introducing definitions with clear examples. The set of all complemented elements of a residuated multilattices enabled us to characterize good ideal f-derivations by using the image of the top element as a generator, which offers us a complete description of good ideal f-derivations. Various sets related to derivations were investigated and found to carry nice substructures.

Acknowledgments

This research is partially supported by DAAD (Deutsche Akademische Austauschdienst)

References

- [1] S. Alsatayhi, A. Moussavi, (φ, ψ) -derivations of BL-algebras, Asian-European Journal of Mathematics, DOI: 10.1142/S179355711850016X, **11** (1) (2018).
- [2] M. Asci, S. Ceran, Generalized (f, g)-derivations of lattices, Mathematical sciences and applications, 1 (2)(2013) 56-62.

f-derivations on \mathcal{RMLs}

- [3] H.E. Bell, L.C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hung, 53 (1989) 339–346.
- [4] I. P. Cabrera, P. Cordero, G. Gutierrez, J. Martinez, M. Ojeda-Aciego, On residuation in multilattices: Filters, congruences, and homomorphisms, Fuzzy Sets and Systems, 234 (2014) 1–21.
- [5] L. Ferrari, On derivations of lattices, PU.M.A., 12 (2001).
- [6] P. He, X. Xinb, J. Zhan, On derivations and their *f*-fixed point sets in residuated lattices, Fuzzy Sets and Systems **303** (2016) 97–113.
- [7] L. N. Maffeu Nzoda, Residuated multilattices and applications to Formal Concept Analysis, PhD dissertation, University of Dschang (2018).
- [8] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño, Fuzzy logic programming via multilattices, Fuzzy Sets and Systems, 158, (2007) 674–688.
- [9] E. Posner, Derivations in prime rings, Proc. Am. Math. Soc. 8 (1957) 1093–1100.
- [10] J. Rachunek, D. Šalounová, Derivations on algebras of a non-commutative generalization of the Lukasiewicz logic, Fuzzy sets and systems, **333** (2018) 11-16.
- [11] G. Szász, Derivation of lattices, Acta Sci.Math.(Szeged), 37 (1975) 149-154.
- [12] J. Wang, Y. Jun, X. Xin and Y. Zou, On derivations on bounded hyperlattices, Journal of Math. Research with Appl., 36 (2) (2016), 151–161.
- [13] X. L. Xin, T. Y. Li, J. H. Lu, On derivations of lattices, Fuzzy Sets and Systems, 178 (2008) 307–316
- [14] J. Young Bae, X. Xiao Long, On derivations of BCI-algebras. Inform. Sci. 159 (2004), 167–176.
- [15] Y. H. Yon, K. H. Kim, On f-derivations from semilattices to lattices, Commun. Korean Math. Soc. 29 (1) (2014), 27–36.

Line Nzoda Maffeu

Department of Mathematics and Computer Science, University of Dschang, Cameroon Email: line_nde@yahoo.fr

Celestin Lele

Department of Mathematics and Computer Science, University of Dschang, Cameroon Email: celestinlele@yahoo.com

Etienne Alomo Temgoua

Department of Mathematics of Ecole Normale Superieure, University of Yaounde 1, Cameroon Email: retemgoua@gmail.com

Stefan Schmidt

Department of Mathematics faculty of algebra, University of Dresden, Dresden 01069, Germany Email: midtl@msn.com