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DERIVED METABELIAN GROUPS FROM Hv-GROUPS

MAHDIYEH IRANMANESH, MORTEZA JAFARPOUR AND HOSSIEN
AGHABOZORGI

Abstract. In this paper first we introduce and analyze a new def-
inition of left and right commutators in Hv-group. Secondly, using
commutators we introduce a new strongly equivalence relation π∗

on anHv-groupH such that the quotientH/π∗, the set of all equiva-
lence classes, is a metabelian group. Then we introduce metabelian
Hv-groups and investigate some of their properties. Finally, we
investigate some properties of commutators for the class of weak
polygroups.
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1. Introduction

In [12] Vougioklis introduced the notion of Hv−groups as a gener-
alization of the notion of hypergroups. In general, the motivation for
Hv−group is the following: we know that the quotient of a group with
respect to a normal subgroup is a group. In 1934 F. Marty states that,
the quotient of a group with respect to any subgroup is a hypergroup
(see [9]). Vougioklis states that the quotient of a group with respect to
any partition is an Hv−group. Since then the study of Hv-structures
has been continued in many directions by T. Vougiouklis, B. Davvaz, S.
Spartalis, A. Dramalidis, S. Hoskova, and some other mathematicians.
We invite the readers for more study about hyperstructures theory and
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its applications to [2, 3, 4, 5, 11]. The first fundamental relation defined
on hypergroups is the β∗ -relation, introduced by Koskas [8] in 1970,
in connection with the heart of a hypergroup and studied mainly by
Corsini, Davvaz, Freni, Leoreanu, Vougiouklis. Later on, Freni [7] intro-
duced the γ-relation on a hypergroup, as a generalization of the relation
β, proving that γ∗ is the smallest regular relation on a semihypergroup
such that the corrisponding quotient is a commutative semigroup. In
the class of hyperrings, several fundamental relations have been defined
till now with respect to both (hyper)operations (addition and multipli-
cation) for example see [6, 10, 14]. H. Aghabozorgi et.al., introduced
and analyzed the notions of left and right commutators in polygroups
and they provided a detailed structure description of derived subpoly-
groups of polygroups. In this paper we generalize the notions of left
and right commutators in Hv-groups. Then using commutators we in-
troduce a new strongly equivalence relation π∗ on an Hv-group H such
that the quotient H/π∗ is a metabelian group. Moreover, we introduce
metabelian Hv-groups and investigate some of their properties. Finally,
we investigate some properties of commutators for the class of weak
polygroups. In the following we recall some basic notions of Hv-group
theory.

Let H be a non-empty set and P ∗(H) be the set of all non-empty
subsets of H. Let · be a hyperoperation (or join operation) on H, that
is, · is a function from H ×H into P ∗(H). If (a, b) ∈ H ×H, its image
under · in P ∗(H) is denoted by a · b. The join operation is extended to
subsets of H in a natural way, that is, for non-empty subsets A,B of H,
A ·B = ∪{a ·b | a ∈ A, b ∈ B}. The notation a ·A is used for {a}·A and
A·a for A·{a}. Generally, the singleton {a} is identified with its member
a. The structure (H, ·) is called an Hv-group if a · (b · c) ∩ (a · b) · c 6= ∅,
for all a, b, c ∈ H, which means that

(
⋃

u∈a·b
u · c) ∩ (

⋃
v∈b·c

a · v) 6= ∅

and a ·H = H · a = H for all a ∈ H. A non-empty subset K of an Hv-
group (H, ·) is called a Hv-subgroup if it is an Hv-group. Suppose that
(H, ·) and (K, ◦) are two Hv-group. A function f : H −→ K is called a
homomorphism if f(a · b) ⊆ f(a) ◦ f(b) for all a and b in H. We say that
f is a good homomorphism if for all a and b in H, f(a · b) = f(a) ◦ f(b).
If (H, ·) is an Hv-group and ρ ⊆ H ×H is an equivalence, we set

A
=
ρ B ⇔ a ρ b, ∀a ∈ A,∀b ∈ B,
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for all pairs (A,B) of non-empty subsets of H.
The relation ρ is called strongly regular on the left(on the right) if

x ρ y ⇒ a · x
=
ρ a · y ( x ρ y ⇒ x · a

=
ρ y · a, respectively), for all

(x, y, a) ∈ H3. Moreover, ρ is called strongly regular if it is strongly
regular on the right and on the left.

Theorem 1.1. If (H, ·) is an Hv-group and ρ is a strongly regular re-
lation on H, then the quotient H/ρ is a group under the operation:

ρ(x)⊗ ρ(y) = ρ(z), for all z ∈ x · y.

We denote ρ(x) by x̄ and instead of x̄⊗ ȳ we write x̄ȳ. Let (H, ·) be
an Hv-group and U be the set of all finite products of elements of H.
For all n > 1, we define the relation βn on H, as follows:

a βn b⇔ ∃u ∈ U : {a, b} ⊆ u,

and β =
n⋃
i=1

βn, where β1 = {(x, x) | x ∈ H} is the diagonal relation on

H. Note that, in general, for an Hv-group may be β 6= β∗, where β∗ is
the transitive closure of β. The relation β∗ is the smallest equivalence
relation on an Hv-group H, such that the quotient H/β∗ is a group.

Definition 1.2. Let H be a weak Hv-group and X be a non-empty
subset of H. We define Ass(X) = {(x1, x2) ∈ H2|(xσ(1) · xσ(2)) · xσ(3) =
xσ(1) · (xσ(2) · xσ(3)),∀x3 ∈ X,∀σ ∈ S3}. Moreover, if Ass(X) = H ×H,
we say that X is a full associative subset of H.

Remark 1.3. An Hv-group H is called a hypergroup if and only if
Ass(H) = H2.

2. On the strongly regular relation π∗

In this section, we introduce and analyze a new definition of left and
right commutators in Hv-group. Using commutators we introduce a new
strongly equivalence relation π∗ on anHv-groupH such that the set of all
equivalence classes; π∗(x), x ∈ H is a metabelian group. Moreover, we
introduce metabelian Hv-groups and invetigate some of their properties.

Definition 2.1. Let (H, ·) be an Hv-group and (x, y) ∈ H2. We define

(1) [x, y]r = {h ∈ H | x · y ∩ (y · x) · h ∩ y · (x · h) 6= ∅} ;
(2) [x, y]

l
= {h ∈ H | x · y ∩ h · (y · x) ∩ (h · y) · x 6= ∅} ;

(3) [x, y] = [x, y]r ∪ [x, y]
l
.
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From now on we call [x, y]r , [x, y]
l

and [x, y] right commutator x and
y, left commutator x and y and commutator x and y in H, respectively.
Also we will denote [H,H]r , [H,H]

l
and [H,H] the sets of all right

commutators, left commutators and commutators in H, respectively.

Example 2.2. Suppose that H = {0, 1, 2}. Consider the Hv-group (H, ·),
where · is defined on H as follows:

· 0 1 2
0 1, 2 0, 1 0
1 0, 2 1 2
2 0 1, 2 1, 2

We can see that {1} = [1, 1]r 6= [1, 1]l = H.

Example 2.3. Suppose that H = {0, 1, 2, 3}. Consider the commutative
Hv-group (H, ·), where · is defined on H as follows:

· 0 1 2 3
0 0 1 0, 2 3
1 1 2 3 0
2 0, 2 3 0 1
3 3 0 1 0, 2

In this case we have [1, 3]r = {0, 2} and [1, 3]l = {0} and so [1, 3]r 6=
[1, 3]l.

Notice that the above example is a commutative Hv-group while
[x, y]r 6= [x, y]l 6= [x, y], for some (x, y) ∈ H2.

Proposition 2.4. Let (H, ·) be a commutative Hv-group such that (x ·
y) · z ⊆ x · (y · z), for all (x, y, z) ∈ H3. Then [y, x]r = [x, y]r = [x, y]l =
[y, x]l = [y, x] = [x, y], for all (x, y) ∈ H2.

Proof. The proof is strightforward. �

Corollary 2.5. Let (H, ·) be a commutative hypergroup. Then, [y, x]r =
[x, y]r = [x, y]l = [y, x]l = [y, x] = [x, y], for all (x, y) ∈ H2.

Let (H, ·) be an Hv-group, n ∈ N and (x1, ..., xn) ∈ Hn. We mean
by F(x1, ..., xn) the set of all finite possible products of x1, ..., xn, re-
spectively. For example F(x1, x2) = {x1 · x2}, F(x1, x2, x3) = {x1 ·
(x2 · x3), (x1 · x2) · x3} and F(x1, x2, x3, x4) = {(x1 · (x2 · x3)) · x4, ((x1 ·
x2) · x3) · x4, x1 · (x2 · (x3 · x4)), x1 · ((x2 · x3) · x4), (x1 · x2) · (x3 · x4)}.
Thus we have U =

⋃
(x1,...,xn)∈Hn F(x1, ..., xn). Moreover, suppose that

u ∈ F(x1, ..., xn) if and only if uσ ∈ F(xσ(1), ..., xσ(n)), for every σ ∈ Sn.
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Definition 2.6. Let H be an Hv-group. Suppose that π =
⋃
m≥1

πm,

where π1 is the diagonal relation and for every integer m > 1, πm is the
relation defined as follows:

x πm y ⇔ ∃u ∈ F(x1, ..., xm), ∃σ ∈ Sm : σ(i) = i if xi /∈ ∪[H,H] such that
x ∈ u and y ∈ uσ.

Obviously, the relation π is reflexive and symmetric. Now, let π∗ be
the transitive closure of π.

Theorem 2.7. Let (H, ·) be an Hv-group. The relation π∗ is a strongly
regular relation.

Proof. We know that π∗ is an equivalence relation. In order to prove
that it is strongly regular, first we have to show that:

(2.1) xπy ⇒ x · z
=

π∗ y · z, z · x
=

π∗ z · y,
for every z ∈ H. Suppose that xπy. Then, there exists m ∈ N such that
xπmy. Hence, ∃u ∈ F(x1, ..., xm), ∃σ ∈ Sm : σ(i) = i if xi /∈ ∪[H,H]
such that x ∈ u and y ∈ uσ.

Suppose that z ∈ H. We have x · z ⊆ (u) · z, y · z ⊆ (uσ) · z and
σ(i) = i if xi /∈ ∪[H,H]. Now, suppose that xm+1 = z and we define
the permutation σ′ ∈ Sm+1 as follows:

σ′(i) = σ(i), for all 1 ≤ i ≤ m and σ′(m+ 1) = m+ 1.

Now let u′ = (u) · z ∈ F(x1, ..., xm+1). Thus, x · z ⊆ u′ and y · z ⊆ u′σ′

such that σ′(i) = i if xi /∈ ∪[H,H]. Therefore, x · z
=
π∗ y · z. Similarly,

we have z · x
=
π∗ z · y. Now, if xπ∗y then there exists k ∈ N and (x =

u0, u1, . . . , uk = y) ∈ Hk+1 such that x = u0πu1π . . . πuk−1πuk = y.
Hence, by the above results, we obtain

x · z = u0 · z
=

π∗ u1 · z
=

π∗ u2 · z
=

π∗ . . .
=

π∗ uk−1 · z
=

π∗ uk · z = y · z

and so x · z
=
π∗ y · z.

Similarly, we can prove that z · x
=
π∗ z · y. Therefore, π∗ is a strongly

regular relation on H. �

If H is an Hv-group we denote Met(H) =
⋃
x∈∪[H,H],y∈H

[x, y].

Definition 2.8. The Hv-group H is called metabelian if and only if
Met(H) = ωH , where ωH is the kernel of the canonical homomorphism
ϕH : H −→ H/β∗; i.e. ωH = ϕ−1(1

H/β∗ ).
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Example 2.9. Suppose thatH = {0, 1, 2, 3}. Consider the non-commutative
Hv-group (H, ·), where · is defined on H as follows:

· 0 1 2 3
0 0 1, 2 2 3
1 1 1 H 3
2 2 0, 1, 2 2 2, 3
3 3 1, 3 3 H

In this case we can see that ∪[H,H] = ωH = H, and so Met(H) = ωH
which means that H is a metabelian Hv-group.

Remark 2.10. If G is a group then G is a metabelian group if and only
if [[x, y], z] = 1G, for every (x, y, z) ∈ G3.

Theorem 2.11. Let (H, ·) be an Hv-group. Then,

(i) H/π∗ is a metabelian group;
(ii) π is the smallest eqivalent relation such that H/π∗ is a metabelian

group.

Proof. (i). According toTheorem 1.1H/π∗ is a group. Now let (x̄, ȳ, z̄) ∈
(H/π∗)3. We shall prove that [[x̄, ȳ], z̄] = 1

H/π∗ . To do this suppose that

ā = [x̄, ȳ]. Without lossing the generality we have x · y ∩ (y · x) · a 6= ∅
and so a ∈ [H,H]. Therefore a · zπ∗z · a so āz̄ = z̄ā. Consequently
[[x̄, ȳ], z̄] = 1

H/π∗ , which means that Met(H/π∗) = {1
H/π∗} = ωH/π∗ .

(ii). Suppose that ρ is a strongly regular relation on H such that H/ρ
is a metabelian group. Now let aπb so there exists u ∈ F(x1, ..., xm),
and there exist σ ∈ Sm such that σ(i) = i if xi /∈ ∪[H,H] and x ∈ u
and y ∈ uσ. If xi ∈ [H,H] then there exists (s, t) ∈ H2 such that
s · t∩ (t · s) ·xi∩ t · (s ·xi) 6= ∅ or s · t∩xi · (t · s)∩ (xi · t) · s 6= ∅. Therefore
ρ(xi) = [ρ(s), ρ(t)] or ρ(xi) = [ρ(s), ρ(t)]−1 and so ρ(xi) commutes with
all elements of H/π∗. Hence ρ(a) = ρ(b) and so π ⊆ ρ. Consequently
π∗ ⊆ ρ holds. �

Proposition 2.12. The Hv-group H is metabelian if and only if β∗ =
π∗.

Proof. Suppose that H is a metabelian Hv-group. We need to prove
that H/β∗ is a metabelian group. Let a ∈ ∪[H,H] and x ∈ H. If
y ∈ [a, x] then y ∈ ωH . Also we have a · x ∩ (x · a) · y ∩ x · (a · y) 6= ∅. or
a·x∩y·(x·a)∩(y·x)·a 6= ∅. Consequently β∗(a)β∗(x) = β∗(x)β∗(a). Thus
we have β∗ ⊇ π∗ and so β∗ = π∗. Conversely suppose that β∗ = π∗ we
shall prove that Met(H) =

⋃
x∈∪[H,H],y∈H

[x, y] ⊆ ωH . To do this suppose
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that a ∈ ∪[H,H] and x ∈ H. If y ∈ [a, x]r then a·x∩(x·a)·y∩x·(a·y) 6= ∅.
Because π∗(a)π∗(x) = π∗(x)π∗(a) we conclude that π∗(y) = β∗(y) =
1H/β∗ . Hence y ∈ ωH . Similarly if y ∈ [a, x]r we have a similar result. �

Let (H, ·) be an Hv-group. Then, we define Zv(H) = {h|x ·h∩h ·x 6=
∅, ∀x ∈ H} and we call it the weak center of H.

Theorem 2.13. Let (H, ·) be an Hv-group and ∪[H,H] ⊆ Zv(H). Then,
H is metabelian.

Proof. Suppose that (H, ·) be an Hv-group and ∪[H,H] ⊆ Zv(H), we
need to prove that π ⊆ β∗. To do this suppose that aπb so there exists
u ∈ F(x1, ..., xm), and there exists σ ∈ Sm such that σ(i) = i if xi /∈
[H,H] and x ∈ u and y ∈ uσ. By induction on m we show that u∩uσ 6= ∅.
Because ∪[H,H] ⊆ Zv(H), for m = 2 it is obvious. Now let it is true for
all k < m. Because u = u′·u′′ and uσ = u′σ1 ·u

′′
σ2 , where u′ ∈ F(x1, ..., xk),

and u′′ ∈ F(xk+1, ..., xm), for some k < m and σ1, σ2 ∈ Sm, we have
u′ ∩ u′σ1 6= ∅ and u′′ ∩ u′′σ2 6= ∅. Therefore u ∩ uσ 6= ∅ and so we have
aβ∗b. Consequently β∗ = π∗. �

Let (G, ·) be a group and R be an equivalence relation on G. In
Ḡ = G/R consider the hyperoperation � defined by x̄� ȳ = {z̄|z ∈ x̄· ȳ},
where x̄ denotes the equivalence class of the element x. Then, (Ḡ,�) is
an Hv−group which is not necessary a hypergroup.

Proposition 2.14. Let (G, ·) be a group and R be an equivalence rela-
tion on G and (Ḡ,�) be the associated Hv−group. Then,

[G,G] = {z̄|z̄ ∩ [G,G] 6= ∅} ⊆ ∪[Ḡ, Ḡ].

Proof. Let ā ∈ [G,G]. Then, ā ∩ [G,G] 6= ∅, thus there exist g ∈ ā and
x, y ∈ G such that g = x−1 · y−1 · x · y. We show that

x̄� ȳ ∩ (ȳ � x̄)� ā ∩ ȳ � (x̄� ā) 6= ∅.
We have y · x ∈ ȳ · x̄, then y · x ∈ ȳ � x̄ and so we have

x · y = (y · x) · x−1 · y−1 · x · y = (y · x) · g ∈ y · x · ā.
Therefore x · y ∈ (ȳ � x̄) � ā. Also, x ∈ x̄, y ∈ ȳ, then x · y ∈ x̄ · ȳ,
so x · y ∈ x̄ � ȳ. Thus x · y ∈ x̄ � ȳ ∩ (ȳ � x̄) � ā. On the other hand

y−1 · x · y = x · x−1 · y−1 · x · y = x · g ∈ x̄ · ā, then y−1 · x · y ∈ x̄� ā. So
x · y = y · y−1 · x · y ∈ ȳ · y−1 · x · y ⊆ ȳ · (x̄� ā). Thus x · y ∈ ȳ� (x̄� ā).
Therefore

x · y ∈ x̄� ȳ ∩ (ȳ � x̄)� ā ∩ ȳ � (x̄� ā) 6= ∅.
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Then ā ∈ [x, y]r, so ā ∈ ∪[Ḡ, Ḡ]. �

In the following example we show that in Proposition 2.14 the equality
does not necessarily hold.

Example 2.15. Consider the group G = Z6 = {0, 1, 2, 3, 4, 5}. Let the
partion {{0, 1, 2}, {3, 4, 5}} of Z6. In this case we have Ḡ = G/R =
{0̄, 3̄}, because

0̄� 3̄ = {z̄|z ∈ {0, 1, 2} · {3, 4, 5}} = {0̄, 3̄}.
For all a ∈ G we have

0̄� 3̄ ∩ (0̄� 3̄)� ā ∩ 3̄� (0̄� ā) 6= ∅.
Therefore, ∪[Ḡ, Ḡ] = Ḡ = {0̄, 3̄}, but 3̄ ∩ [G,G] = 3̄ ∩ {0} = ∅.
Definition 2.16. Let R be an equivalence relation on G. R is called
good if and only if [G,G] ⊇ ∪[Ḡ, Ḡ].

Remark 2.17. If R is a good relation on (G, ·), then by Proposition 2.14

we have [G,G] = ∪[Ḡ, Ḡ].

Proposition 2.18. Let R be an equivalence relation on (G, ·) such that
for every x ∈ G there exists y ∈ [G,G] that (x, y) ∈ R. Then, R is a
good relation.

Proof. Suppose that b̄ ∈ [Ḡ, Ḡ], then b̄ = ḡ, where g ∈ [G,G]. So b̄ ∩
[G,G] 6= ∅. Therefore b ∈ [G,G]. �

Theorem 2.19. Let (G, ·) be a metabelian group and R be a good rela-
tion on G. Then Ḡ is a metabelian Hv-group.

Proof. Let ā ∈ ∪[Ḡ, Ḡ] and x̄ ∈ Ḡ. we prove that ā� x̄∩ x̄� ā 6= ∅. To do

this end, because R is a good relation we have ā ∈ [G,G]. So there exists
g ∈ [G,G] such that ā = ḡ. Because G is a metabelian group we have
g ·x = x ·g. Consequently g ·x ∈ ḡ · x̄ = ā · x̄ and x ·g ∈ x̄ · ḡ = x̄ · ā, and so
g · x ∈ ā� x̄∩ x̄� ā which means ā� x̄∩ x̄� ā 6= ∅. So ∪[Ḡ, Ḡ] ⊆ Zv(Ḡ).
Using Theorem 2.13 we conclude that Ḡ is a metabelian Hv-group. �

3. On metableian weak polygroups

In this section we study the notion of commutators for the class of
weak polygroups introduced in [5].

Definition 3.1. ( [5]) The Hv-group P is called a weak polygroup and
denoted by 〈P, ·, e,−1 〉, where −1 : P → P , x  x−1 is a map, if the
following conditions hold:
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(1) P has a scalar identity e; (i.e., e ·x = x · e = x, for every x ∈ P );
(2) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

Remark 3.2. A weak polygroup P is called a polygroup if and only if
Ass(P ) = P 2.

Definition 3.3. A non-empty subset K of a weak polygroup 〈P, ·, e,−1 〉
is a weak subpolygroup of P if

(1) x, y ∈ K implies x · y ⊆ K;
(2) x ∈ K implies x−1 ∈ K.

Definition 3.4. Let X be a non-empty subset of a weak polygroup
〈P, ·, e,−1 〉. Let {Ai| i ∈ J} be the family of all weak subpolygroups
of P which contain X. Then ∩i∈JAi is called the weak subpolygroup
generated by X. This weak subpolygroup is denoted by < X >. If
X = {x1, x2, ..., xn}, then the weak subpolygroup < X > is denoted by
< x1, x2, ..., xn >. In a special case < ∪[P, P ]r >, < ∪[P, P ]

l
> and

< ∪[P, P ] > are denoted by P ′
r
, P ′

l
, P ′, respectively.

Proposition 3.5. Let 〈P, ·, e,−1 〉 be a weak polygroup. Then, for all
(x, y) ∈ P 2 we have

(1) [x, y]r ⊆ (x−1 · y−1) · (x · y) ∩ x−1 · (y−1 · (x · y));
(2) [x, y]

l
⊆ (x · y) · (x−1 · y−1) ∩ ((x · y) · x−1) · y−1.

Proposition 3.6. Let 〈P, ·, e,−1 〉 be a weak polygroup. Then, P is weak
commutative if and only if e ∈ [x, y]r (resp. e ∈ [x, y]l), for all (x, y) ∈
P 2.

Proof. Let e ∈ [x, y]r, for all (x, y) ∈ P 2. Then, e ∈ (x−1 · y−1) · (x · y),
for all (x, y) ∈ P 2 and so x · y ∩ y · x 6= ∅ for all (x, y) ∈ P 2, that means
P is weak commutative. The converse is obvious. �

Proposition 3.7. Let 〈P, ·, e,−1 〉 be a weak polygroup that x · (y · z) ⊆
(x · y) · z, for all (x, y, z) ∈ P 3. Then, for all (x, y) ∈ P 2 we have

(1) [x, y]r = [x−1, y−1]
l
;

(2) P ′ = P ′
r

= P ′
l
.

Proof. 1) Let (x, y) ∈ P 2 and u ∈ [x, y]r . Then, x·y∩(y·x)·u∩y·(x·u) 6= ∅
so there exists t ∈ P such that t ∈ x · y ∩ (y · x) · u ∩ y · (x · u) thus
t ∈ x · y ∩ v · u for some v ∈ y · x. Since P is a weak polygroup then we
have v−1 ∈ x−1 · y−1 ∩ u · (y−1 · x−1) ⊆ x−1 · y−1 ∩ u · (y−1 · x−1) ∩ (u ·
y−1) · x−1 therefore u ∈ [x, y]

l
hence [x, y]r ⊆ [x−1, y−1]

l
. Similarly we

have [x−1, y−1]
l
⊆ [x, y]r .

2) Follows from (1). �
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Proposition 3.8. Let 〈P, ·, e,−1 〉 be a weak polygroup that ∪[P, P ] is a
full associative subset of P. Then, for all (x, y) ∈ P 2 we have

(1) [x, y]r = [x−1, y−1]
l
;

(2) P ′ = P ′
r

= P ′
l
.

Proof. 1) Let (x, y) ∈ P 2 and u ∈ [x, y]r . Then, x · y ∩ (y · x) · u 6= ∅ so
there exists t ∈ P such that t ∈ x · y ∩ (y · x) · u thus t ∈ x · y ∩ v · u
for some v ∈ y · x. Since P is a weak polygroup then we have v−1 ∈
x−1 ·y−1∩u · (y−1 ·x−1). Therefore u ∈ [x, y]

l
hence [x, y]r ⊆ [x−1, y−1]

l
.

Similarly we have [x−1, y−1]
l
⊆ [x, y]r .

2) Follows from (1). �

Corollary 3.9. If P is a polygroup, then for all (x, y) ∈ P 2 we have

(1) [x, y]r = [x−1, y−1]
l
;

(2) P ′ = P ′
r

= P ′
l
.

4. conclusion

In this paper we introduce and analyze a generalization of the notion
of commutators in Hv−groups. Several properties are investigated such
as introduceing a new strongly equivalence relation π∗ on an Hv-group
H such that the quotient H/π∗, the set of all equivalence classes, is
a metabelian group. This research can be continuated, for instance in
study of some particular classes of Hv−groups.
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