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FACTORIZATION PROPERTIES AND

GENERALIZATION OF MULTIPLIERS IN MODULE

ACTIONS
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Abstract. In this paper, We establish some necessary and suffi-
cient conditions for relationships between the topological centers of
module actions and factorization properties of them and we give a
new definition for multiplier in module actions with some results.
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1. Introduction

Hu, Neufang and Ruan in [15], have been studied multiplier on new
class of Banach algebras. They showed that how a multiplier on Banach
algebra A to be implemented by an element from A is determined by its
behavior on A∗ and A∗∗, respectively. In this paper, we study this topic
on module actions with some conclusions. In 1951 Arens shows that
the second dual A∗∗ of Banach algebra A endowed with the either Arens
multiplications is a Banach algebra, see [1]. The constructions of the two
Arens multiplications in A∗∗ lead us to definition of topological centers
for A∗∗ with respect to both Arens multiplications. The topological cen-
ters of Banach algebras and module actions have been studied in [3, 5,
6, 9, 15, 16, 17, 18, 19, 24, 25]. In this paper, we extend some problems
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from [6, 16, 22] to the general criterion on module actions with some
results in group algebras. The extension of bilinear maps on normed
space and the concept of regularity of bilinear maps have been studied
by [1, 2, 5, 6, 9]. We start by recalling these definitions as follows.
Let X,Y, Z be normed spaces and m : X×Y → Z be a bounded bilinear
mapping. Arens in [1] offers two natural extensions m∗∗∗ and mt∗∗∗t of
m from X∗∗ × Y ∗∗ into Z∗∗ as following
1. m∗ : Z∗ × X → Y ∗, given by ⟨m∗(z′, x), y⟩ = ⟨z′,m(x, y)⟩ where
x ∈ X, y ∈ Y , z′ ∈ Z∗,
2. m∗∗ : Y ∗∗×Z∗ → X∗, given by ⟨m∗∗(y′′, z′), x⟩ = ⟨y′′,m∗(z′, x)⟩ where
x ∈ X, y′′ ∈ Y ∗∗, z′ ∈ Z∗,
3. m∗∗∗ : X∗∗×Y ∗∗ → Z∗∗, given by ⟨m∗∗∗(x′′, y′′), z′⟩= ⟨x′′,m∗∗(y′′, z′)⟩
where x′′ ∈ X∗∗, y′′ ∈ Y ∗∗, z′ ∈ Z∗.
The mapping m∗∗∗ is the unique extension of m such that
x′′ → m∗∗∗(x′′, y′′) from X∗∗ into Z∗∗ is weak∗ − to−weak∗ continuous
for every y′′ ∈ Y ∗∗, but the mapping y′′ → m∗∗∗(x′′, y′′) is not in general
weak∗− to−weak∗ continuous from Y ∗∗ into Z∗∗ unless x′′ ∈ X. Hence
the first topological center of m may be defined as following

Z1(m) = {x′′ ∈ X∗∗ : y′′ → m∗∗∗(x′′, y′′)

is weak∗ − to− weak∗ continuous}.
Let now mt : Y ×X → Z be the transpose of m defined by mt(y, x) =
m(x, y) for every x ∈ X and y ∈ Y . Then mt is a continuous bilin-
ear map from Y × X to Z, and so it may be extended as above to
mt∗∗∗ : Y ∗∗ × X∗∗ → Z∗∗. The mapping mt∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗ in
general is not equal to m∗∗∗, see [1], if m∗∗∗ = mt∗∗∗t, then m is called
Arens regular. The mapping y′′ → mt∗∗∗t(x′′, y′′) is weak∗ − to−weak∗

continuous for every y′′ ∈ Y ∗∗, but the mapping x′′ → mt∗∗∗t(x′′, y′′)
from X∗∗ into Z∗∗ is not in general weak∗ − to− weak∗ continuous for
every y′′ ∈ Y ∗∗. So we define the second topological center of m as

Z2(m) = {y′′ ∈ Y ∗∗ : x′′ → mt∗∗∗t(x′′, y′′)

is weak∗ − to− weak∗ continuous}.
It is clear that m is Arens regular if and only if Z1(m) = X∗∗ or Z2(m) =
Y ∗∗. Arens regularity of m is equivalent to the following

lim
i
lim
j
⟨z′,m(xi, yj)⟩ = lim

j
lim
i
⟨z′,m(xi, yj)⟩,

whenever both limits exist for all bounded sequences (xi)i ⊆ X , (yi)i ⊆
Y and z′ ∈ Z∗, see [5].
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The mapping m is left strongly Arens irregular if Z1(m) = X and m is
right strongly Arens irregular if Z2(m) = Y .
Let now B be a Banach A− bimodule, and let

πℓ : A×B → B and πr : B ×A → B.

be the left and right module actions of A on B, respectively. Then B∗∗

is a Banach A∗∗ − bimodule with module actions

π∗∗∗
ℓ : A∗∗ ×B∗∗ → B∗∗ and π∗∗∗

r : B∗∗ ×A∗∗ → B∗∗.

Similarly, B∗∗ is a Banach A∗∗ − bimodule with module actions

πt∗∗∗t
ℓ : A∗∗ ×B∗∗ → B∗∗ and πt∗∗∗t

r : B∗∗ ×A∗∗ → B∗∗.

We may therefore define the topological centers of the left and right
module actions of A on B as follows:

ZB∗∗(A∗∗) = Z(πℓ) = {a′′ ∈ A∗∗ : the map b′′ → π∗∗∗
ℓ (a′′, b′′) :

B∗∗ → B∗∗ is weak∗ − to− weak∗ continuous}
Zt
B∗∗(A∗∗) = Z(πt

r) = {a′′ ∈ A∗∗ : the map b′′ → πt∗∗∗
r (a′′, b′′) :

B∗∗ → B∗∗ is weak∗ − to− weak∗ continuous}
ZA∗∗(B∗∗) = Z(πr) = {b′′ ∈ B∗∗ : the map a′′ → π∗∗∗

r (b′′, a′′) :

A∗∗ → B∗∗ is weak∗ − to− weak∗ continuous}
Zt
A∗∗(B∗∗) = Z(πt

ℓ) = {b′′ ∈ B∗∗ : the map a′′ → πt∗∗∗
ℓ (b′′, a′′) :

A∗∗ → B∗∗ is weak∗ − to− weak∗ continuous}
We note also that if B is a left(resp. right) Banach A − module and
πℓ : A × B → B (resp. πr : B × A → B) is left (resp. right) module
action of A on B, then B∗ is a right (resp. left) Banach A−module.
We write ab = πℓ(a, b), ba = πr(b, a), πℓ(a1a2, b) = πℓ(a1, a2b),
πr(b, a1a2) = πr(ba1, a2), π

∗
ℓ (a1b

′, a2) = π∗
ℓ (b

′, a2a1),
π∗
r (b

′a, b) = π∗
r (b

′, ab), for all a1, a2, a ∈ A, b ∈ B and b′ ∈ B∗ when there
is no confusion.
Regarding A as a Banach A − bimodule, the operation π : A × A →
A extends to π∗∗∗ and πt∗∗∗t defined on A∗∗ × A∗∗. These extensions
are known, respectively, as the first(left) and the second (right) Arens
products, and with each of them, the second dual space A∗∗ becomes
a Banach algebra. Recall that a left approximate identity (= LAI)
[resp. right approximate identity (= RAI)] in Banach algebra A is a
net (eα)α∈I in A such that eαa −→ a [resp. aeα −→ a]. We say that a
net (eα)α∈I ⊆ A is a approximate identity (= AI) for A if it is LAI and
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RAI for A. If (eα)α∈I in A is bounded and AI for A, then we say that
(eα)α∈I is a bounded approximate identity (= BAI) for A. Let A have
a BAI. If the equality A∗A = A∗, (AA∗ = A∗) holds, then we say that
A∗ factors on the left (right). If both equalities A∗A = AA∗ = A∗ hold,
then we say that A∗ factors on both sides.

2. Factorization property and Generalization of
Multipliers

Definition 2.1. Let B be a left Banach A−module. Then B is said to
be left weakly completely continuous (= Lwcc), if for each a ∈ A, the
mapping b → πℓ(a, b) from B into B is weakly compact. The definition
of right weakly completely continuous (= Rwcc) is similar. We say that
B is a weakly completely continuous (= wcc), if B is Lwcc and Rwcc.

Theorem 2.2. Let B be a left Banach A −module and for all a ∈ A,
La be the linear mapping from B into itself such that Lab = πℓ(a, b) for
all b ∈ B. Then AB∗∗ ⊆ B if and only if La is weakly compact.

Proof. Assume that AB∗∗ ⊆ B. We take L∗
a as the adjoint of La. It

is easy to show that L∗
ab

′ = π∗
ℓ (b

′, a) for all b′ ∈ B∗. Then for every
b′′ ∈ B∗∗, we have

⟨L∗∗
a b′′, b′⟩ = ⟨b′′, L∗

ab
′⟩ = ⟨b′′, π∗

ℓ (b
′, a)⟩ = ⟨π∗∗

ℓ (b′′, b′), a⟩

= ⟨a, π∗∗
ℓ (b′′, b′)⟩ = ⟨π∗∗∗

ℓ (a, b′′), b′⟩.
It follows that

L∗∗
a b′′ = π∗∗

ℓ (a, b′′).

Let (b′α)α ⊆ B∗ such that b′α
w∗
→ b′. Since π∗∗∗

ℓ (a, b′′) ∈ B, we have

⟨b′′, L∗
ab

′
α⟩ = ⟨L∗∗

a b′′, b′α⟩ = ⟨π∗∗∗
ℓ (a, b′′), b′α⟩ = ⟨π∗∗∗

ℓ (a, b′′), b′⟩ = ⟨b′′, L∗
ab

′⟩.

We conclude that L∗
a is weak∗ − to− weak continuous, so La is weakly

compact.
Conversely, assume that b′′ ∈ B∗∗. Then by Goldstine,s theorem [9,

P.424-425], there is a net (bα)α ⊆ B such that bα
w∗
→ b′′. Since for all

a ∈ A, the operator La is weakly compact, there is a subnet (bαβ
)
β

from (bα)α such that (La(bαβ
))β is weakly convergence to some point
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of B. Since bα
w∗
→ b′′, (La(bαβ

) = π(a, bαβ
))β is weakly convergence to

π∗∗∗
ℓ (a, b′′). Consequently, for all b′ ∈ B∗, we have

⟨π∗∗∗
ℓ (a, b′′), b′⟩ = limβ⟨b′, π(a, bαβ

)⟩ = limβ⟨b′, Labαβ
)⟩.

It follows that π∗∗∗
ℓ (a, b′′) ∈ B. □

Corollary 2.3. i) Suppose that B is a left Banach A−module. Then
AB∗∗ ⊆ B if and only if B is Lwcc.
ii) Suppose that B is a right Banach A − module. Then B∗∗A ⊆ B if
and only if B is Rwcc.

Corollary 2.4. Let A be a WSC Banach algebra with a BAI. If A is
Arens regular and A is a left ideal in its second dual, then A is reflexive.

Proof. Since A is a left ideal in A∗∗, by using proceeding corollary, A is
Lwcc. Then by using Corollary 2.8 from [16], we are done. □

Example 2.5. i) Let G be a compact group. Then we know that L1(G)
is a left ideal L1(G)∗∗ (resp. M(G)∗∗), and so by Corollary 2.4 (resp.
Corollary 2.3), L1(G) (resp. M(G)) is a Lwcc.
ii) Corollary 2.4 shows that if G is a finite group. Then L1(G) and M(G)
are reflexive.
iii) Let G be a locally compact Hausdorff group. Let X be a subsemi-
group of G which is the clouser of an open subset, and which contains
the identity e of G. Let Z be a closed two-sided proper ideal in X with
the property that X\Z is relatively compact. Let S be the quotient of X
obtained by identifying all points of Z, more formally, for x, y ∈ X write
x ∼ y if either x = y or both x ∈ Z and y ∈ Z and write S = X/ ∼.
By using Corollary 3.3 from [21], L1(S) is an ideal L1(S)∗∗, and so by
using Corollary 2.3, L1(S) is a Lwcc.

Theorem 2.6. Let A be a WSC Banach algebra with a BAI. If A is
Arens regular and A is a right ideal in its second dual, then A is reflexive.

Proof. Proof is similar to Corollary 2.4. □

Definition 2.7. Suppose that B is a left Banach A − module. Let
(eα)α ⊆ A be left approximate identity for A. We say that (eα)α is
weak∗ left approximate identity (= W ∗LAI) for B∗, if for all b′ ∈ B∗,
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we have πℓ(eα, b
′)

w∗
→ b′. The definition of the weak∗ right approximate

identity (= W ∗RAI) is similar.
We say that (eα)α is a weak∗ approximate identity (= W ∗AI) for B∗,
if B∗ has weak∗ left and right approximate identity that are equal.

Ülger in [22] shows that for a Banach algebra A with a BAI, if A is
a bisded ideal in its second dual, then AA∗ = A∗A and if A is Arens
regular, then A∗ factors on the both side. In the following, we extend
these problems for module actions with some results in group algebras.
Let B be a left Banach A − module. Then, b′ ∈ B∗ is said to be left
weakly almost periodic functional if the set {πℓ(b′, a) : a ∈ A, ∥ a ∥≤ 1}
is relatively weakly compact. We denote by wapℓ(B) the closed subspace
of B∗ consisting of all the left weakly almost periodic functionals in B∗.
The definition of the right weakly almost periodic functional (= wapr(B))
is the same.
By [5, 16, 20], the definition of wapℓ(B) is equivalent to the following

⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = ⟨πt∗∗∗t

ℓ (a′′, b′′), b′⟩
for all a′′ ∈ A∗∗ and b′′ ∈ B∗∗. Thus, we can write

wapℓ(B) = {b′ ∈ B∗ : ⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = ⟨πt∗∗∗t

ℓ (a′′, b′′), b′⟩
for all a′′ ∈ A∗∗, b′′ ∈ B∗∗}.

By using [20], b′ ∈ wapℓ(B) if and only if for each sequence (an)n ⊆ A
and (bm)m ⊆ B and each b′ ∈ B∗, we have

lim
m

lim
n
⟨b′, πℓ(an, bm)⟩ = lim

n
lim
m

⟨b′, πℓ(an, bm)⟩,

whenever both the iterated limits exist.
It is clear that wapℓ(B) = B∗ if and only if Zℓ

A∗∗(B∗∗) = B∗∗.

Definition 2.8. Let B be a left Banach A−module and A has a BAI
as (eα)α. We introduce the following subspace of B∗.

ℓ(B∗) = {b′ ∈ B∗ : π∗
ℓ (b

′, eα)
w→ b′}.

Let B be a right Banach A−module and A has a BAI as (eα)α. Such
as proceeding definition, we introduce the following subspace of B∗.

ℜ(B∗) = {b′ ∈ B∗ : πt∗
r (b′, eα)

w→ b′}.

If ℓ(B∗) = B∗ (resp. ℜ(B∗) = B∗), then it is clear that (eα)α ⊆ A is
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a weakly right (resp. left) approximate identity for B∗. Therefore by
using Lemma 2.8, ℓ(B∗) = B∗ (resp. ℜ(B∗) = AB∗) if and only if B∗

factors on the left (resp. right).

Theorem 2.9. Let B be a left Banach A−module and A has a RBAI
as (eα)α. Then we have the following assertions.
i) ℓ(B∗) = B∗A.
ii) wapℓ(B) ⊆ ℓ(B∗), if B∗ has W ∗LAI as A−module (eα)α.

Proof. i) Let πℓ : A × B → B be the left module action such that
πℓ(a, b) = ab for all a ∈ A and b ∈ B. Thus for every a ∈ A, b′ ∈ B∗ and
b′′ ∈ B∗∗, we have

⟨b′′, π∗
ℓ (b

′a, eα)⟩ = ⟨b′′, π∗
ℓ (b

′, aeα)⟩ = ⟨π∗∗
ℓ (b′′, b′), aeα⟩ → ⟨π∗∗

ℓ (b′′, b′), a⟩
= ⟨b′′, π∗

ℓ (b
′, a)⟩ = ⟨b′′, b′a⟩.

It follow that π∗
ℓ (b

′a, eα)
w→ b′a and so b′a ∈ ℓ(B∗). For reverse inclu-

sion, since by Cohen,s factorization theorem, we have B∗A is a closed
subspace of B∗, ℓ(B∗) ⊆ B∗A.

ii) Let b′ ∈ wapℓ(B). Since (eα)α is W ∗LAI for B∗, π∗
ℓ (b

′, eα)
w∗
→ b′. Also

the set {π∗
ℓ (b

′, eα) : α ∈ I} is relatively weakly compact which implies

that π∗
ℓ (b

′, eα)
w→ b′. □

Corollary 2.10. Let B be a left Banach A−module and A has a RBAI
and ZA∗∗(B∗∗) = B∗∗. If B∗ has W ∗LAI, then B∗ factors on the left.

Example 2.11.
i) Let G be a finite group. Then, by using proceeding corollary, we con-
clude that L∞(G)M(G) = RUC(G) = L∞(G).
ii) Let G be an infinite compact group. Since L1(G) has a BAI, L∞(G)
has a W ∗BAI. By using Proposition 4.4 from [22], we know that
wap(L1(G)) = C(G). Thus, by using proceeding theorem, C(G) ⊆
ℓ(L∞(G)).

Theorem 2.12. Let B be a right Banach A − module and A has a
LBAI as (eα)α. Then we have the following assertions.
i) ℜ(B∗) = AB∗.
ii) wapr(B) ⊆ ℜ(B∗), if B∗ has W ∗RAI A−module (eα)α.

Proof. Proof is similar to Theorem 2.9. □
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Corollary 2.13. Let B be a right Banach A − module and A has a
BAI as (eα)α. If B factors on the left, then wapr(B) ⊆ ℜ(B∗).

Proof. Let b ∈ B and b′ ∈ B∗. Since B factors on the left, there are
a ∈ A and y ∈ B such that b = ya. Then

⟨πt∗
r (b′, eα), b⟩ = ⟨b′, πt

r(eα, b)⟩ = ⟨b′, πr(b, eα)⟩ = ⟨b′, πr(ya, eα)⟩

= ⟨π∗
r (b

′, y), aeα⟩ → ⟨π∗
r (b

′, y), a⟩ = ⟨b′, ya⟩ = ⟨b′, b⟩.

It follows that πt∗
r (b′, eα)

w∗
→ b′. Then by using Theorem 2.12, we are

done. □

Corollary 2.14. Let B be a right Banach A − module and A has a
BAI and Zt

B∗∗(A∗∗) = B∗∗. If B∗ has W ∗RAI A − module, then B∗

factors on the right.

Theorem 2.15. We have the following statements.

(1) Let B be a left Banach A−module. If AB∗∗ ⊆ B, then B∗A ⊆
wapℓ(B).

(2) Let B be a right Banach A−module. If B∗∗A ⊆ B, then AB∗ ⊆
wapr(B).

Proof. (1) By Corollary 2.3, we know that B is Lwcc. Let a ∈ A and
suppose that La is the mapping from B into itself by definition
La(b) = πℓ(a, b) for each b ∈ B. By easy calculation, it is clear
that (La)

∗(b′) = π∗
ℓ (b

′, a). Since La is weakly compact, (La)
∗ is

weakly compact. Then the set

{(La)
∗(π∗

ℓ (b
′, x)) : x ∈ A1},

is weakly compact. Now let x ∈ A1 and y ∈ B. Then we have
the following equality

⟨(La)
∗(π∗

ℓ (b
′, x)), y⟩ = ⟨π∗

ℓ (b
′, x), La(y)⟩ = ⟨π∗

ℓ (b
′, x), πℓ(a, y)⟩

= ⟨π∗
ℓ (π

∗
ℓ (b

′, x), a), y)⟩.
It follows that the mapping π∗

ℓ (π
∗
ℓ (b

′, x), a) is weakly compact
for each a ∈ A and b′ ∈ B∗. Hence π∗

ℓ (b
′, x) ∈ wapℓ(B), and so

B∗A ⊆ wapℓ(B).
(2) Proof is similar to proceeding proof.

□
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Example 2.16.
i) Let G be a locally compact group and 1 ≤ p ≤ ∞. We know that
Lp(G) is the left Banach L1(G) − module under convolution as multi-
plication. Assume that for all f ∈ L1(G), Lf : Lp(G) → Lp(G) be the
linear mapping such that Lfg = f ∗ g whenever g ∈ Lp(G). Then, since
L1(G)Lp(G)∗∗ = L1(G)Lp(G) ⊆ Lp(G) for all 1 < p < ∞, by Theorem
2.14, Lf is weakly compact.
It is the same that for all µ ∈ M(G), the mapping Lµ from Lp(G) into
itself with Lµf = µ ∗ f is weakly compact whenever 1 < p < ∞.
ii) Let G be an infinite compact group. Then we know that L1(G) is an
ideal in its second dual, L1(G)∗∗. Therefore, by using proceeding theo-
rem and Proposition 3.3, from [22], we have LUC(G) = L∞(G)L1(G) ⊆
wap(L1(G)) and RUC(G) = L1(G)L∞(G) ⊆ wap(L1(G)). By using
Proposition 4.4 from [22], since wap(L1(G)) = C(G), we conclude that
LUC(G) ∩RUC(G) ⊆ C(G), and so LUC(G) ∩RUC(G) = C(G).

Let B be a Banach A− bimodule and a′′ ∈ A∗∗. We define the locally
topological centers of the left and right module actions of a′′ on B, re-
spectively, as follows

Zt
a′′(B

∗∗) = Zt
a′′(π

t
ℓ) = {b′′ ∈ B∗∗ : πt∗∗∗t

ℓ (a′′, b′′) = π∗∗∗
ℓ (a′′, b′′)},

Za′′(B
∗∗) = Za′′(π

t
r) = {b′′ ∈ B∗∗ : πt∗∗∗t

r (b′′, a′′) = π∗∗∗
r (b′′, a′′)}.

It is clear that ∩
a′′∈A∗∗

Zt
a′′(B

∗∗) = Zt
A∗∗(B∗∗) = Z(πt

ℓ),

∩
a′′∈A∗∗

Za′′(B
∗∗) = ZA∗∗(B∗∗) = Z(πr).

The definition of Zt
b′′(A

∗∗) and Zb′′(A
∗∗) for some b′′ ∈ B∗∗ are the same.

Theorem 2.17. Let B be a Banach left A − module and A has a

LBAI (eα)α ⊆ A such that eα
w∗
→ e′′ in A∗∗ where e′′ is a left unit for

A∗∗. Suppose that Zt
e′′(B

∗∗) = B∗∗. Then, B factors on the right with
respect to A if and only if e′′ is a left unit for B∗∗.

Proof. Assume that B factors on the right with respect to A. Then for
every b ∈ B, there are x ∈ B and a ∈ A such that b = ax. Then for
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every b′ ∈ B∗, we have

⟨π∗
ℓ (b

′, eα), b⟩ = ⟨b′, πℓ(eα, b)⟩ = ⟨π∗∗∗
ℓ (eα, b), b

′⟩
= ⟨π∗∗∗

ℓ (eα, ax), b
′⟩ = ⟨π∗∗∗

ℓ (eαa, x), b
′⟩

= ⟨eαa, π∗∗
ℓ (x, b′)⟩ = ⟨π∗∗

ℓ (x, b′), eαa⟩
→ ⟨π∗∗

ℓ (x, b′), a⟩ = ⟨b′, b⟩.

It follows that π∗
ℓ (b

′, eα)
w∗
→ b′ in B∗. Let b′′ ∈ B∗∗ and (bβ)β ⊆ B such

that bβ
w∗
→ b′′ in B∗∗. Since Zt

e′′(B
∗∗) = B∗∗, for every b′ ∈ B∗, we have

the following equality

⟨π∗∗∗
ℓ (e′′, b′′), b′⟩ = lim

α
lim
β
⟨b′, πℓ(eα, bβ)⟩

= lim
β

lim
α
⟨b′, πℓ(eα, bβ)⟩ = lim

β
⟨b′, bβ⟩

= ⟨b′′, b′⟩.
It follows that π∗∗∗

ℓ (e′′, b′′) = b′′, and so e′′ is a left unit for B∗∗.
Conversely, let e′′ be a left unit for B∗∗ and suppose that b ∈ B. Thren
for every b′ ∈ B∗, we have

⟨b′, π(eα, b)⟩ = ⟨π∗∗∗(eα, b), b
′⟩ = ⟨eα, π∗∗(b, b′)⟩ = ⟨π∗∗(b, b′), eα⟩

= ⟨e′′, π∗∗(b, b′)⟩ = ⟨π∗∗∗(e′′, b), b′⟩ = ⟨b′, b⟩.
Then we have π∗

ℓ (b
′, eα)

w→ b′ in B∗, and so by Cohen factorization
theorem we are done. □

Corollary 2.18. Let B be a Banach left A − module and A has a

LBAI (eα)α ⊆ A such that eα
w∗
→ e′′ in A∗∗ where e′′ is a left unit for

A∗∗. Suppose that Zt
e′′(B

∗∗) = B∗∗. Then π∗
ℓ (b

′, eα)
w→ b′ in B∗ if and

only if e′′ is a left unit for B∗∗.

For a Banach algebra A, we recall that a bounded linear operator
T : A → A is said to be a left (resp. right) multiplier if, for all a, b ∈ A,
T (ab) = T (a)b (resp. T (ab) = aT (b)). We denote by LM(A) (resp.
RM(A)) the set of all left (resp. right) multipliers of A. The set LM(A)
(resp. RM(A)) is normed subalgebra of the algebra L(A) of bounded
linear operator on A.
Let B be a Banach left [resp. right] A − module and T ∈ B(A,B).
Then T is called extended left [resp. right] multiplier if T (a1a2) =
πr(T (a1), a2)
[resp. T (a1a2) = πℓ(a1, T (a2))] for all a1, a2 ∈ A.
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We show by LM(A,B) [resp. RM(A,B)] all of the Left [resp. right]
multiplier extension from A into B.
Let a′ ∈ A∗. Then the mapping Ta′ : a → a′a [resp. Ra′ a → aa′]
from A into A∗ is left [right] multiplier, that is, Ta′ ∈ LM(A,A∗) [Ra′ ∈
RM(A,A∗)]. Ta′ is weakly compact if and only if a′ ∈ wap(A). So, we
can write wap(A) as a subspace of LM(A,A∗).

Theorem 2.19. Let B be a Banach A− bimodule with a BAI (eα)α ⊆
A. Then

(1) If T ∈ LM(A,B), then T (a) = π∗∗∗
r (b′′, a) for some b′′ ∈ B∗∗.

(2) If T ∈ RM(A,B), then T (a) = π∗∗∗
ℓ (a, b′′) for some b′′ ∈ B∗∗.

Proof. (1) Since (T (eα))α ⊆ B is bounded, it has weakly limit point
in B∗∗. Let b′′ ∈ B∗∗ be a weakly limit point of (T (eα))α and

without loss generally, take T (eα)
w→ b′′. Then for every b′ ∈ B∗

and a ∈ A, we have

⟨π∗∗∗
r (b′′, a), b′⟩ = lim

α
⟨b′, T (eα)a⟩ = lim

α
⟨b′, T (eαa)⟩

= lim
α
⟨T ∗(b′), eαa⟩ = ⟨T ∗(b′), a⟩ = ⟨b′, T (a)⟩.

It follows that π∗∗∗
r (b′′, a) = T (a).

(2) Proof is similar to (1).
□

In the proceeding theorem, if we take B = A, then we have the
following statements

(1) If T ∈ LM(A), then T (a) = a′′a for some a′′ ∈ A∗∗.
(2) If T ∈ RM(A), then T (a) = aa′′ for some a′′ ∈ A∗∗.

Definition 2.20. Let B be a Banach left A − module and b′′ ∈ B∗∗.

Suppose that (bα)α ⊆ B such that bα
w∗
→ b′′. We define the following set

Z̃b′′(A
∗∗) = {a′′ ∈ A∗∗ : π∗∗∗

ℓ (a′′, bα)
w∗
→ π∗∗∗

ℓ (a′′, b′′)},

which is subspace of A∗∗. It is clear that Zb′′(A
∗∗) ⊆ Z̃b′′(A

∗∗), and so

ZB∗∗(A∗∗) =
∩

b′′∈B∗∗

Zb′′(A
∗∗) ⊆

∩
b′′∈B∗∗

Z̃b′′(A
∗∗).

For a Banach right A−module, the definition of Z̃t
a′′(B

∗∗) is similar.
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Theorem 2.21, see [15, Theorem 3]. Let B be a left Banach A−module
and T ∈ B(A,B). Consider the following statements.

(1) T = ℓb, for some b ∈ B.

(2) T ∗∗(a′′) = π∗∗∗
ℓ (a′′, b′′) for some b′′ ∈ B∗∗ such that Z̃b′′(A

∗∗) =
A∗∗.

(3) T ∗(B∗) ⊆ BB∗.

Then (1) ⇒ (2) ⇒ (3).
Assume that B has WSC. If we take T ∈ RM(A,B) and B has a se-
quential BAI, then (1), (2) and (3) are equivalent.

Proof. (1) ⇒ (2)
Let T = ℓb, for some b ∈ B. Then T ∗∗(a′′) = ℓ∗∗b (a′′) = π∗∗∗

ℓ (a′′, b) for
every a′′ ∈ A∗∗, and so proof is hold.
(2) ⇔ (3)
Take a′′ ∈ (BB∗)⊥. Assume that b′′ ∈ B∗∗ and (bα)α ⊆ B such that

bα
w∗
→ b′′. For every b′ ∈ B∗∗, we have the following equality

⟨a′′, T ∗(b′)⟩ = ⟨T ∗∗(a′′), b′⟩ = ⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = lim

α
⟨π∗∗∗

ℓ (a′′, bα), b
′⟩

= lim
α
⟨a′′, π∗∗

ℓ (bα, b
′)⟩ = 0.

It follows that T ∗(B∗) ⊆ BB∗.
Take T ∈ RM(A,B) and suppose that B is WSC with sequential BAI.
It is enough, we show that (3) ⇒ (1). Assume that (en)n ⊆ A is a BAI
for B. Then for every b′ ∈ B∗, we have

| ⟨b′, T (en)⟩ − ⟨b′, T (em)⟩ |=| ⟨T ∗(b′), en − em⟩ |=| ⟨π∗∗
ℓ (b, b′), en − em⟩ |

=| ⟨b, π∗
ℓ (b

′, en − em)⟩ |=| ⟨b′, πℓ(en − em, b)⟩ |→ 0.

It follows that (T (en))n is weakly Cauchy sequence in B and since B is

WSC, there is b ∈ B such that T (en)
w→ b in B. Let a ∈ A. Then for

every b′ ∈ B∗, we have

⟨b′, πℓ(a, b)⟩ = ⟨π∗
ℓ (b

′, a), b)⟩ = lim
n
⟨π∗

ℓ (b
′, a), T (en)⟩

= lim
n
⟨b′, πℓ(a, T (en))⟩ = lim

n
⟨b′, T (aen)⟩

= lim
n
⟨T ∗(b′), aen⟩ = ⟨T ∗(b′), a⟩

= ⟨b′, T (a)⟩.
Thus ℓb(a) = πℓ(a, b) = T (a). □
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Example 2.22. Let G be a locally compact group. Then by convolution
multiplication, M(G) is a L1(G)−bimodule. Let f ∈ L1(G) and T (µ) =
µ∗f for all µ ∈ M(G). Then T ∗(L∞(G)) ⊆ M(G)M(G)∗. Also if we take
T (µ) = f∗µ for all µ ∈ M(G), then we have T ∗(L∞(G)) ⊆ M(G)∗M(G).
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