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DELTA BASIS FUNCTIONS AND THEIR

APPLICATIONS FOR SOLVING TWO-DIMENSIONAL

LINEAR FREDHOLM INTEGRAL EQUATIONS

FARSHID MIRZAEE, SEYEDE FATEMEH HOSEINI AND KHADIJEH
MAHDAVI MOGHADAM

Abstract. In this paper an expansion method, based on two-
dimensional delta functions (2D-DFs), is developed to find numeri-
cal solutions of two-dimensional linear Fredholm integral equations.
The main characteristic behind this method is that this method re-
duce such problems to a system of algebraic equations. Since this
approach does not need integration, all calculations can be easily
implemented. Finally, we estimate the error of the method, and
present two numerical examples to demonstrate the accuracy of the
method.
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1. Introduction

The integral equations method is widely used for solving many prob-
lems in mathematics, physics and engineering. Many numerical meth-
ods of high accuracy have been developed for solving integral equations
[2, 6, 10, 11, 12]. In this work, we consider the linear two-dimensional
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Fredholm integral equation (2D-FIE) of the second kind as

f(s, t) = g(s, t) + λ

∫ T1

0

∫ T2

0
K(s, t, x, y)f(x, y)dxdy,(1.1)

(x, y) ∈ Ω = [0, T1)× [0, T2),

where the functions K(s, t, x, y) and g(s, t) are known functions defined
on E = Ω × Ω and Ω, respectively, and f(s, t) is an unknown scalar
valued function defined on Ω.
Many problems in physics and engineering fields can be transformed
into two-dimensional Fredholm integral equations [2, 10]. Existence and
uniqueness of the solution of 2D-FIEs were investigated by El-Borai and
et al in [5]. They proved that under the following conditions, the solution
of integral equation (1.1) is exist and unique. The conditions are

(i)
{∫ T1

o

∫ T2

o

∫ T1

o

∫ T2

o |K(s, t, x, y)|2dsdtdxdy
} 1

2 ⩽ ε, where ε is small

enough.

(ii) The given function g(s, t) and its partial derivatives with respect
to s, t are continuous and its normality in L2[0, T1] × L2[0, T2]
is given by {∫ T1

o

∫ T2

o
|g(s, t)|2dsdt

} 1
2

= M.

(iii) The unknown function f(s, t) satisfies Lipschitz condition for
the arguments s, t, where its norm is considered in L2[0, T1] ×
L2[0, T2].

(iv) |λ| < 1
M .

Although several numerical methods for approximating the solutions of
one-dimensional integral equations were presented [9, 16, 17, 18, 22, 21],
for two-dimensional ones only a few have been discussed in the literature
[1, 8, 7, 13, 14, 20]. Here, a set of two-dimensional delta functions are
used for solving two-dimensional integral equations. These functions
are extensions of one-dimensional delta functions (1D-DFs) that were
introduced by Roodaki et al. [19] for solving systems of integral equa-
tions. One-dimensional delta functions (1D-DFs) were defined by using
the well-known triangular orthogonal functions [19].
In this article, firstly we review some properties of one and
two-dimensional delta basis functions and their operational matrices.
Then we utilize them for solving two-dimensional Fredholm integral
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equations in Section 4. In Section 5, we provide the error analysis for
the method. Numerical examples are given in Section 6 and finally, we
conclude the article in Section 7.

2. A review of one-dimensional delta basis functions

One-dimensional delta functions (1D-DFs), were introduced by Roodaki
et al. [19]. They used these functions for solving systems of integral
equations.

Definition 2.1. In an m-set of one-dimensional delta functions (1D-
DFs) over interval [0, 1), the ith component function is defined as

∆i(s) =


(s−(i−1)h)

h (i− 1)h ⩽ s < ih
1−(s−ih)

h ih ⩽ s < (i+ 1)h

0 otherwise,

where i = 0, 1, 2, . . . ,m with a positive integer value for m, and h = 1
m .

So the 1D-DFs vector ∆(s) can be defined as

∆(s) = [∆0(s),∆1(s), . . . ,∆m(s)]T ,

where

∆0(s) = T10(s),

∆i(s) = T1i(s) + T2i−1(s), i = 1, 2, . . . ,m− 1,

∆m(s) = T2m−1(s),

where T1i(s), T2i(s) are the ith triangular orthogonal functions (TFs)
defined in [19]. Thus

∆(s) =

(
T1(s)
0

)
+

(
0

T2(s)

)
,

where T1(s) and T2(s) are defined in [4].
Furthermore

m∑
i=0

∆i(s) =

m−1∑
i=0

[T1i(s) + T2i(s)] =

m−1∑
i=0

Φi(s) = 1.

where Φi(s) is the ith block-pulse function [4].

The following properties are presented by Roodaki et al.

∆(s).∆T (s) ≃ diag(∆(s)).(2.1)
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On the other hand,∫ 1

0
∆0(s).∆i(s)ds =


h
3 i = 0
h
6 i = 1

0 i = 2, 3, . . . ,m,

∫ 1

0
∆i(s).∆j(s)ds =


2h
3 i = j
h
6 i− j = ±1, i, j = 1, 2, . . . ,m− 1

0 otherwise,

∫ 1

0
∆m(s).∆i(s)ds =


h
3 i = m
h
6 i = m− 1

0 i = 0, 1, 2, . . . ,m− 2.

Therefore from above equations, we have∫ 1

0
∆(s).∆T (s)ds = D,

where D is the following three-diagonal matrix

D =



h
3

h
6 0 . . . 0

h
6

2h
3

h
6

. . .
...

0
. . .

. . .
. . . 0

...
. . . h

6
2h
3

h
6

0 . . . 0 h
6

h
3


.

Now, assume that X is an (m+1)-vector. It can be concluded from Eq.
(2.1) that

∆(s).∆T (s).X ≃ diag(∆(s)).X

= diag(X).∆(s)

= X̃.∆(s),

where X̃ is an (m+ 1)× (m+ 1) diagonal matrix.

Let f(s) be a function over [0, 1). The expansion of f with respect
to 1D-DFs can be written as

f(s) ≃
m∑
i=0

ci∆i(s) = CT .∆(s),
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where ci = f(ih), i = 0, 1, . . . ,m . The vector C is called the 1D-DFs
coefficient vector.

3. Two-dimensional delta functions and their properties

In this section, 2D-DFs are defined by extending 1D-DFs that is the
new basis idea in this paper.

Definition 3.1. An (m1 + 1) × (m2 + 1)-set of 2D-DFs on the space
Γ = [0, 1)× [0, 1) is defined by

∆i,j(s, t) = ∆i(s).∆j(t) =(3.1)

(
s−(i−1)h1

h1

)(
t−(j−1)h2

h2

)
(i− 1)h1 ⩽ s < ih1, (j − 1)h2 ⩽ t < jh2

(
s−(i−1)h1

h1

)(
(j+1)h2−t

h2

)
(i− 1)h1 ⩽ s < ih1, jh2 ⩽ t < (j + 1)h2

(
(i+1)h1−s

h1

)(
t−(j−1)h2

h2

)
ih1 ⩽ s < (i+ 1)h1, (j − 1)h2 ⩽ t < jh2

(
(i+1)h1−s

h1

)(
(j+1)h2−t

h2

)
ih1 ⩽ s < (i+ 1)h1, jh2 ⩽ t < (j + 1)h2

0 otherwise,

where m1 and m2 are arbitrary positive integers, i = 0, 1, 2, . . . ,m1, j =
0, 1, 2, . . . ,m2, h1 =

1
m1

and h2 =
1
m2

.

Furthermore,

m1∑
i=0

m2∑
j=0

∆i,j(s, t) =

m1−1∑
i=0

m2−1∑
j=0

Φi,j(s, t) = 1,

where

Φi,j(s, t) =

{
1 ih1 ⩽ s < (i+ 1)h1, jh2 ⩽ t < (j + 1)h2

0 otherwise.
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3.1. Properties of 2D-DFs. Obviously, ∆i,j(s, t), i = 0, 1, 2, . . . ,m1, j =
0, 1, 2, . . . ,m2 are disjoint

∆i1,j1(s, t).∆i2,j2(s, t) ≃

{
∆i1,j1(s, t) i1 = j1, i2 = j2

0 otherwise.

Using Eq. (3.1), we can define 2D-DFs vector ∆(s, t) as

(3.2) ∆(s, t) = [∆0(s, t),∆1(s, t), . . . ,∆m1(s, t)]
T ,

where

∆0(s, t) = [∆0,0(s, t),∆0,1(s, t), . . . ,∆0,m2(s, t)]
T ,

∆1(s, t) = [∆1,0(s, t),∆1,1(s, t), . . . ,∆1,m2(s, t)]
T ,

...

∆m1(s, t) = [∆m1,0(s, t),∆m1,1(s, t), . . . ,∆m1,m2(s, t)]
T .

From the above representation, it follows that

∆p(s, t).∆
T
q (s, t) ≃

{
diag(∆p(s, t)) p = q

0 p ̸= q.

Hence

∆(s, t).∆T (s, t) ≃


diag(∆0(s, t)) 0 . . . 0

0 diag(∆1(s, t)) . . . 0
...

...
. . .

...
0 0 . . . diag(∆m1(s, t))

 ,

where 0 is the (m2 + 1)× (m2 + 1)- zero matrix. So we have

∆(s, t).∆T (s, t) ≃ diag(∆(s, t)) = ∆̃(s, t).

Also

∆(s, t).∆T (s, t).X ≃ ∆̃(s, t).X = X̃.∆(s, t),

where X is an (m1 + 1)(m2 + 1)-vector and X̃ = diag(X).

The disjointness property of ∆i(s, t) for i = 0, 1, . . . ,m1 also implies
that for every (m2 + 1)× (m2 + 1)-matrix B,

∆T
i (s, t).B.∆i(s, t) ≃ B̂.∆i(s, t),

where B̂ is an (m2+1)-vector with elements equal to the diagonal entries
of B. Thus for every (m1 +1)(m2 +1)× (m1 +1)(m2 +1)-matrix A, we
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have

∆T (s, t).A.∆(s, t) ≃ Â.∆(s, t),

which Â is an (m1 + 1)(m2 + 1)-vector with elements equal to the diag-
onal entries of matrix A.

Also, we can carry out double integration of ∆(s, t)∫ 1

0

∫ 1

0
∆(s, t).∆T (s, t)dsdt = D,(3.3)

were

D = D ⊗D,

where ⊗ denotes the kronecker product defined for arbitrary matrices A
and B as A⊗B = (Ai,jB).

3.2. Function expansion with 2D-DFs. A function f(s, t) on Γ may
be extended using 2D-DFs as

f(s, t) ≃
m1∑
i=0

m2∑
j=0

ci,j∆i,j(s, t) = CT .∆(s, t),(3.4)

where C is an (m1 + 1)(m2 + 1)-vector and ci,j = f(ih1, jh2) and
i = 0, 1, 2, . . . ,m1, j = 0, 1, 2, . . . ,m2. The vector C is called the 2D-
DFs coefficients vector.

Similarly, a function K(s, t, x, y) on Γ × Γ can be approximated using
2D-DFs as follows

K(s, t, x, y) ≃ ∆T (s, t)



K(0, 0, x, y)
K(0, h2, x, y)

...
K(0,m2h2, x, y)
K(h1, 0, x, y)

...
K(h1,m2h2, x, y)

...
K(m1h1, 0, x, y)

...
K(m1h1,m2h2, x, y)



.
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In the same way, eachK(ih1, jh2, x, y), i = 0, 1, 2, . . . ,m1, j = 0, 1, 2, . . . ,m2

can be expanded by 2D-DFs with respect to independent variables x, y.
Hence, the expansion of K(s, t, x, y) can be written as

K(s, t, x, y) ≃ ∆T (s, t)



kT0,0∆(x, y)

kT0,1∆(x, y)
...

kT0,m2
∆(x, y)

kT1,0∆(x, y)
...

kT1,m2
∆(x, y)
...

kTm1,0
∆(x, y)
...

kTm1,m2
∆(x, y)



= ∆T (s, t).k.∆(x, y),

where ∆(s, t) and ∆(x, y) are 2D-DFs vectors of dimension (m1 +
1)(m2+1) and (m3+1)(m4+1), respectively, and k is a (m1+1)(m2+
1)× (m3 + 1)(m4 + 1) 2D-DFs coefficient matrix as
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k =



kT0,0
...

kT0,m2

kT1,0
...

kT1,m2

...
kTm1,0
...

kTm1,m2



=





K(0, 0, 0, 0)
..
.

K(0, 0, 0,m4h4)
K(0, 0, h3, 0))

..

.
K(0, 0, h3,m4h4))

.

..
K(0, 0,m3h3, 0)

..

.
K(0, 0,m3h3,m4h4)



T

..

.

K(0,m2h2, 0, 0)
..
.

K(0,m2h2, 0,m4h4)
K(0,m2h2, h3, 0)

.

..

K(0,m2h2, h3,m4h4)
..
.

K(0,m2h2,m3h3, 0)
.
..

K(0,m2h2,m3h3,m4h4)



T

..

.

K(m1h1, 0, 0, 0)
.
..

K(m1h1, 0, 0,m4h4)
K(m1h1, 0, h3, 0)

.

..
K(m1h1, 0, h3,m4h4)

..

.
K(m1h1, 0,m3h3, 0)

.

..
K(m1h1, 0,m3h3,m4h4)



T

..

.

K(m1h1,m2h2, 0, 0)
.
..

K(m1h1,m2h2, 0,m4h4)

K(m1h1,m2h2, h3, 0)
..
.

K(m1h1,m2h2, h3,m4h4)
.
..

K(m1h1,m2h2,m3h3, 0)
..
.

K(m1h1,m2h2,m3h3,m4h4)



T



.
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4. Solving two-dimensional Fredholm integral equation of
the second kind

In this section, we present a 2D-DFs method for solving 2D-FIE (1.1).
Since any finite interval [a, b) can be transformed to [0, 1) by linear
maps, it is supposed that [0, T1) = [0, T2) = [0, 1), without any loss of
generality.
Using Eq. (3.4), we can approximate function g(s, t) as

g(s, t) ≃ GT .∆(s, t) = ∆T (s, t).G,(4.1)

where ∆(s, t) is defined in Eq. (3.2), and G is (m1 + 1)(m2 + 1)-vector.

Substituting Eqs. (3.4), (3.5) and (4.1) into the Eq. (1.1), we have

∆T (s, t).C ≃ ∆T (s, t).G+ λ

∫ 1

0

∫ 1

0
∆T (s, t).k.∆(x, y)∆T (x, y).Cdxdy

= ∆T (s, t).(G+ λk.D.C).

Therefore

C = G+ λ.k.D.C.

Therefore, we have the following system

G = (I − λ.k.D).C,(4.2)

that is a linear system of (m1 + 1)(m2 + 1) algebraic equations with
(m1 + 1)(m2 + 1) unknown coefficients.

5. Convergence analysis

Assume that (C[Γ], ∥.∥) is the Banach space of all continuous functions
on Γ with the norm

∥f(s, t)∥ = max
(s,t)∈Γ

|f(s, t)|.

Furthermore, let for all s, t, x, y ∈ [0, 1), |K(s, t, x, y)| ⩽ M , where M is
a positive real number. We denote the error 2D-DFs by

em1,m2 = ∥f(s, t)− f̄m1,m2(s, t)∥,
where f(s, t), f̄m1,m2(s, t) show the exact and approximate solutions of
the two-dimensional linear Fredholm integral equation, respectively. If
we note to Eq. (4.2), we will see the coefficients Ci,j ’s are not optimal.
By using optimal coefficients, the representational error em1,m2 can be
reduced.
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Theorem 5.1. (Convergence). The solution of the two-dimensional
linear Fredholm integral equation by using 2D-DFs approximation con-
verges if 0 < |λ|.M < 1.

Proof. From definition of em1,m2 , we have

em1,m2 = ∥f(s, t)− f̄m1,m2(s, t)∥
= max

(s,t)∈Γ
|f(s, t)− f̄m1,m2(s, t)|

= max |g(s, t) + λ

∫ 1

0

∫ 1

0
K(s, t, x, y)f(x, y)dxdy

− g(s, t) + λ

∫ 1

0

∫ 1

0
K(s, t, x, y)f̄m1,m2(x, y)dxdy

⩽ max |λ|
∫ 1

0

∫ 1

0
|K(s, t, x, y)| |f(x, y)− f̄m1,m2(x, y)|dxdy

⩽ |λ|.M
∫ 1

0

∫ 1

0
max |f(x, y)− f̄m1,m2(x, y)|dxdy

= |λ|.M∥f(s, t)− f̄m1,m2(s, t)∥
= |λ|.M.em1,m2 .

Therefore,

(1− |λ|.M)em1,m2 ⩽ 0.

If 0 < |λ|.M < 1 then, em1,m2 → 0 by increasing m1,m2. □

6. Numerical illustration

In this section, we present two examples and their numerical results
to show the high accuracy of the solution obtained by 2D-DFs. Without
any loss of generality, let m1 = m2 = m.

Example 6.1. ([15]) Consider the two-dimensional linear Fredholm inte-
gral equation

f(s, t) = g(s, t) +

∫ 1

0

∫ 1

0

s

(s+ t)(1 + x+ y)
f(x, y)dxdy,(6.1)
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where (s, t) ∈ Γ2 and g(s, t) = 1
(1+s+t)2

− s
6(8+t) , with the exact solution

f(s, t) = 1
(1+s+t)2

.

Table 1 gives the comparison of the results of the absolute error functions
obtained by the present method , block-pulse functions method [14]
and the two-dimensional triangular orthogonal functions method [15]
for m = 32.

Table 1: Absolute error for Example 1

(s,t) Method of [14] Method of [15] Present method
(0.0,0.0) 1.58e - 01 0.00e+00 0.00e+00
(0.1,0.1) 3.26e - 01 7.58e - 03 1.34e - 04
(0.2,0.2) 2.73e - 01 9.54e - 03 1.99e - 04
(0.3,0.3) 2.42e - 01 9.60e - 03 2.21e - 04
(0.4,0.4) 3.18e - 01 9.03e - 03 4.53e - 04
(0.5,0.5) 3.35e - 01 3.00e - 04 2.29e - 04
(0.6,0.6) 1.69e - 01 4.30e - 04 1.90e - 04
(0.7,0.7) 1.14e - 01 2.24e - 03 6.80e - 04
(0.8,0.8) 2.91e - 01 2.62e - 03 7.11e - 04
(0.9,0.9) 2.13e - 01 2.81e - 03 4.64e - 05

Example 6.2. ([3]) Consider the two-dimensional linear Fredholm inte-
gral equation

f(s, t) = g(s, t) +

∫ 1

0

∫ 1

0
(x sin y + 1)f(x, y)dxdy ,(6.2)

where (s, t) ∈ Γ2 and g(s, t) = s cos t− 1
6 sin 1(3 + sin 1), with the exact

solution f(s, t) = s cos t.
Table 2, illustrates the error results for this example for m = 8, 16.
Also, we compare the maximum absolute error computed by the present
method, rationalized Haar functions method [3] and block-pulse func-
tions method [14] in Table 3. It is obvious from Table 3 that the results
obtained by the present method is better than that obtained in [3] and
[14].
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Table 2: Absolute error of present method for Example 2
(s,t) m=8 m=16

(0.0,0.0) 2.72e - 03 8.31e - 04
(0.1,0.1) 2.60e - 03 7.84e - 04
(0.2,0.2) 2.36e - 03 7.69e - 04
(0.3,0.3) 2.19e - 03 7.41e - 04
(0.4,0.4) 2.27e - 03 6.58e - 04
(0.5,0.5) 2.73e - 03 8.31e - 04
(0.6,0.6) 2.10e - 03 5.98e - 04
(0.7,0.7) 1.72e - 03 6.66e - 04
(0.8,0.8) 1.69e - 03 6.54e - 04
(0.9,0.9) 2.05e - 03 5.70e - 04

Table 3: Approximate infinity-norm of absolute error for Example 2
m Method of [3] Method of [14] Present method
8 6.09e - 02 4.39e - 01 3.69e - 03
16 3.09e - 02 3.99e - 01 9.30e - 04

7. Conclusion

In this study, we developed an efficient and computationally attrac-
tive method to solve the linear two-dimensional Fredholm integral equa-
tions. The method is based on the use of two-dimensional delta basis
functions. Also, error analysis of the proposed method is provided in
a theorem. The implementation of the current approach in analogy to
existing methods is more convenient and accurate. An advantage of the
considered method is that using 2D-TFs does not need any integration
to evaluate the coefficients, therefore a lot of computational efforts have
been reduced. The numerical examples that have been presented in the
paper and the compared results support our claim. In addition, through
the comparison with exact solution, we see that this method have good
reliability and efficiency.
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