PRICING FORMULA FOR EXCHANGE OPTION IN FRACTIONAL BLACK-SCHOLES MODEL WITH JUMPS

KYONG-HUI KIM, MYONG-GUK SIN AND UN-HUA CHONG

Abstract

In this paper pricing formula for exchange option in a fractional Black-Scholes model with jumps is derived. We found out some errors in proof of pricing formula for European call option [7]. At first we revise these errors and then extend this result to pricing formula for exchange option in fractional Black-Scholes model with jumps.

Key Words: Pricing formula, Exchange option, Fractional Black-Scholes model, Jump noise.
2010 Mathematics Subject Classification: Primary: 60G22; Secondary: 91B25.

1. Introduction

Fractional Black-Scholes model with jumps is as follows [7].

$$
\begin{align*}
& d B(t)=\left(r_{d}-r_{f}\right) B(t) d t, B(0)=1 \\
& d S(t)=S(t)\left(\left(\mu-\lambda \mu_{\xi}\right) d t+\sigma d B_{H}(t)+\left(e^{\xi}-1\right) d N(t)\right) \tag{1.1}\\
& S(0)=S
\end{align*}
$$

where r_{d}, r_{f} are the short-term domestic interest rate and foreign interest rate respectively, and these are known. $S(t)$ denotes the spot exchange rate at time t and μ, σ are assumed to be constants. $B_{H}(t)$ is a fractional Brownian motion and $N(t)$ is a Poisson process with rate λ. $\xi(t)$ is jump size percent at time t which is sequence of independent

Received: 25 April 2014, Accepted: 1 October 2014. Communicated by Hossein Jafari;
*Address correspondence to Kyong-Hui Kim; E-mail: kim.kyonghui@yahoo.com
(c) 2014 University of Mohaghegh Ardabili.
identically distributed, and $\left(e^{\xi(t)}-1\right) \sim N\left(\mu_{\xi(t)}, \sigma_{\xi(t)}^{2}\right)$. In addition, all three sources of randomness, the fractional Brownian motion $B_{H}(t)$, the Poisson process $N(t)$ and jump size $e^{\xi(t)}-1$ are assumed to be independent.

Currencies are different with stocks; moreover since geometric Brownian motion cannot represent movement currency returns precisely, some papers have provided evidence of mispricing for currency options by standard option price model [1]. Merton proposed a jump-diffusion process with Poisson jump to match the abnormal fluctuation of stock price [3, 5].

Non-normality, non-independence and nonlinearity were discovered in empirical researches of currency return processes. To capture these non-normal behaviors, scholars have considered other distributions with fat tails such as Pareto-stable distribution and tried to interpret long memory and self-similarity using fractional Brownian motion. Research interest for interpreting these abnormal phenomena was re-encouraged by new insights in stochastic analysis based on the Wick integration [2]. Neucula and Meng et al. derived fractional Black-Scholes formula for option pricing using geometric fractional Brownian motion [6, 4]. Model (1.1), the combination of Poisson jumps and fractional Brownian motion was introduced and pricing formula for European call option was derived in [7], but we found out some errors in evaluation of quasi-expectation. In this paper we revise pricing formula for European call option and derive pricing formula for exchange option in fractional Black-Scholes model with jumps and so generalize previous pricing formula for European call option.

2. Preliminaries

We describe some necessary lemmas.
Lemma 2.1. ([6]) (Geometric fractional Brownian motion) Consider the fractional differential equation

$$
d X(t)=X(t)\left(\mu d t+\sigma d B_{H}(t)\right), \quad X(0)=x
$$

We have that

$$
X(t)=x \exp \left(\sigma B_{H}(t)+\mu t-\frac{1}{2} \sigma^{2} t^{2 H}\right) .
$$

Lemma 2.2. ([6]) f be a function such that $E\left[f\left(B_{H}(T)\right)\right]<\infty$. Then for every $t<T$ we have

$$
\tilde{E}_{t}\left[f\left(B_{H}(T)\right)\right]=\int_{R} \frac{1}{\sqrt{2 \pi\left(T^{2 H}-t^{2 H}\right)}} \exp \left(-\frac{\left(x-B_{H}(t)\right)^{2}}{2\left(T^{2 H}-t^{2 H}\right)}\right) f(x) d x
$$

where $\tilde{E}[\cdot]$ denotes quasi-conditional expectation with respect to $\mathbf{F}_{t}^{H}=$ $\mathbf{B}\left(B_{H}(s), s<t\right)$. That is for $G=\sum_{n=0}^{\infty} \int_{R^{n}} g_{n} d B_{H}^{\otimes n} \in G^{*}$ we define as

$$
\tilde{E}_{t}[G]:=\tilde{E}\left[G \mid F_{t}^{H}\right]=\sum_{n=0}^{\infty} \int_{R^{n}} g_{n}(s) \chi_{0 \leq s \leq t}(s) d B_{H}^{\otimes n}(s)
$$

Let $\theta \in \mathbf{R}$. Consider the process

$$
B_{H}^{*}(t)=B_{H}(t)+\theta t^{2 H}=B_{H}(t)+\int_{0}^{t} 2 H \theta \tau^{2 H-1} d \tau, 0 \leq t \leq T
$$

This process is a fractional Brownian motion under new measure μ^{*} by fractional Girsanov theorem, where measure μ^{*} is defined as $\frac{d \mu^{*}}{d \mu}=$ $Z(t)=\exp \left(-\theta B_{H}(t)-\frac{\theta^{2}}{2} t^{2 H}\right)$. We will denote by $\tilde{E}_{t}^{*}[\cdot]$ the quasiconditional expectation with respect to μ^{*}.

Lemma 2.3. ([6]) Let f be a function such that $E\left[f\left(B_{H}(T)\right)\right]<\infty$. Then for every $t<T$

$$
\tilde{E}_{t}^{*}\left[f\left(B_{H}(T)\right)\right]=\frac{1}{Z(t)} \tilde{E}_{t}\left[f\left(B_{H}(T)\right) Z(T)\right]
$$

Lemma 2.4. ([6]) (fractional risk-neutral evaluation) The price at every $t \in[0, T]$ of a bounded F_{T}^{H}-measurable claim $F \in L^{2}(\mu)$ is given by $F(t)=e^{-r(T-t)} \tilde{E}_{t}[F]$.

3. Main Results

Theorem 3.1. In fractional Black-Scholes model (1.1) with jumps, pricing formula for European call option is as follows.

$$
\begin{aligned}
& V(S(t), t)=\sum_{n=0}^{\infty} \frac{\lambda^{n}(T-t)^{n}}{n!} e^{-\lambda(T-t)} \varepsilon_{n} \\
& \quad \times\left\{S(t) \exp \left(-\lambda \mu_{\xi}(T-t)+\sum_{j=1}^{n} \xi_{j}\right) \Phi\left(d_{+}\right)-K e^{-\left(r_{d}-r_{f}\right)(T-t)} \Phi\left(d_{-}\right)\right\}
\end{aligned}
$$

where ε_{n} denotes the expectation operator over the distribution of \exp $\left(\sum_{j=1}^{n} \xi_{j}\right)$ and
$d_{ \pm}=\frac{\ln (S(t) / K)+\sum_{j=1}^{n} \xi_{j}+\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)}{\sigma \sqrt{T^{2 H}-t^{2 H}}} \pm \frac{1}{2} \sigma \sqrt{T^{2 H}-t^{2 H}}$.
Proof. It was proved in [2] that model (1.1) is complete and does not have an arbitrage opportunity. Thus under risk-neutral measure \hat{P}_{H} model (1.1) can be expressed as

$$
\begin{equation*}
d S(t)=S(t)\left\{\left(r_{d}-r_{f}\right) d t+\sigma d \hat{B}_{H}(t)+\left(e^{\xi}-1\right) d N(t)\right\} \tag{3.1}
\end{equation*}
$$

where risk-neutral measure \hat{P}_{H} is defined as

$$
\frac{d \hat{P}_{H}}{d P_{H}}=\exp \left\{-\theta B_{H}(t)-\frac{\theta^{2}}{2} t^{2 H}\right\}
$$

under this measure process $\hat{B}_{H}(t)=B_{H}(t)+\theta t^{2 H}$ is a fractional Brownian motion and $\theta=\left(\mu-\lambda \mu_{\xi}+r_{f}-r_{d}\right) / \sigma$. By [7] the solution of Eq.(3.1) is expressed as

$$
\begin{aligned}
& S(T)=S(t) \exp \left\{\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)-\frac{1}{2} \sigma^{2}\left(T^{2 H}-t^{2 H}\right)\right. \\
&\left.+\sigma\left(\hat{B}_{H}(T)-\hat{B}_{H}(t)\right)+\sum_{j=1}^{N(T-t)} \xi_{j}\right\}
\end{aligned}
$$

By Lemma 2.4 the price at t for European call option $F=(S(T)-K)^{+}$ is

$$
V(S(t), t)=e^{-\left(r_{d}-r_{f}\right)(T-t)} \tilde{E}_{t}[F]=e^{-\left(r_{d}-r_{f}\right)(T-t)} \tilde{E}_{\hat{P}_{H}}\left[F \mid \mathbf{F}_{t}^{H}\right]
$$

If we define as

$$
\begin{aligned}
S_{n}(T)=S(t) \exp \left\{\begin{array}{l}
\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)-\frac{1}{2} \sigma^{2}\left(T^{2 H}-t^{2 H}\right) \\
\\
\\
\\
\left.+\sigma\left(\hat{B}_{H}(T)-\hat{B}_{H}(t)\right)+\sum_{j=1}^{n} \xi_{j}\right\}
\end{array}, \$\right. \text {, }
\end{aligned}
$$

then

$$
\begin{align*}
V(S(t), t)= & e^{-\left(r_{d}-r_{f}\right)(T-t)} \tilde{E}_{\hat{P}_{H}}\left[(S(T)-K)^{+} \mid \mathbf{F}_{t}^{H}\right] \\
= & e^{-\left(r_{d}-r_{f}\right)(T-t)} \sum_{n=0}^{\infty} \frac{\lambda^{n}(T-t)^{n}}{n!} e^{-\lambda(T-t)} \tilde{E}_{\hat{P}_{H}} \tag{3.2}\\
& {\left[\left(S_{n}(T)-K\right)^{+} \mid \mathbf{F}_{t}^{H}\right] }
\end{align*}
$$

Since

$$
\begin{align*}
\tilde{E}_{\hat{P}_{H}}\left[\left(S_{n}(T)-K\right)^{+} \mid \mathbf{F}_{t}^{H}\right]=\tilde{E}_{\hat{P}_{H}}[& \left.S_{n}(T) \chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right] \\
& -K \tilde{E}_{\hat{P}_{H}}\left[\chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right] \tag{3.3}
\end{align*}
$$

we firstly estimate $\tilde{E}_{\hat{P}_{H}}\left[\chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right]$. From Lemma 2.2, we have

$$
\begin{align*}
\tilde{E}_{\hat{P}_{H}} & {\left[\chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right]=\tilde{E}_{\hat{P}_{H}}\left[\chi_{\left\{\hat{B}_{H}(T)>d_{-}^{*}\right\}} \mid \mathbf{F}_{t}^{H}\right] } \\
& =\frac{1}{\sqrt{2 \pi\left(T^{2 H}-t^{2 H}\right)}} \int_{d_{-}^{*}}^{\infty} \exp \left(-\frac{\left(x-\hat{B}_{H}(t)\right)^{2}}{2\left(T^{2 H}-t^{2 H}\right)}\right) d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\frac{d_{-}^{*}-\hat{B}_{H}(t)}{\sqrt{T^{2 H}-t^{2 H}}}}^{\infty} \exp \left(-\frac{y^{2}}{2}\right) d y \tag{3.4}\\
& =\Phi\left(\frac{\hat{B}_{H}(t)-d_{-}^{*}}{\sqrt{T^{2 H}-t^{2 H}}}\right) \\
& =\Phi\left(d_{-}\right)
\end{align*}
$$

where

$$
\begin{aligned}
d_{-}^{*}=(\ln (K / S(t))- & \left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)+\frac{1}{2} \sigma^{2}\left(T^{2 H}-t^{2 H}\right) \\
& \left.-\sum_{j=1}^{n} \xi_{j}+\sigma \hat{B}_{H}(t)\right) / \sigma
\end{aligned}
$$

Next we estimate $\tilde{E}_{\hat{P}_{H}}\left[S_{n}(T) \chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right]$. Let $B_{H}^{*}(t)=\hat{B}_{H}(t)-$ $\sigma t^{2 H}$, then from fractional Girsanov formula, there exists a probability measure P_{H}^{*} such that $B_{H}^{*}(t)$ is a fractional Brownian motion. In fact, the probability measure P_{H}^{*} is defined as follows:

$$
\frac{d P_{H}^{*}}{d \hat{P}_{H}}=\exp \left\{\sigma d \hat{B}_{H}(t)-\frac{1}{2} \sigma^{2} t^{2 H}\right\}=Z(t)
$$

From Lemma 2.3 we have

$$
\begin{aligned}
& \tilde{E}_{\hat{P}_{H}}\left[S_{n}(T) \chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right] \\
&= S \exp \left(\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right) T+\sum_{j=1}^{n} \xi_{j}\right) \\
& \times \tilde{E}_{\hat{P}_{H}}\left[Z(T) \chi_{\left\{S_{n}(T)>K\right\}} \mid \mathbf{F}_{t}^{H}\right] \\
&= S \exp \left(\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right) T+\sum_{j=1}^{n} \xi_{j}\right) \\
& \times Z(t) \tilde{E}_{P_{H}^{*}}\left[\chi_{\left\{\hat{B}_{H}(T)>d_{-}^{*}\right\}} \mid \mathbf{F}_{t}^{H}\right] \\
&= S_{n}(t) \exp \left(\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)\right) \\
& \quad \times \tilde{E}_{P_{H}^{*}}\left[\chi_{\left\{\hat{B}_{H}(T)>d_{-}^{*}\right\}} \mid \mathbf{F}_{t}^{H}\right] \\
&= S(t) \exp \left(\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)+\sum_{j=1}^{n} \xi_{j}\right) \\
& \quad \times \tilde{E}_{P_{H}^{*}}\left[\chi_{\left\{B_{H}^{*}(T)>d_{+}^{*}\right\}} \mid \mathbf{F}_{t}^{H}\right]
\end{aligned}
$$

where

$$
d_{+}^{*}=d_{-}^{*}-\sigma T^{2 H}, d_{+}=\frac{B_{H}^{*}(t)-d_{+}^{*}}{\sqrt{T^{2 H}-t^{2 H}}}=d_{-}+\sigma\left(T^{2 H}-t^{2 H}\right)
$$

Now substituting Eq.(3.4) and Eq.(3.5) into Eq.(3.2) and Eq.(3.3) implies the statement of the theorem.

Theorem 3.2. In fractional Black-Scholes model (1.1) with jump noise, pricing formula for exchange option of two foreign currencies is as follows.

$$
\begin{aligned}
V(S(t), t) & =\sum_{n=0}^{\infty} \frac{\lambda^{n}(T-t)^{n}}{n!} e^{-\lambda(T-t)}\left\{S _ { 1 } (t) \operatorname { e x p } \left(-\lambda \mu_{\xi}(T-t)\right.\right. \\
& \left.\left.+\sum_{j=1}^{n} \xi_{j}^{(1)}\right) \Phi\left(\tilde{d}_{+}\right)-S_{2}(t) \exp \left(-\lambda \mu_{\xi}(T-t)+\sum_{j=1}^{n} \xi_{j}^{(2)}\right) \Phi\left(\tilde{d}_{-}\right)\right\}
\end{aligned}
$$

where ε_{n} denotes the expectation operator over the distribution of \exp $\left(\sum_{j=1}^{n} \xi_{j}\right)$ and

$$
\tilde{d}_{ \pm}=\frac{\ln \left(\frac{S_{1}(t)}{S_{2}(t)}\right)+\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right)^{2}\left(T^{2 H}-t^{2 H}\right)+\sum_{j=1}^{n}\left(\xi_{j}^{(1)}-\xi_{j}^{(2)}\right)}{\left(\sigma_{1}-\sigma_{2}\right) \sqrt{T^{2 H}-t^{2 H}}} .
$$

Proof. Under the risk-neutral measure \hat{P}_{H}, Exchange rates for two foreign currencies $S_{1}(t), S_{2}(t)$ satisfy the following equations:

$$
\begin{aligned}
& d S_{1}(t)=S_{1}(t)\left\{\left(r_{d}-r_{f}\right) d t+\sigma_{1} d \hat{B}_{H}(t)+\left(e^{\xi^{(1)}}-1\right) d N(t)\right\} \\
& d S_{2}(t)=S_{2}(t)\left\{\left(r_{d}-r_{f}\right) d t+\sigma_{2} d \hat{B}_{H}(t)+\left(e^{\xi^{(2)}}-1\right) d N(t)\right\}
\end{aligned}
$$

Using Lemma 2.4, we have the price of exchange option at t

$$
\begin{align*}
& V\left(S_{1}(t), S_{2}(t), t\right)=e^{-\left(r_{d}-r_{f}\right)(T-t)} \tilde{E}_{\hat{P}_{H}}\left[\left(S_{1}(T)-S_{2}(T)\right)^{+} \mid \mathbf{F}_{t}^{H}\right] \\
& =e^{-\left(r_{d}-r_{f}\right)(T-t)} \sum_{n=0}^{\infty} \frac{\lambda^{n}(T-t)^{n}}{n!} e^{-\lambda(T-t)} \tilde{E}_{\hat{P}_{H}} \tag{3.6}\\
& \times\left[\left(S_{1 n}(T)-S_{2 n}(T)\right)^{+} \mid \mathbf{F}_{t}^{H}\right],
\end{align*}
$$

where

$$
\begin{aligned}
S_{i n}(T)= & S_{i}(t) \exp \left\{\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)-\frac{1}{2} \sigma_{i}^{2}\left(T^{2 H}-t^{2 H}\right)\right. \\
& \left.+\sigma_{i}\left(\hat{B}_{H}(T)-\hat{B}_{H}(t)\right)+\sum_{j=1}^{n} \xi_{j}^{(i)}\right\} .
\end{aligned}
$$

Also we see that the following facts hold:

$$
\tilde{E}_{\hat{P}_{H}}\left[\left(S_{1 n}(T)-S_{2 n}(T)\right)^{+} \mid \mathbf{F}_{t}^{H}\right]=\tilde{E}_{\hat{P}_{H}}\left[\left.S_{2 n}(T)\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] .
$$

Now let

$$
\frac{d Q_{H}}{d \hat{P}_{H}}=\exp \left\{\sigma_{2} \hat{B}_{H}(t)-\frac{1}{2} \sigma_{2}^{2} t^{2 H}\right\}=\tilde{Z}(t)
$$

Then under this measure $Q_{H}, \tilde{B}_{H}(t)=\hat{B}_{H}(t)-\sigma_{2}^{2} t^{2 H}$ is a fractional Brownian motion and from Lemma 2.3 we have

$$
\begin{aligned}
& \tilde{E}_{\hat{P}_{H}} {\left[\left.S_{2 n}(T)\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] } \\
&=\tilde{E}_{\hat{P}_{H}} {\left[S_{2} \exp \left\{\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right) T+\sum_{j=1}^{n} \xi_{j}^{(2)}\right\} \tilde{Z}(T)\right.} \\
&\left.\left.\times\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] \\
&=S_{2} \exp \left\{\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right) T+\sum_{j=1}^{n} \xi_{j}^{(2)}\right\} \tilde{Z}(t) \tilde{E}_{Q_{H}} \\
&= \times\left[\left.\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] \\
& \times\left[\left.\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] \\
&=S_{2}(t) \exp \left\{\left(r_{d}-r_{f}-\lambda \mu_{\xi}\right)(T-t)+\sum_{j=1}^{n} \xi_{j}^{(2)}\right\} \tilde{E}_{Q_{H}} \\
& \times\left[\left.\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] .
\end{aligned}
$$

Setting $t=0, T=t$ and considering the expression of $S_{i n}(T)$, we have

$$
\begin{aligned}
\frac{S_{1 n}(t)}{S_{2 n}(t)} & =\frac{S_{1}}{S_{2}} \exp \left\{\left(\sigma_{1}-\sigma_{2}\right) d \hat{B}_{H}(t)-\frac{1}{2}\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right) t^{2 H}+\sum_{j=1}^{n}\left(\xi_{j}^{(1)}-\xi_{j}^{(2)}\right)\right\} \\
& =\frac{S_{1}}{S_{2}} \exp \left\{\left(\sigma_{1}-\sigma_{2}\right) d \hat{B}_{H}(t)-\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right)^{2} t^{2 H}+\sum_{j=1}^{n}\left(\xi_{j}^{(1)}-\xi_{j}^{(2)}\right)\right\} .
\end{aligned}
$$

Thus stochastic process $\frac{S_{1 n}(t)}{S_{2 n}(t)}$ satisfies the following stochastic differential equation

$$
d\left(\frac{S_{1 n}(t)}{S_{2 n}(t)}\right)=\frac{S_{1 n}(t)}{S_{2 n}(t)}\left(\left(\sigma_{1}-\sigma_{2}\right) d \tilde{B}_{H}(t)+\left(e^{\xi_{j}^{(1)}-\xi_{j}^{(2)}}\right) d N(t)\right)
$$

so quasi-conditional expectation in Eq.(3.7) can be considered as a price for European call option with exercise price $\mathrm{K}=1$. Since this is the special case of Theorem 3.1 with the parameters
$S_{n}(T)=\frac{S_{1 n}(T)}{S_{2 n}(T)}, r_{d}-r_{f}=0, \sigma=\sigma_{1}-\sigma_{2}, \xi=\xi^{(1)}-\xi^{(2)}, \mu_{\xi}=0, K=1$,
we have

$$
\begin{aligned}
\tilde{E}_{Q_{H}} & {\left[\left.\left(\frac{S_{1 n}(T)}{S_{2 n}(T)}-1\right)^{+} \right\rvert\, \mathbf{F}_{t}^{H}\right] } \\
& =\frac{S_{1}(t)}{S_{2}(t)} \exp \left\{\sum_{j=1}^{n}\left(\xi_{j}^{(1)}-\xi_{j}^{(2)}\right)\right\} \Phi\left(\tilde{d}_{+}\right)-\Phi\left(\tilde{d}_{-}\right) .
\end{aligned}
$$

Thus substituting above equation into Eq.(3.7) and again into Eq.(3.6), we obtain the result of theorem.

Acknowledgments

The authors wish to thank anonymous referees for their comments and suggestions.

References

[1] R. Cookson, Models of imperfection, Risk, 29 (5) (1992), 55-60.
[2] Y.Z. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 6 (1) (2003), 1-32.
[3] C.H. Ma, Intertemporal recursive utility and an equilibrium asset pricing model in the presence of Lvy jumps, Journal of Mathematical Economics, 42 (2) (2006), 131-160.
[4] L. Meng, M. Wang, Comparison of Black-Scholes formula with fractional BlackScholes formula in the foreign exchange option market with changing volatility, Asia-Pacific Finan Markets, 17 (2) (2010), 99-111.
[5] R.C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1-2) (1976), 125-144.
[6] C. Necula, Option pricing in fractional Brownian motion environment, Academy of Economics Studies Bucharest, Romania, Preprint, 2002.
[7] W.L. Xiao, W.G. Zhang, X.L. Zhang, Y.L. Wang, Pricing currency options in a fractional Brownian motion with jumps, Econ. Modell., 27 (5) (2010), 935-942.

Kyong-Hui Kim

Faculty of Mathematics, University of Kim Il Sung University, Pyongyang, D.P.R. Korea
Email: kim.kyonghui@yahoo.com
Myong-Guk Sin
Faculty of Mathematics, University of Kim Il Sung University, Pyongyang, D.P.R. Korea
Email: sinmyongguk@yahoo.com

Un-Hua Chong

Faculty of Mathematics, University of Kim Il Sung University, Pyongyang, D.P.R.
Korea

