# NUMERICAL SOLUTION OF SOME CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS BY USING LEGENDRE-BERNSTEIN BASIS 

FARSHID MIRZAEE * AND SASAN FATHI


#### Abstract

In this article, a numerical method is developed to solve the linear integro-differential equations. To this end, it will be divided in two forms, Fredholm integro-differential equations (FIDE) and Volterra integro-differential equations (VIDE). So that, the kernel and other known functions have been approximated using the least-squares approximation schemes based on LegenderBernstein basis. The Legender polynomials are orthogonal and this property improve the accuracy of the approximations. Also the unknown function and its derivatives have been approximated by using the Bernstein basis. The useful properties of Bernstein polynomials help us to transform integro-differential equations to solve a system of linear algebraic equations. Of course, the solution way of (FIDE) case is different from (VIDE).


Key Words: Linear integro-differential equations, Fredholm integral equations, Volterra integral equations, Bernstein basis, Legendre basis, Orthogonal polynomials.
2010 Mathematics Subject Classification: Primary: 45J05; Secondary: 34K28, 65D30.

## 1. Introduction

As mentioned, in this paper linear integro-differential equations are considered in two forms, Fredholm integro-differential equations (FIDE)

[^0]and Volterra integro-differential equations (VIDE), respectively by the general forms
(1.1) $\sum_{i=0}^{L} \varphi_{i}(s) g^{(i)}(s)=f(s)+\lambda \int_{0}^{1} k(s, t) g(t) d t$,
(1.2) $\sum_{i=0}^{L} \varphi_{i}(s) g^{(i)}(s)=f(s)+\lambda \int_{0}^{s} k(s, t) g(t) d t \quad ; \quad 0 \leq s \leq 1$,
under the mixed conditions
$$
g^{(i)}(0)=b_{i} \quad ; \quad i=0,1, \cdots(L-1)
$$
where the parameter $\lambda$ and functions $f(s), k(s, t)$ and $\varphi_{i}(s), \quad\{i=$ $0,1, \cdots, L\}$, are known and $g(s)$ and so its derivatives are unknown functions. Also has assumed that all of these functions are $L_{2}$-Functions on $[0,1]$, and $g(s) \in C^{L+1}[0,1]$. The Bernstein form of a polynomial offers valuable insight into its geometrical behavior, and has thus won widespread acceptance as the basis for Bézier curves and surfaces. For least-squares approximation problems, on the other hand, the use of orthogonal bases, such as the Legendre polynomials [2, 3], permits simple and efficient constructions for convergent sequences of approximants.

In the following we'll introduce the Legendre and Bernstein polynomials and some properties of them that have been used in this article.
1.1. Legendre polynomials. To emphasize symmetry properties of Legendre polynomials, they are traditionally defined on the interval $[-1,+1]$, but for our purposes it is preferable to map this to $[0,1]$. The Legendre polynomials $L_{k}(u)$ on $u \in[0,1]$, can be generated through the recurrence relation
(1.3) $(k+1) L_{k+1}(u)=(2 k+1)(2 u-1) L_{k}(u) k L_{k 1}(u) \quad ; \quad k=1,2, \cdots$,
commencing with $L_{0}(u)=1$ and $L_{1}(u)=2 u-1$.
This gives, in the first few instances

$$
\begin{aligned}
L_{0}(u) & =1 \\
L_{1}(u) & =2 u-1, \\
L_{2}(u) & =6 u^{2}-6 u+1 \\
L_{3}(u) & =20 u^{3}-30 u^{2}+12 u-1, \\
& \vdots
\end{aligned}
$$

The orthogonality of these polynomials is expressed by the relation

$$
\int_{0}^{1} L_{j}(u) L_{k}(u) d u=\left\{\begin{array}{ll}
\frac{1}{2 k+1} & j=k \\
0 & j \neq k
\end{array} .\right.
$$

Now for arbitrary function $f(u)$ on $[0,1]$, we can express it in the Legendre form,

$$
\begin{equation*}
f(u) \simeq P_{N}(u)=\sum_{j=0}^{N} l_{j} L_{j}(u), \tag{1.4}
\end{equation*}
$$

where the coefficients $l_{j}$, for Legendre polynomials are obtained from following relation

$$
\begin{equation*}
l_{k}=(2 k+1) \int_{0}^{1} L_{k}(u) f(u) d u \quad ; \quad k=0,1, \cdots, N . \tag{1.5}
\end{equation*}
$$

1.2. Bernstein polynomials. $(N+1)$-Bernstein basic function on $[0,1]$, are defined by using the following relation

$$
\begin{equation*}
B_{i, N}(u)=\binom{N}{i} u^{i}(1-u)^{N-i} \quad ; \quad i=0,1, \cdots, N . \tag{1.6}
\end{equation*}
$$

In the follow, some properties of Bernstein polynomials have been expressed that in this article have been used of them ,

- The product of a power basic function and a Bernstein basic function,

$$
u^{m} B_{i, N}(u)=\frac{\binom{N}{i}}{\binom{N+m}{i+m}} B_{i+m, N+m}(u) .
$$

- The product of two Bernstein basic functions,

$$
\begin{equation*}
B_{i, j}(u) B_{k, m}(u)=\frac{\binom{j}{i}\binom{m}{k}}{\binom{j+m}{i+k}} B_{i+k, j+m}(u) . \tag{1.8}
\end{equation*}
$$

- The expression of power basic functions in the Bernstein form and vice versa,

$$
\begin{equation*}
B_{k, N}(u)=\sum_{i=k}^{N}(-1)^{i-k}\binom{N}{i}\binom{i}{k} u^{i} . \tag{1.9}
\end{equation*}
$$

Let $B_{s}^{t}=\left[B_{0, N}(s), B_{1, N}(s), \cdots, B_{N, N}(s)\right]$ and $S^{t}=\left[1, s, s^{2}, \cdots, s^{N}\right]$ then

$$
\begin{equation*}
B_{s}=M S \quad \text { and } \quad S=M^{-1} B_{s}, \tag{1.10}
\end{equation*}
$$

where
$(1.11) M=\left[\begin{array}{cccc}(-1)^{0}\binom{N}{0}\binom{0}{0} & (-1)^{1}\binom{N}{1}\binom{1}{0} & \cdots & (-1)^{N}\binom{N}{N}\binom{N}{0} \\ \vdots & (-1)^{0}\binom{N}{1}\binom{1}{1} & \cdots & (-1)^{N-1}\binom{N}{N} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & (-1)^{0}\binom{N}{N}\binom{N}{N}\end{array}\right]$.

- All the basis functions have the same definite integral over $[0,1]$, namely

$$
\begin{equation*}
\int_{0}^{1} B_{i, N}(u) d u=\frac{1}{N+1} \quad ; \quad i=0,1, \cdots, N . \tag{1.12}
\end{equation*}
$$

Therefore by (1.8),(1.12) produced matrix from the integration over the product of two bases in form $T=\int_{0}^{1} B_{s} B_{s}^{t} d s$, can be obtained. That $T$ is a $(N+1) \times(N+1)$ matrix by elements in the following forms,

$$
T_{i+1, j+1}=\frac{\binom{N}{i}\binom{N}{j}}{(2 N+1)\binom{2 N}{i+j}} \quad ; \quad i, j=0,1, \cdots, N .
$$

Also, if $A^{t}=\left[a_{0}, a_{1}, \cdots, a_{N}\right]$, is a known vector of order $(N+$ $1)$, then $B_{s} B_{s}^{t} A$, can be written again in the Bernstein form. To this end, by using the (1.8) and (1.10), we have

$$
\begin{aligned}
B_{s} B_{s}^{t} A & =M \tau\left(\sum_{k=0}^{N} a_{k} B_{k, N}(s)\right) \\
& =M\left[\begin{array}{c}
\sum_{k=0}^{N} a_{k} B_{k, N}(s) \\
\sum_{k=0}^{N} a_{k} s B_{k, N}(s) \\
\vdots \\
\sum_{k=0}^{N} a_{k} s^{N} B_{k, N}(s)
\end{array}\right] .
\end{aligned}
$$

Now, we approximate all functions $s^{j} B_{k, N}(s)$ in terms of $B_{s}$. Namely

$$
\begin{equation*}
s^{j} B_{k, N}(s) \simeq B_{s}^{t} e_{j, k} \quad ; \quad j, k=0,1, \cdots, N, \tag{1.15}
\end{equation*}
$$

where $e_{j, k}$, is a approximation coefficients vector as follows

$$
e_{j, k}=\left[\begin{array}{c}
e_{0}^{j, k}  \tag{1.16}\\
e_{1}^{j, k} \\
\vdots \\
e_{N}^{j, k}
\end{array}\right]
$$

By multiplying $B_{s}$, in both sides of (1.15), and integration of them, and by using of (1.13), we have

$$
\begin{aligned}
e_{j, k} & =T^{-1} \int_{0}^{1} s^{j} B_{k, N}(s) B_{s} d s \\
& =T^{-1}\left[\begin{array}{c}
\int_{0}^{1} s^{j} B_{k, N}(s) B_{0, N}(s) d s \\
\int_{0}^{1} s^{j} B_{k, N}(s) B_{1, N}(s) d s \\
\vdots \\
\int_{0}^{1} s^{j} B_{k, N}(s) B_{N, N}(s) d s
\end{array}\right]=\frac{T^{-1}\binom{N}{k}}{2 N+j+1}\left[\begin{array}{c}
\left.\frac{(N}{N}\right) \\
\left.\frac{\binom{N+j}{k+j}}{\left.\frac{(N}{N}\right)} \begin{array}{c}
\left(\begin{array}{l}
2 N+j \\
k+j+1 \\
\vdots
\end{array}\right. \\
\vdots \\
\left.\frac{(N}{N}\right) \\
\binom{N N+j}{k+j+N}
\end{array}\right] .
\end{array} . .\right.
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{k=0}^{N} a_{k} s^{j} B_{k, N}(s) & \simeq \sum_{k=0}^{N} a_{k} B_{s}^{t} e_{j, k}=\sum_{k=0}^{N} a_{k}\left(\sum_{i=0}^{N} e_{i}^{j, k} B_{i, N}(s)\right) \\
& =\sum_{i=0}^{N} B_{i, N}(s)\left(\sum_{k=0}^{N} a_{k} e_{i}^{j, k}\right)=\left[\begin{array}{c}
\sum_{k=0}^{N} a_{k} e_{0}^{j, k} \\
\sum_{k=0}^{N} a_{k} e_{1}^{j, k} \\
\vdots \\
\sum_{k=0}^{N} a_{k} e_{N}^{j, k}
\end{array}\right] B_{s} \\
& =A^{t}\left[\begin{array}{c}
e_{j, 0}^{t} \\
e_{j, 1}^{t} \\
\vdots \\
e_{j, N}^{t}
\end{array}\right] B_{s}=A^{t} E_{j+1} B_{s}
\end{aligned}
$$

that $E_{j+1}$ is a $(N+1) \times(N+1)$ matrix that, it has vectors $e_{j, k}^{t}, \quad j=0,1, \cdots, N$, for each row.Therefore we define $\widehat{E_{j+1}}=$
$A^{t} E_{j+1}$ for $j=0,1, \cdots, N$. So

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k} s^{j} B_{k, N}(s) \simeq \widehat{E_{j+1}} B_{s} \quad ; \quad j=0,1, \cdots, N \tag{1.17}
\end{equation*}
$$

Now by substituting (1.17), into (1.14), we have

$$
B_{s} B_{s}^{t} A=M\left[\begin{array}{c}
\widehat{E_{1}} B_{s}  \tag{1.18}\\
\widehat{E_{2}} B_{s} \\
\vdots \\
\widehat{E_{N+1}} B_{s}
\end{array}\right]
$$

If we define matrix $G_{A}$ as follows

$$
G_{A}=\left[\begin{array}{c}
\widehat{E_{1}} \\
\widehat{E_{2}} \\
\vdots \\
\widehat{E_{N+1}}
\end{array}\right]
$$

that $G_{A}$ is a $(N+1) \times(N+1)$ matrix that,it has vectors $\widehat{E_{j+1}}, \quad j=0,1, \cdots, N$, for each row. Therefore we can write

$$
\begin{equation*}
B_{s} B_{s}^{t} A=M G_{A} B_{s}, \tag{1.19}
\end{equation*}
$$

- Operational matrix of integration

Let $B_{t}^{t}=\left[B_{0, N}(t), B_{1, N}(t), \cdots, B_{N, N}(t)\right]$, and $\tau^{t}=\left[1, t, t^{2}, \cdots, t^{N}\right]$, then the integration of vector $B_{t}$ is given by

$$
\begin{equation*}
\int_{0}^{s} B_{t} d t \simeq P B_{s} \tag{1.20}
\end{equation*}
$$

where $P$ is the $(N+1) \times(N+1)$ operational matrix for integration and is given in [4]. By using of (1.11), we have

$$
\int_{0}^{s} B_{t} d t=\int_{0}^{s} M \tau d t=M \int_{0}^{s} \tau d t=M\left[\begin{array}{c}
s  \tag{1.21}\\
\frac{1}{2} s^{2} \\
\vdots \\
\frac{1}{N+1} s^{N+1}
\end{array}\right]=M M_{p} S_{p}
$$

where $S_{p}^{t}=\left[s, s^{2}, \cdots, s^{N+1}\right]$, and $M_{p}$ is the following matrix

$$
M_{p}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0  \tag{1.22}\\
0 & \frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & \frac{1}{N+1}
\end{array}\right]_{(N+1) \times(N+1)}
$$

According to (1.11), we had $S=M^{-1} B_{s}$. Therefore for $k=$ $0,1, \cdots, N$, we have

$$
\begin{equation*}
s^{k}=M_{[k+1]}^{-1} B_{s}, \tag{1.23}
\end{equation*}
$$

where $M_{[k+1]}^{-1}$ is $(k+1)$-th row of $M^{-1}$ for $k=0,1, \cdots, N$. We just need to approximate
$s^{N+1} \simeq B_{s}^{t} C_{N+1}$. By product both sides of it at $B_{s}$ and integration on $[0,1]$, we have

$$
C_{N+1}=T^{-1} \int_{0}^{1} s^{N+1} B_{s} d s
$$

$$
=T^{-1}\left[\begin{array}{c}
\int_{0}^{1} s^{N+1} B_{0, N}(s) d s \\
\int_{0}^{1} s^{N+1} B_{1, N}(s) d s \\
\vdots \\
\int_{0}^{1} s^{N+1} B_{N, N}(s) d s
\end{array}\right]=\frac{T^{-1}}{2 N+2}\left[\begin{array}{c}
\left.\frac{(N}{0}\right) \\
\left(\begin{array}{c}
0 N+1 \\
N+1
\end{array}\right. \\
\left.\frac{(1}{2}\right) \\
\binom{(N+1)}{N+2} \\
\vdots \\
\left.\frac{(N}{N}\right) \\
\frac{(2 N+1}{(2 N+1} 2 N+1
\end{array}\right] .
$$

Now assume

$$
B=\left[\begin{array}{c}
M_{[2]}^{-1}  \tag{1.25}\\
M_{[3]}^{-1} \\
\vdots \\
M_{[N+1]}^{-1} \\
C_{N+1}^{t}
\end{array}\right],
$$

then $S_{p} \simeq B B_{s}$. Therefore we have the operational matrix of integration $P=M M_{p} B$.
1.3. The expression of the Legendre polynomials in the Bernstein form. In this scale, we expand a favorite polynomial such as $P_{N}(s)$ in terms of Legendre-Bernstein basis. That is, we combine two bases Legendre and Bernstein, and then calculate expansion coefficients. The Legendre polynomials $L_{k}(s)$ can be expressed in the Bernstein basis $B_{s}$ of degree N as

$$
\begin{equation*}
L_{k}(s)=\sum_{j=0}^{N} \Lambda_{k, j} B_{j, N}(s) \quad ; \quad k=0,1, \cdots, N, \tag{1.26}
\end{equation*}
$$

where [1],

$$
\begin{equation*}
\Lambda_{k, j}=\frac{1}{\binom{N}{j}} \sum_{i=\max (0, j+k-N)}^{\min (j, k)}(-1)^{k+i}\binom{k}{i}\binom{k}{i}\binom{N-k}{j-i} \quad ; \quad j, k=0,1, \cdots, N . \tag{1.27}
\end{equation*}
$$

Now consider the polynomial $P_{N}(s)$ of degree $N$, as expressed in (1.4), we can transform it in the Bernstein form as

$$
P_{N}(s)=\sum_{k=0}^{N} l_{k} L_{k}(s)=\sum_{k=0}^{N} l_{k}\left(\sum_{j=0}^{N} \Lambda_{k, j} B_{j, N}(s)\right)=\sum_{j=0}^{N} b_{j} B_{j, N}(s),
$$

that by (1.5) and (1.26), we have

$$
\begin{aligned}
l_{k} & =\frac{\left\langle f(s), L_{k}(s)\right\rangle}{\left\langle L_{k}(s), L_{k}(s)\right\rangle} \\
& =(2 k+1) \int_{0}^{1} f(s) L_{k}(s) d s=(2 k+1) \int_{0}^{1} f(s)\left(\sum_{j=0}^{N} \Lambda_{k, j} B_{j, N}(s)\right) d s \\
& =(2 k+1) \sum_{j=0}^{N} \Lambda_{k, j} \int_{0}^{1} f(s) B_{j, N}(s) d s \quad ; \quad k=0,1, \cdots, N,
\end{aligned}
$$

where

$$
b_{j}=\sum_{k=0}^{N} l_{k} \Lambda_{k, j} \quad ; \quad j, k=0,1, \cdots, N \quad \text { or } \quad b=l^{t} \Lambda .
$$

That $b_{j}$ are expansion coefficients of $P_{N}(s)$, in terms of Legendre-Bernstein basis. Similarly, we can calculate expansion coefficients of least squares approximation of kernel $k(s, t)$, based on Legendre-Bernstein basis. Let

$$
\begin{aligned}
& L_{s}^{t}=\left[L_{0}(s),\right.\left.L_{1}(s), \cdots, L_{N}(s)\right], \text { then for } k(s, t) \text { we have } \\
& \qquad \begin{aligned}
k(s, t) & =L_{s}^{t} K L_{t} \\
& =\sum_{m=0}^{N} \sum_{n=0}^{N} L_{m}(s) k_{m, n} L_{n}(t) \\
& =\sum_{m=0}^{N} \sum_{n=0}^{N}\left(\sum_{i=0}^{N} \Lambda_{m, i} B_{i, N}(s)\right) k_{m, n}\left(\sum_{j=0}^{N} \Lambda_{n, j} B_{j, N}(t)\right) \\
& =\sum_{i=0}^{N} \sum_{j=0}^{N} B_{i, N}(s)\left(\sum_{m=0}^{N} \sum_{n=0}^{N} \Lambda_{m, i} k_{m, n} \Lambda_{n, j}\right) B_{j, N}(t),
\end{aligned}
\end{aligned}
$$

where

$$
\begin{aligned}
k_{m, n}= & \frac{\left\langle\left\langle k(s, t), L_{n}(t)\right\rangle, L_{m}(s)\right\rangle}{\left\langle L_{n}(t), L_{n}(t)\right\rangle\left\langle L_{m}(s), L_{m}(s)\right\rangle} \\
= & (2 n+1)(2 m+1) \int_{0}^{1} \int_{0}^{1} L_{m}(s) L_{n}(t) k(s, t) d t d s \\
= & (2 n+1)(2 m+1) \sum_{i=0}^{N} \sum_{j=0}^{N} \Lambda_{m, i} \Lambda_{n, j} \int_{0}^{1} \int_{0}^{1} B_{i, N}(s) B_{j, N}(t) k(s, t) d t d s \\
& ; \quad i, j=0,1, \cdots, N
\end{aligned}
$$

Let

$$
\begin{equation*}
C_{i, j}=\sum_{m=0}^{N} \sum_{n=0}^{N} \Lambda_{m, i} k_{m, n} \Lambda_{n, j} \quad ; \quad i, j=0,1, \cdots, N \tag{1.28}
\end{equation*}
$$

or

$$
\begin{equation*}
C=\Lambda^{t} K \Lambda . \tag{1.29}
\end{equation*}
$$

Then

$$
\begin{equation*}
k(s, t)=\sum_{i=0}^{N} \sum_{j=0}^{N} B_{i, N}(s) C_{i, j} B_{j, N}(t)=B_{s}^{t} C B_{t} . \tag{1.30}
\end{equation*}
$$

## 2. Approximation of Fredholm integro-differential EQUATIONS (FIDE)

Consider the equation (1.1), as follows

$$
\begin{equation*}
\sum_{i=0}^{L} \varphi_{i}(s) g^{(i)}(s)=f(s)+\lambda \int_{0}^{1} k(s, t) g(t) d t \tag{2.1}
\end{equation*}
$$

under the mixed conditions

$$
g^{(i)}(0)=b_{i} \quad ; \quad i=0,1, \cdots(L-1)
$$

Let the least-squares approximation for $f(s)$ and $\varphi_{i}(s)$ in LegendreBernstein basis as follows,

$$
\begin{equation*}
f(s)=B_{s}^{t} F \quad \text { and } \quad \varphi_{i}(s)=q_{i}^{t} B_{s} \quad ; \quad, i=0,1, \cdots, L \tag{2.2}
\end{equation*}
$$

also, we approximate $g^{(L)}(s)$, by Bernstein basis as $g^{(L)}(s)=B_{s}^{t} A$, where $A^{t}=\left[a_{0}, a_{1}, \cdots, a_{N}\right]$. Then, by integration of $g^{(L)}(s)$ on $[0, s]$ and considering the mixed conditions, we can write

$$
\begin{aligned}
g^{(L)}(s) & =B_{s}^{t} A \\
g^{(L-1)}(s) & =\int_{0}^{s} B_{s}^{t} A d s=\int_{0}^{s} B_{s}^{t} d s A=B_{s}^{t} P^{t} A+b_{L-1} \\
g^{(L-2)}(s) & =B_{s}^{t}\left(P^{t}\right)^{2} A+b_{L-1} s+b_{L-2} \\
g^{(L-3)}(s) & =B_{s}^{t}\left(P^{t}\right)^{3} A+b_{L-1} \frac{s^{2}}{2!}+b_{L-2} s+b_{L-3} \\
\vdots & =\vdots \\
g^{(1)}(s) & =B_{s}^{t}\left(P^{t}\right)^{L-1} A+b_{L-1} \frac{s^{L-2}}{(L-2)!}+\cdots+b_{3} \frac{s^{2}}{2!}+b_{2} s+b_{1} \\
g(s) & =B_{s}^{t}\left(P^{t}\right)^{L} A+b_{L-1} \frac{s^{L-1}}{(L-1)!}+\cdots+b_{2} \frac{s^{2}}{2!}+b_{1} s+b_{0}
\end{aligned}
$$

No, by (1.10) and (1.11), we can write

$$
\begin{aligned}
g^{(L)}(s) & =B_{s}^{t} A \\
g^{(L-1)}(s) & =B_{s}^{t}\left(P^{t} A+b_{L-1} d_{0}\right) \\
g^{(L-2)}(s) & =B_{s}^{t}\left(\left(P^{t}\right)^{2} A+b_{L-1} d_{1}+b_{L-2} d_{0}\right) \\
g^{(L-3)}(s) & =B_{s}^{t}\left(\left(P^{t}\right)^{3} A+\frac{b_{L-1}}{2!} d_{2}+b_{L-2} d_{1}+b_{L-3} d_{0}\right) \\
\vdots & =\vdots \\
g^{(1)}(s) & =B_{s}^{t}\left(\left(P^{t}\right)^{L-1} A+\frac{b_{L-1}}{(L-2)!} d_{L-2}+\cdots+\frac{b_{3}}{2!} d_{2}+b_{2} d_{1}+b_{1} d_{0}\right) \\
(2.3) g(s) & =B_{s}^{t}\left(\left(P^{t}\right)^{L} A+\frac{b_{L-1}}{(L-1)!} d_{L-1}+\cdots+\frac{b_{2}}{2!} d_{2}+b_{1} d_{1}+b_{0} d_{0}\right),
\end{aligned}
$$

where $d_{i}^{t}$, is $i$-th row of $M^{-1}$. By defining $R_{L}=O_{(N+1) \times 1}$ and by setting $R_{L-k}=\sum_{j=1}^{k} \frac{b_{L-j}}{(k-j)!} d_{k-j} \quad ; \quad i=1,2, \cdots L$, and by (1.30), (2.2)
and (2.3) the equation (2.1), can be written as

$$
\begin{aligned}
\sum_{i=0}^{L} q_{i}^{t} B_{s} B_{s}^{t}\left(\left(P^{t}\right)^{L-i} A+R_{i}\right) & =B_{s}^{t} F+\lambda B_{s}^{t} C \int_{0}^{1} B_{t} B_{t}^{t}\left(\left(P^{t}\right)^{L} A+R_{0}\right) d t \\
& =B_{s}^{t} F+\lambda B_{s}^{t} C T\left(\left(P^{t}\right)^{L} A+R_{0}\right) .
\end{aligned}
$$

But by using (1.19), we can write

$$
\sum_{i=0}^{L} B_{s}^{t} G_{q_{i}}^{t} M^{t}\left(\left(P^{t}\right)^{L-i} A+R_{i}\right)=B_{s}^{t} F+\lambda B_{s}^{t} C T\left(\left(P^{t}\right)^{L} A+R_{0}\right)
$$

then

$$
\sum_{i=0}^{L} G_{q_{i}}^{t} M^{t}\left(\left(P^{t}\right)^{L-i} A+R_{i}\right)=F+\lambda C T\left(\left(P^{t}\right)^{L} A+R_{0}\right)
$$

or

$$
\left(\sum_{i=0}^{L} G_{q_{i}}^{t} M^{t}\left(P^{t}\right)^{L-i}-\lambda C T\left(P^{t}\right)^{L}\right) A=F+\lambda C T R_{0}-\sum_{i=0}^{L} G_{q_{i}}^{t} M^{t} R_{i}
$$

After determining $A$, as

$$
A=\left(\sum_{i=0}^{L} G_{q_{i}}^{t} M^{t}\left(P^{t}\right)^{L-i}-\lambda C T\left(P^{t}\right)^{L}\right)^{-1}\left(F+\lambda C T R_{0}-\sum_{i=0}^{L} G_{q_{i}}^{t} M^{t} R_{i}\right)
$$

the unknown function $g(s)$, can be determined as

$$
g(s)=B_{s}^{t}\left(\left(P^{t}\right)^{L} A+R_{0}\right)
$$

## 3. Approximation of Volterra integro-differential equations (VIDE)

Consider the equation (1.2), as follows

$$
\begin{equation*}
\sum_{i=0}^{L} \varphi_{i}(s) g^{(i)}(s)=f(s)+\lambda \int_{0}^{s} k(s, t) g(t) d t \tag{3.1}
\end{equation*}
$$

under the mixed conditions

$$
g^{(i)}(0)=b_{i} \quad ; \quad i=0,1, \cdots(L-1) .
$$

By defining $\left\{Q_{i}=\left(P^{t}\right)^{L-i} A+R_{i} ; i=0,1, \cdots L\right\}$ such as (FIDE) kind, we have

$$
\sum_{i=0}^{L} B_{s}^{t} G_{q_{i}}^{t} M^{t} Q_{i}=f(s)+\lambda B_{s}^{t} C \int_{0}^{s} B_{t} B_{t}^{t} Q_{0} d t
$$

by using of (1.19) and (1.20), we can write

$$
\begin{align*}
\sum_{i=0}^{L} B_{s}^{t} G_{q_{i}}^{t} M^{t} Q_{i} & =f(s)+\lambda B_{s}^{t} C M G_{Q_{0}} \int_{0}^{s} B_{t} d t \\
& =f(s)+\lambda B_{s}^{t} C M G_{Q_{0}} P B_{s} \tag{3.2}
\end{align*}
$$

So by putting nodes $\left\{\left.s_{i}=\frac{i}{N} \right\rvert\, i=0,1, \cdots, N\right\}$ in (3.2), we get a system of linear algebraic equations of $(N+1) \times(N+1)$ degree, with unknown coefficients $\left\{a_{i} \mid i=0,1, \cdots N\right\}$. After solving this linear system, we can approximate the solution of equation (3.1), as follows

$$
\begin{equation*}
g(s)=B_{s}^{t} Q_{0} \tag{3.3}
\end{equation*}
$$

3.1. Error bound for approximation. The Bernstein polynomials can be expressed in terms of some orthogonal polynomials, such as Chebychev polynomials $\chi_{N}(x)$ of second kind [5,6]. It can be shown that

$$
B_{i, N}(x)=\frac{1}{2^{N}}\binom{N}{i} \sum_{j=0}^{N} d_{j}^{i, N} \frac{1}{2^{j}} \sum_{m=0}^{\left[\frac{j}{2}\right]}\left(\binom{j}{m}-\binom{j}{m+1}\right) \chi_{j-2 m}(x),
$$

where

$$
d_{j}^{i, N}=\sum_{k}(-1)^{j-k}\binom{i}{k}\binom{N-i}{j-k}
$$

Expand $f(x)$ in the approximated form of Bernstein polynomials

$$
f(x) \simeq P_{N}(x)=\sum_{i=0}^{N} a_{i} B_{i, N}(x) .
$$

Thus, it is eventually expressed as

$$
P_{N}(x)=\sum_{j=0}^{N} b_{j} \chi_{j}(x),
$$

where $b_{j}$ can be expressed in terms of $a_{i} ; \quad i, j=0,1, \cdots, N$. If $u_{j}(x)=$ $\sqrt{\frac{2}{\pi}} \chi_{j}(x)$, then $u_{j}(x), j=0,1, \cdots, N$, form an orthogonal polynomial
basis in $[-1,1]$ with respect to weight function $\omega(x)=\left(1-x^{2}\right)^{\frac{1}{2}}$, that can be mapped to $[0,1]$. Therefor, this procedure yields

$$
P_{N}(x)=\sum_{j=0}^{N} \sqrt{\frac{\pi}{2}} b_{j} u_{j}(x)
$$

Golberg and Chen [7], proved that when a continuously differentiable function $\left(f \in C^{r}, r>0\right)$ is approximated by Chebychev polynomials, then

$$
\begin{equation*}
\left\|f-P_{N}\right\|_{\infty}<c_{0} N^{-r} \tag{3.4}
\end{equation*}
$$

where $c_{0}$ is some constant. Now we find error bound for (VIDE) and so, for (FIDE) kind is as the same. Assume $P_{N}(s)$ and $g(s)$ be approximate and exact solutions of the equation (3.1), respectively, so

$$
\begin{equation*}
\sum_{i=0}^{L} \varphi_{i}(s) P_{N}^{(i)}(s)-\lambda \int_{0}^{s} k(s, t) P_{N}^{(0)}(t) d t=f(s)+R_{N}(s) \tag{3.5}
\end{equation*}
$$

where $R_{N}(s)$ is the perturbation function that depends only on $P_{N}(s)$, and $P_{N}^{(i)}(s) ; \quad i=0,1, \cdots, L$, are $i$-th derivative of the $P_{N}(s)$. As previously mentioned $g(s) \in C^{L+1}[0,1]$ and by (3.4), we can write

$$
\begin{equation*}
\left\|g^{(i)}(s)-P_{N}^{(i)}(s)\right\|_{\infty}<c_{i} N^{-(L+1)+i} \quad ; \quad i=0,1, \cdots, L \tag{3.6}
\end{equation*}
$$

Let $M \equiv \sup _{0 \leq s, t \leq 1}|k(s, t)|<\infty$ and $\phi=\sup _{0 \leq s \leq 1}\left|\varphi_{i}(s)\right|$. By subtracting equation (3.5), from equation (3.1), we have

$$
\left|R_{N}(s)\right| \leq \sum_{i=0}^{L} \phi c_{i} N^{-(L+1)+i}+|\lambda| M c_{0} N^{-(L+1)}
$$

Let $c=\sup \left|c_{i}\right| ; \quad i=0,1, \cdots, L$, then

$$
\begin{aligned}
\left|R_{N}(s)\right| & \leq\left(\phi c \sum_{i=0}^{L} N^{i}+|\lambda| M c\right) N^{-(L+1)} \\
& =\left(\phi c\left(\frac{1-N^{L+1}}{1-N}\right)+|\lambda| M c\right) N^{-(L+1)}
\end{aligned}
$$

so, an error bound obtained for the perturbation function $R_{N}(s)$ such as

$$
\begin{equation*}
\left|R_{N}(s)\right| \leq\left(\phi c\left(\frac{N^{-(L+1)}-1}{1-N}\right)+|\lambda| M c N^{-(L+1)}\right) \tag{3.7}
\end{equation*}
$$

## 4. Illustrations

Example 4.1. Consider linear integro-differential equation [8]:

$$
\begin{equation*}
g^{\prime}(s)=e^{s}+s e^{s}-s+\int_{0}^{1} s g(t) d t \quad ; \quad 0 \leq s, t \leq 1 \tag{4.1}
\end{equation*}
$$

with the initial condition $g(0)=0$ and the exact solution $g(s)=s e^{s}$. Table 1 shows the numerical results for Example 4.1 in comparison with method of [8].

Table 1: Numerical results of the absolute error functions $E_{7}\left(x_{i}\right)$ of $g(x)$ for Example 4.1.

| Nodes $s_{i}=\frac{i}{10}$ | Method of $[8] N=7$ | Present method $N=7$ |
| :--- | :---: | :--- |
| 0.0 |  | $2.9802322388 e-008$ |
| 0.1 | $2.1789 e-008$ | $3.7999745711 e-009$ |
| 0.2 | $2.2665 e-008$ | $5.8854213447 e-009$ |
| 0.3 |  | $8.7810120286 e-009$ |
| 0.4 | $2.5198 e-008$ | $5.2150994634 e-010$ |
| 0.5 |  | $9.7645229680 e-009$ |
| 0.6 | $2.7325 e-008$ | $5.0493556003 e-009$ |
| 0.7 |  | $2.8782316974 e-008$ |
| 0.8 | $2.7236 e-008$ | $3.5657182540 e-008$ |
| 0.9 | $7.6359 e-007$ | $4.4966471435 e-008$ |
| 1.0 |  | $2.2943756228 e-008$ |

Example 4.2. Consider linear integro-differential equation [9]:
$g^{\prime \prime}(s)+s g^{\prime}(s)-s g(s)=e^{s}+\frac{1}{2} s \cos (s)-\frac{1}{2} \int_{0}^{s} \cos (s) e^{-t} g(t) d t \quad ; \quad 0 \leq s, t \leq 1$,
with the initial condition $g(0)=1, g^{\prime}(0)=1$ and the exact solution $g(s)=e^{s}$. Table 2 and Figure 1 shows the numerical results for Example 4.2 in comparison with method of [9].

Table 2: Numerical results for Example 4.2.

| Nodes $s_{i}=\frac{i}{10}$ | Method of $[9]\left(N=7, y_{7}\left(x_{i}\right)\right)$ | Present method $N=7$ | Exact solution |
| :--- | :---: | :--- | :---: |
| 0.0 | 1.0000000000000 | 0.999999996780694 | 1.000000000000000 |
| 0.1 |  | 1.105170917959630 | 1.105170918075648 |
| 0.2 | 1.2214027614222 | 1.221402756883232 | 1.221402758160170 |
| 0.3 |  | 1.349858807645092 | 1.349858807576003 |
| 0.4 | 1.4918247044117 | 1.491824696834059 | 1.491824697641270 |
| 0.5 |  | 1.648721268500642 | 1.648721270700128 |
| 0.6 | 1.8221188108838 | 1.822118798699455 | 1.822118800390509 |
| 0.7 |  | 2.013752706070358 | 2.013752707470477 |
| 0.8 | 2.2255409520234 | 2.225540924921041 | 2.225540928492468 |
| 0.9 |  | 2.459603107273732 | 2.459603111156950 |
| 1.0 | 2.7182815307470 | 2.718281820338751 | 2.718281828459046 |



Figure 1. Numerical results for Example 4.2.

## 5. Conclusions

In this paper, solving a linear integro-differential equation became to solve a system of linear equations. To this end, the kernel of integrodifferential equation and other known functions have been extended by
the least squares approximation of Legendre-Bernstein basis. Also the unknown function and its derivatives have been extended in terms of Bernstein basis. The advantage of this method is that, both characteristics orthogonality of Legendre polynomials and simplification of Bernstein polynomials are used. Thus, we have accuracy and simplicity together.Where, numerical results obtained from the examples show it. So, this basis can be used as a reliable basis for approximation functions.That, its coefficients are easily calculated as, it has been shown in context.

## References

[1] R. T. Farouki, Legendre-Bernstein basis transformations, Comput. Appl. Math., 119 (2000), 145-160.
[2] P. J. Davis, Interpolation and approximation, New York: Dover (1975).
[3] E. Isaacson and H. B. Keller, Analysis of numerical methods, New York: Dover (1994).
[4] SA. Yousefi and M. Behroozifar, Operational matrices of Bernstein polynomials and their applications, Int. J. Syst. Sci., 41(6) (2010), 709-716.
[5] BN. Mandal and S. Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Comput. Appl. Math., 190 (2007), 17071716.
[6] MA. Snyder, Chebychev methods in numerical approximation, Englewood Clifs; NJ. Prentice-Hall (1996).
[7] MA. Golberg and CS. Chen, Discrete projection methods for integral equations, Southampton; Comput. Mech. Publicat (1997), 178-306.
[8] Y. Şuayip, Ş. Niyazi and Y. Ahmet, A collocation approach for solving highorder linear Fredholm Volterra integro-differential equations, Math. and Compu. Model., 55 (2012), 547-563.
[9] Y. Şuayip, Ş. Niyazi and S. Mehmet, Bessel polynomial solutions of high-order linear Volterra integro-differential equations, Comput. Appl. Math., 62 (2011), 1940-1956.

## Farshid Mirzaee

Department of Mathematics, Faculty of Science, Malayer University, Malayer, 6571995863, Iran.
Email: f.mirzaee@malayeru.ac.ir

## Sasan Fathi

Department of Mathematics, Faculty of Science, Malayer University, Malayer, 6571995863, Iran.
Email: sasan_fathi90@yahoo.com


[^0]:    Received: 14 August 2013, Accepted: 1 September 2013. Communicated by Davod Khojasteh Salkuyeh;
    *Address correspondence to Farshid mirzaee; E-mail: f.mirzaee@malayeru.ac.ir
    (c) 2014 University of Mohaghegh Ardabili.

