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NUMERICAL SOLUTION OF SOME CLASS OF

INTEGRO-DIFFERENTIAL EQUATIONS BY USING

LEGENDRE-BERNSTEIN BASIS

FARSHID MIRZAEE ∗ AND SASAN FATHI

Abstract. In this article, a numerical method is developed to
solve the linear integro-differential equations. To this end, it will
be divided in two forms, Fredholm integro-differential equations
(FIDE) and Volterra integro-differential equations (VIDE). So that,
the kernel and other known functions have been approximated us-
ing the least-squares approximation schemes based on Legender-
Bernstein basis. The Legender polynomials are orthogonal and this
property improve the accuracy of the approximations. Also the
unknown function and its derivatives have been approximated by
using the Bernstein basis. The useful properties of Bernstein poly-
nomials help us to transform integro-differential equations to solve
a system of linear algebraic equations. Of course, the solution way
of (FIDE) case is different from (VIDE).
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1. Introduction

As mentioned, in this paper linear integro-differential equations are
considered in two forms, Fredholm integro-differential equations (FIDE)
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and Volterra integro-differential equations (VIDE), respectively by the
general forms

L∑
i=0

φi(s)g
(i)(s) = f(s) + λ

∫ 1

0
k(s, t)g(t)dt,(1.1)

L∑
i=0

φi(s)g
(i)(s) = f(s) + λ

∫ s

0
k(s, t)g(t)dt ; 0 ≤ s ≤ 1,(1.2)

under the mixed conditions

g(i)(0) = bi ; i = 0, 1, · · · (L− 1),

where the parameter λ and functions f(s), k(s, t) and φi(s), {i =
0, 1, · · · , L}, are known and g(s) and so its derivatives are unknown
functions. Also has assumed that all of these functions are L2-Functions
on [0, 1], and g(s) ∈ CL+1[0, 1]. The Bernstein form of a polynomial
offers valuable insight into its geometrical behavior, and has thus won
widespread acceptance as the basis for Bézier curves and surfaces. For
least-squares approximation problems, on the other hand, the use of
orthogonal bases, such as the Legendre polynomials [2, 3], permits sim-
ple and efficient constructions for convergent sequences of approximants.

In the following we’ll introduce the Legendre and Bernstein polyno-
mials and some properties of them that have been used in this article.

1.1. Legendre polynomials. To emphasize symmetry properties of
Legendre polynomials, they are traditionally defined on the interval
[−1,+1], but for our purposes it is preferable to map this to [0, 1]. The
Legendre polynomials Lk(u) on u ∈ [0, 1], can be generated through the
recurrence relation

(1.3) (k+1)Lk+1(u) = (2k+1)(2u−1)Lk(u)kLk1(u) ; k = 1, 2, · · · ,
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commencing with L0(u) = 1 and L1(u) = 2u− 1.
This gives, in the first few instances

L0(u) = 1,

L1(u) = 2u− 1,

L2(u) = 6u2 − 6u+ 1,

L3(u) = 20u3 − 30u2 + 12u− 1,

... .

The orthogonality of these polynomials is expressed by the relation∫ 1

0
Lj(u)Lk(u)du =

{
1

2k+1 j = k

0 j ̸= k
.

Now for arbitrary function f(u) on [0, 1], we can express it in the Le-
gendre form,

(1.4) f(u) ≃ PN (u) =

N∑
j=0

ljLj(u),

where the coefficients lj , for Legendre polynomials are obtained from
following relation

(1.5) lk = (2k + 1)

∫ 1

0
Lk(u)f(u)du ; k = 0, 1, · · · , N.

1.2. Bernstein polynomials. (N+1)-Bernstein basic function on [0, 1],
are defined by using the following relation

(1.6) Bi,N (u) =

(
N

i

)
ui(1− u)N−i ; i = 0, 1, · · · , N.

In the follow, some properties of Bernstein polynomials have been ex-
pressed that in this article have been used of them ,

• The product of a power basic function and a Bernstein basic
function,

(1.7) umBi,N (u) =

(
N
i

)(
N+m
i+m

)Bi+m,N+m(u).

• The product of two Bernstein basic functions,

(1.8) Bi,j(u)Bk,m(u) =

(
j
i

)(
m
k

)(
j+m
i+k

) Bi+k,j+m(u).
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• The expression of power basic functions in the Bernstein form
and vice versa,

(1.9) Bk,N (u) =
N∑
i=k

(−1)i−k

(
N

i

)(
i

k

)
ui.

Let Bt
s = [B0,N (s), B1,N (s), · · · , BN,N (s)] and St = [1, s, s2, · · · , sN ]

then

(1.10) Bs = MS and S = M−1Bs,

where

M =


(−1)0

(
N
0

)(
0
0

)
(−1)1

(
N
1

)(
1
0

)
· · · (−1)N

(
N
N

)(
N
0

)
0 (−1)0

(
N
1

)(
1
1

)
· · · (−1)N−1

(
N
N

)(
N
1

)
...

. . .
. . .

...

0 · · · 0 (−1)0
(
N
N

)(
N
N

)
 .(1.11)

• All the basis functions have the same definite integral over [0, 1],
namely

(1.12)

∫ 1

0
Bi,N (u)du =

1

N + 1
; i = 0, 1, · · · , N.

Therefore by (1.8),(1.12) produced matrix from the integration

over the product of two bases in form T =
∫ 1
0 BsB

t
sds, can be

obtained. That T is a (N + 1)× (N + 1) matrix by elements in
the following forms,

(1.13) Ti+1,j+1 =

(
N
i

)(
N
j

)
(2N + 1)

(
2N
i+j

) ; i, j = 0, 1, · · · , N.

Also, if At = [a0, a1, · · · , aN ], is a known vector of order (N +
1), then BsB

t
sA, can be written again in the Bernstein form. To

this end, by using the (1.8) and (1.10), we have

BsB
t
sA = Mτ

(
N∑
k=0

akBk,N (s)

)

= M


∑N

k=0 akBk,N (s)∑N
k=0 aksBk,N (s)

...∑N
k=0 aks

NBk,N (s)

 .(1.14)
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Now, we approximate all functions sjBk,N (s) in terms of Bs.
Namely

(1.15) sjBk,N (s) ≃ Bt
sej,k ; j, k = 0, 1, · · · , N,

where ej,k, is a approximation coefficients vector as follows

(1.16) ej,k =


ej,k0
ej,k1
...

ej,kN

 .

By multiplying Bs, in both sides of (1.15), and integration of
them, and by using of (1.13), we have

ej,k = T−1

∫ 1

0
sjBk,N (s)Bsds

= T−1


∫ 1
0 sjBk,N (s)B0,N (s)ds∫ 1
0 sjBk,N (s)B1,N (s)ds

...∫ 1
0 sjBk,N (s)BN,N (s)ds

 =
T−1

(
N
k

)
2N + j + 1



(N0 )
(2N+j

k+j )
(N1 )

( 2N+j
k+j+1)
...

(NN)
( 2N+j
k+j+N)


.

Therefore
N∑
k=0

aks
jBk,N (s) ≃

N∑
k=0

akB
t
sej,k =

N∑
k=0

ak

(
N∑
i=0

ej,ki Bi,N (s)

)

=
N∑
i=0

Bi,N (s)

(
N∑
k=0

ake
j,k
i

)
=


∑N

k=0 ake
j,k
0∑N

k=0 ake
j,k
1

...∑N
k=0 ake

j,k
N

Bs

= At


etj,0
etj,1
...

etj,N

Bs = AtEj+1Bs,

that Ej+1 is a (N + 1) × (N + 1) matrix that,it has vectors

etj,k, j = 0, 1, · · · , N , for each row.Therefore we define Êj+1 =
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AtEj+1 for j = 0, 1, · · · , N . So

(1.17)

N∑
k=0

aks
jBk,N (s) ≃ Êj+1Bs ; j = 0, 1, · · · , N.

Now by substituting (1.17), into (1.14), we have

BsB
t
sA = M


Ê1Bs

Ê2Bs
...

ÊN+1Bs

 .(1.18)

If we define matrix GA as follows

GA =


Ê1

Ê2
...

ÊN+1

 ,

that GA is a (N + 1) × (N + 1) matrix that,it has vectors

Êj+1, j = 0, 1, · · · , N , for each row.Therefore we can write

(1.19) BsB
t
sA = MGABs,

• Operational matrix of integration
LetBt

t = [B0,N (t), B1,N (t), · · · , BN,N (t)], and τ t = [1, t, t2, · · · , tN ],
then the integration of vector Bt is given by

(1.20)

∫ s

0
Btdt ≃ PBs,

where P is the (N+1)×(N+1) operational matrix for integration
and is given in [4]. By using of (1.11), we have

(1.21)

∫ s

0
Btdt =

∫ s

0
Mτdt = M

∫ s

0
τdt = M


s

1
2s

2

...
1

N+1s
N+1

 = MMpSp,



Numerical solution of some class of integro-differential equations · · · 145

whereSt
p = [s, s2, · · · , sN+1], and Mp is the following matrix

(1.22) Mp =


1 0 0 · · · 0
0 1

2 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 1
N+1


(N+1)×(N+1)

,

According to (1.11), we had S = M−1Bs. Therefore for k =
0, 1, · · · , N , we have

(1.23) sk = M−1
[k+1]Bs,

where M−1
[k+1] is (k + 1)-th row of M−1 for k = 0, 1, · · · , N . We

just need to approximate
sN+1 ≃ Bt

sCN+1. By product both sides of it at Bs and integra-
tion on [0, 1], we have

CN+1 = T−1

∫ 1

0
sN+1Bsds

= T−1


∫ 1
0 sN+1B0,N (s)ds∫ 1
0 sN+1B1,N (s)ds

...∫ 1
0 sN+1BN,N (s)ds

 =
T−1

2N + 2



(N0 )
(2N+1

N+1 )
(N1 )

(2N+1
N+2 )
...

(NN)
(2N+1
2N+1)


.(1.24)

Now assume

(1.25) B =


M−1

[2]

M−1
[3]
...

M−1
[N+1]

Ct
N+1

 ,

then Sp ≃ BBs. Therefore we have the operational matrix of
integration P = MMpB.
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1.3. The expression of the Legendre polynomials in the Bern-
stein form. In this scale, we expand a favorite polynomial such as
PN (s) in terms of Legendre-Bernstein basis. That is, we combine two
bases Legendre and Bernstein, and then calculate expansion coefficients.
The Legendre polynomials Lk(s) can be expressed in the Bernstein basis
Bs of degree N as

(1.26) Lk(s) =
N∑
j=0

Λk,jBj,N (s) ; k = 0, 1, · · · , N,

where [1],
(1.27)

Λk,j =
1(
N
j

) min(j,k)∑
i=max(0,j+k−N)

(−1)k+i

(
k

i

)(
k

i

)(
N − k

j − i

)
; j, k = 0, 1, · · · , N.

Now consider the polynomial PN (s) of degree N , as expressed in (1.4),
we can transform it in the Bernstein form as

PN (s) =
N∑
k=0

lkLk(s) =
N∑
k=0

lk

 N∑
j=0

Λk,jBj,N (s)

 =
N∑
j=0

bjBj,N (s),

that by (1.5) and (1.26), we have

lk =
⟨f(s), Lk(s)⟩
⟨Lk(s), Lk(s)⟩

= (2k + 1)

∫ 1

0

f(s)Lk(s)ds = (2k + 1)

∫ 1

0

f(s)

 N∑
j=0

Λk,jBj,N (s)

 ds

= (2k + 1)

N∑
j=0

Λk,j

∫ 1

0

f(s)Bj,N (s)ds ; k = 0, 1, · · · , N,

where

bj =

N∑
k=0

lkΛk,j ; j, k = 0, 1, · · · , N or b = ltΛ.

That bj are expansion coefficients of PN (s), in terms of Legendre-Bernstein
basis. Similarly, we can calculate expansion coefficients of least squares
approximation of kernel k(s, t), based on Legendre-Bernstein basis. Let
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Lt
s = [L0(s), L1(s), · · · , LN (s)], then for k(s, t) we have

k(s, t) = Lt
sKLt

=
N∑

m=0

N∑
n=0

Lm(s)km,nLn(t)

=

N∑
m=0

N∑
n=0

(
N∑
i=0

Λm,iBi,N (s)

)
km,n

 N∑
j=0

Λn,jBj,N (t)


=

N∑
i=0

N∑
j=0

Bi,N (s)

(
N∑

m=0

N∑
n=0

Λm,ikm,nΛn,j

)
Bj,N (t),

where

km,n =
⟨⟨k(s, t), Ln(t)⟩ , Lm(s)⟩

⟨Ln(t), Ln(t)⟩ ⟨Lm(s), Lm(s)⟩

= (2n+ 1)(2m+ 1)

∫ 1

0

∫ 1

0

Lm(s)Ln(t)k(s, t)dtds

= (2n+ 1)(2m+ 1)

N∑
i=0

N∑
j=0

Λm,iΛn,j

∫ 1

0

∫ 1

0

Bi,N (s)Bj,N (t)k(s, t)dtds

; i, j = 0, 1, · · · , N.

Let

(1.28) Ci,j =
N∑

m=0

N∑
n=0

Λm,ikm,nΛn,j ; i, j = 0, 1, · · · , N,

or

(1.29) C = ΛtKΛ.

Then

(1.30) k(s, t) =
N∑
i=0

N∑
j=0

Bi,N (s)Ci,jBj,N (t) = Bt
sCBt.

2. Approximation of Fredholm integro-differential
equations (FIDE)

Consider the equation (1.1), as follows

(2.1)
L∑
i=0

φi(s)g
(i)(s) = f(s) + λ

∫ 1

0
k(s, t)g(t)dt,
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under the mixed conditions

g(i)(0) = bi ; i = 0, 1, · · · (L− 1).

Let the least-squares approximation for f(s) and φi(s) in Legendre-
Bernstein basis as follows,

(2.2) f(s) = Bt
sF and φi(s) = qtiBs ; , i = 0, 1, · · · , L,

also, we approximate g(L)(s), by Bernstein basis as g(L)(s) = Bt
sA, where

At = [a0, a1, · · · , aN ]. Then, by integration of g(L)(s) on [0, s] and con-
sidering the mixed conditions, we can write

g(L)(s) = Bt
sA

g(L−1)(s) =

∫ s

0
Bt

sAds =

∫ s

0
Bt

sdsA = Bt
sP

tA+ bL−1

g(L−2)(s) = Bt
s(P

t)2A+ bL−1s+ bL−2

g(L−3)(s) = Bt
s(P

t)3A+ bL−1
s2

2!
+ bL−2s+ bL−3

... =
...

g(1)(s) = Bt
s(P

t)L−1A+ bL−1
sL−2

(L− 2)!
+ · · ·+ b3

s2

2!
+ b2s+ b1

g(s) = Bt
s(P

t)LA+ bL−1
sL−1

(L− 1)!
+ · · ·+ b2

s2

2!
+ b1s+ b0.

No, by (1.10)and (1.11), we can write

g(L)(s) = Bt
sA

g(L−1)(s) = Bt
s

(
P tA+ bL−1d0

)
g(L−2)(s) = Bt

s

(
(P t)2A+ bL−1d1 + bL−2d0

)
g(L−3)(s) = Bt

s

(
(P t)3A+

bL−1

2!
d2 + bL−2d1 + bL−3d0

)
... =

...

g(1)(s) = Bt
s

(
(P t)L−1A+

bL−1

(L− 2)!
dL−2 + · · ·+ b3

2!
d2 + b2d1 + b1d0

)
g(s) = Bt

s

(
(P t)LA+

bL−1

(L− 1)!
dL−1 + · · ·+ b2

2!
d2 + b1d1 + b0d0

)
,(2.3)

where dti, is i-th row of M−1. By defining RL = O(N+1)×1 and by

setting RL−k =
∑k

j=1
bL−j

(k−j)!dk−j ; i = 1, 2, · · ·L, and by (1.30), (2.2)
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and (2.3) the equation (2.1), can be written as

L∑
i=0

qtiBsB
t
s((P

t)L−iA+Ri) = Bt
sF + λBt

sC

∫ 1

0
BtB

t
t((P

t)LA+R0)dt

= Bt
sF + λBt

sCT ((P t)LA+R0).

But by using (1.19), we can write

L∑
i=0

Bt
sG

t
qiM

t((P t)L−iA+Ri) = Bt
sF + λBt

sCT ((P t)LA+R0),

then

L∑
i=0

Gt
qiM

t((P t)L−iA+Ri) = F + λCT ((P t)LA+R0),

or(
L∑
i=0

Gt
qiM

t(P t)L−i − λCT (P t)L

)
A = F + λCTR0 −

L∑
i=0

Gt
qiM

tRi.

After determining A, as

A =

(
L∑

i=0

Gt
qiM

t(P t)L−i − λCT (P t)L

)−1(
F + λCTR0 −

L∑
i=0

Gt
qiM

tRi

)
,

the unknown function g(s), can be determined as

g(s) = Bt
s((P

t)LA+R0).

3. Approximation of Volterra integro-differential
equations (VIDE)

Consider the equation (1.2), as follows

(3.1)

L∑
i=0

φi(s)g
(i)(s) = f(s) + λ

∫ s

0
k(s, t)g(t)dt,

under the mixed conditions

g(i)(0) = bi ; i = 0, 1, · · · (L− 1).
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By defining {Qi = (P t)L−iA + Ri ; i = 0, 1, · · ·L} such as (FIDE)
kind, we have

L∑
i=0

Bt
sG

t
qiM

tQi = f(s) + λBt
sC

∫ s

0
BtB

t
tQ0dt,

by using of (1.19) and (1.20), we can write

L∑
i=0

Bt
sG

t
qiM

tQi = f(s) + λBt
sCMGQ0

∫ s

0
Btdt

= f(s) + λBt
sCMGQ0PBs.(3.2)

So by putting nodes {si = i
N | i = 0, 1, · · · , N} in (3.2), we get a

system of linear algebraic equations of (N + 1) × (N + 1) degree, with
unknown coefficients {ai | i = 0, 1, · · ·N}. After solving this linear
system, we can approximate the solution of equation (3.1), as follows

(3.3) g(s) = Bt
sQ0.

3.1. Error bound for approximation. The Bernstein polynomials
can be expressed in terms of some orthogonal polynomials, such as
Chebychev polynomials χN (x) of second kind [5, 6]. It can be shown
that

Bi,N (x) =
1

2N

(
N

i

) N∑
j=0

di,Nj
1

2j

[ j
2
]∑

m=0

((
j

m

)
−
(

j

m+ 1

))
χj−2m(x),

where

di,Nj =
∑
k

(−1)j−k

(
i

k

)(
N − i

j − k

)
.

Expand f(x) in the approximated form of Bernstein polynomials

f(x) ≃ PN (x) =

N∑
i=0

aiBi,N (x).

Thus, it is eventually expressed as

PN (x) =

N∑
j=0

bjχj(x),

where bj can be expressed in terms of ai; i, j = 0, 1, · · · , N . If uj(x) =√
2
πχj(x), then uj(x), j = 0, 1, · · · , N , form an orthogonal polynomial
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basis in [−1, 1] with respect to weight function ω(x) = (1 − x2)
1
2 , that

can be mapped to [0, 1]. Therefor, this procedure yields

PN (x) =

N∑
j=0

√
π

2
bjuj(x),

Golberg and Chen [7], proved that when a continuously differentiable
function (f ∈ Cr, r > 0) is approximated by Chebychev polynomials,
then

(3.4) ∥f − PN∥∞ < c0N
−r,

where c0 is some constant. Now we find error bound for (VIDE) and so,
for (FIDE) kind is as the same. Assume PN (s) and g(s) be approximate
and exact solutions of the equation (3.1), respectively, so

(3.5)

L∑
i=0

φi(s)P
(i)
N (s)− λ

∫ s

0
k(s, t)P

(0)
N (t)dt = f(s) +RN (s),

where RN (s) is the perturbation function that depends only on PN (s),

and P
(i)
N (s); i = 0, 1, · · · , L, are i-th derivative of the PN (s). As pre-

viously mentioned g(s) ∈ CL+1[0, 1] and by (3.4), we can write

(3.6) ∥g(i)(s)− P
(i)
N (s)∥∞ < ciN

−(L+1)+i ; i = 0, 1, · · · , L.
Let M ≡ sup0≤s,t≤1 |k(s, t)| < ∞ and ϕ = sup0≤s≤1 |φi(s)|. By sub-
tracting equation (3.5), from equation (3.1), we have

|RN (s)| ≤
L∑
i=0

ϕciN
−(L+1)+i + |λ|Mc0N

−(L+1),

Let c = sup |ci|; i = 0, 1, · · · , L, then

|RN (s)| ≤

(
ϕc

L∑
i=0

N i + |λ|Mc

)
N−(L+1)

=

(
ϕc(

1−NL+1

1−N
) + |λ|Mc

)
N−(L+1),

so, an error bound obtained for the perturbation function RN (s) such
as

(3.7) |RN (s)| ≤

(
ϕc(

N−(L+1) − 1

1−N
) + |λ|McN−(L+1)

)
.
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4. Illustrations

Example 4.1. Consider linear integro-differential equation [8]:

(4.1) g′(s) = es + ses − s+

∫ 1

0
sg(t)dt ; 0 ≤ s, t ≤ 1,

with the initial condition g(0) = 0 and the exact solution g(s) = ses.
Table 1 shows the numerical results for Example 4.1 in comparison with
method of [8].

Table 1: Numerical results of the absolute error functions E7(xi) of
g(x) for Example 4.1.

Nodes si =
i
10 Method of [8] N = 7 Present method N = 7

0.0 2.9802322388e− 008
0.1 2.1789e− 008 3.7999745711e− 009
0.2 2.2665e− 008 5.8854213447e− 009
0.3 8.7810120286e− 009
0.4 2.5198e− 008 5.2150994634e− 010
0.5 9.7645229680e− 009
0.6 2.7325e− 008 5.0493556003e− 009
0.7 2.8782316974e− 008
0.8 2.7236e− 008 3.5657182540e− 008
0.9 7.6359e− 007 4.4966471435e− 008
1.0 2.2943756228e− 008

Example 4.2. Consider linear integro-differential equation [9]:
(4.2)

g′′(s)+sg′(s)−sg(s) = es+
1

2
s cos(s)− 1

2

∫ s

0

cos(s)e−tg(t)dt ; 0 ≤ s, t ≤ 1,

with the initial condition g(0) = 1, g′(0) = 1 and the exact solution
g(s) = es. Table 2 and Figure 1 shows the numerical results for Example
4.2 in comparison with method of [9].
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Table 2: Numerical results for Example 4.2.

Nodes si =
i
10

Method of [9] (N = 7, y7(xi)) Present method N = 7 Exact solution

0.0 1.0000000000000 0.999999996780694 1.000000000000000

0.1 1.105170917959630 1.105170918075648
0.2 1.2214027614222 1.221402756883232 1.221402758160170
0.3 1.349858807645092 1.349858807576003
0.4 1.4918247044117 1.491824696834059 1.491824697641270

0.5 1.648721268500642 1.648721270700128
0.6 1.8221188108838 1.822118798699455 1.822118800390509
0.7 2.013752706070358 2.013752707470477
0.8 2.2255409520234 2.225540924921041 2.225540928492468

0.9 2.459603107273732 2.459603111156950
1.0 2.7182815307470 2.718281820338751 2.718281828459046

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8
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2.4

2.6
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Method of [9]
Present method
Exact solution

Figure 1. Numerical results for Example 4.2.

5. Conclusions

In this paper, solving a linear integro-differential equation became to
solve a system of linear equations. To this end, the kernel of integro-
differential equation and other known functions have been extended by
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the least squares approximation of Legendre-Bernstein basis. Also the
unknown function and its derivatives have been extended in terms of
Bernstein basis. The advantage of this method is that, both character-
istics orthogonality of Legendre polynomials and simplification of Bern-
stein polynomials are used. Thus, we have accuracy and simplicity to-
gether.Where, numerical results obtained from the examples show it.
So, this basis can be used as a reliable basis for approximation func-
tions.That, its coefficients are easily calculated as, it has been shown in
context.
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