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ANALYTICAL APPROXIMATION SOLUTION OF A

MATHEMATICAL MODELING OF

REACTION-DIFFUSION BRUSSELATOR SYSTEM BY

REDUCED DIFFERENTIAL TRANSFORM METHOD

A. TAGHAVI, A. BABAEI AND A. MOHAMMADPOUR

Abstract. In this paper an approximate analytical solution of
a mathematical modeling of reaction-diffusion Brusselator system
with fractional time derivative will be obtained with the help of
the reduced differential transform method. Fractional reaction-
diffusion Brusselator system is used for modeling of certain chem-
ical reaction-diffusion processes. The fractional derivatives are de-
scribed in the Caputo sense. It is indicated that the solutions ob-
tained by the reduced differential transform method are reliable and
present an effective method for strongly nonlinear partial equations.
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1. Introduction

We consider 2-dimensional time fractional reaction-diffusion Brusse-
lator system

Dα
t u = B + u2v − (A+ 1)u+ λ

(
uxx + uyy

)
Dβ

t v = Au− u2v + λ
(
vxx + vyy

)
(1.1)
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subject to the initial conditions

u(x, y, 0) = e−x−y

v(x, y, 0) = ex+y,(1.2)

where u = u(x, y, t), v = v(x, y, t) are chemical concentrations of reac-
tion products, and A, B are constant concentrations of input reagents,

and λ is a constant based on a diffusion coefficient. Also Dα
t , D

β
t is used

to represent the Caputo-type fractional derivative of order α, β [1, 7].
Fractional differential operators have played a very important role in
various fields such as electrical circuits, biology, biomechanics, viscoelas-
ticity, etc. [14, 9, 13, 6, 8]. Recently various methods such as the
Adomian decomposition method (ADM), the homotopy perturbation
method (HPM), the variational iteration method (VIM) and the ho-
motopy analysis method (HAM) have been applied for fractional PDEs
[10, 11, 12].
The Reduced differential transform method (RDTM) has been used by
many authors to obtain analytical and approximate solutions to nonlin-
ear problems [4]. In the present work, we are concerned with the applica-
tion of the reduced differential transform method (RDTM) [5, 3], for the
2-dimensonal time fractional reaction-diffusion Brusselator system. The
Brusselator system occurs in a large number of physical problems such
as the formation of ozone by atomic oxygen through a triple collision
and enzymatic reactions [7].

2. Fractional calculus

In this section, we present a review of the notations, definitions and
preliminary of fractional calculus according to the refferences [3-6].

Definition 2.1. A real function f(x), x > 0 is said to be in the space
Cµ, µ ∈ R, if there exists a real number q(> µ), such that f(x) = xqg(x),

where g(x) ∈ C[0,∞], and it is said to be in the space Cm
µ if f (m) ∈ Cµ,

m ∈ N.

Definition 2.2. For a function f ∈ Cµ, µ ≥ −1, the Riemann-Liouville
fractional integral operator of order α ≥ 0, is defined as

(2.1)


Jαf(x) = 1

Γ(α)

∫ x
0 (x− t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).
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For f ∈ Cµ, µ ≥ −1 and ∀α, β ∈ R+, the operator Jα has the proper-
ties:
i)JαJβf(x) = Jα+βf(x).
ii)JαJβf(x) = JβJαf(x).

We all know that, the Riemann-Liouville approach leads to initial
conditions containing the limit values of the Riemann-Liouville fractional
derivatives which there is no known physical interpretation for such types
of initial condition. A modified fractional differential operator Dα which
proposed by Caputo in his work on the theory of viscoelasticity [2] is

(2.2) Dαf(x) = Jm−αf (m)(x) =
1

Γ(m− α)

∫ x

0
(x− t)m−α−1f (m)(t)dt,

for m− 1 < α ≤ m, m ∈ N, x > 0 and f ∈ Cm
−1.

The main advantage of Caputo’s approach is that the initial conditions
for fractional differential equations with Caputo derivatives take on the
same form as for integer-order differential equations.

Definition 2.3. For m to be the smallest integer that exceeds α, the
Caputo time-fractional derivative operator of order α > 0 is defined as

Dα
t u(x, t) =

∂αu(x, t)

∂ tα

(2.3)

=


1

Γ(m−α)

∫ t
0 (t− s)m−α−1 ∂mu(x,s)

∂ sm ds, m− 1 < α < m,

∂mu(x,t)
∂ tm , α = m ∈ N.

3. reduced differential transform method

In this section, we apply the reduced differential transform method
for three variables function u(x, y, t) which has been developed in [4] and
[5].
Consider a function of three variables u(x, y, t) which is analytic and
differentiated continuously in the domain of interest, and suppose that
it can be represented as u(x, y, t) = f(x, y)g(t).
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Definition 3.1. If function u(x, y, t) is analytic and differentiated con-
tinuosly with respect to x, y and t in the domain of interest, then let

(3.1) Uk(x, y) =
1

Γ(kα+ 1)

[
∂kα

∂tkα
u(x, y, t)

]
t=0

,

where the t-dimensional spectrum function Uk(x, y) is the transformed
function which is called T-function.

The differential inverse transform of Uk(x, y) is defined as

(3.2) u(x, y, t) =

∞∑
k=0

Uk(x, y)t
kα,

combining Eqs. (3.1) and (3.2) gives that

(3.3) u(x, y, t) =
∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(x, y, t)

]
t=0

tkα.

In real applications, by consideration of U0(x, y) = h(x, y) as transfor-
maiton of initial condition

(3.4) u(x, y, 0) = h(x, y),

the function u(x, y, t) can be approximated by a finite series of Eq. (3.2)
as

(3.5) ũn(x, y, t) =

n∑
k=0

Uk(x, y)t
kα.

A straightforward iterative calculations, gives the Uk(x, y) values for
k = 1, 2, · · · , n. Then the inverse transformation of the {Uk(x, y)}nk=0
gives the approximation solutoin as ũn(x, y, t), where n is order of ap-
proximation solution. Next, the exact solutoin is obtained by u(x, y, t) =
lim

n−→∞
ũn(x, y, t).

Some basic properties of the reduced differential transformation obtained
from Eqs. (3.1) and (3.2) are summarized in Table 1. Note, in this table

Γ(z) :=

∫ ∞

0
e−ttz−1dt, z ∈ C.
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Function Form Transformed Form

u(x, y, t) = v(x, y, t) + w(x, y, t) Uk(x, y) = Vk(x, y) +Wk(x, y)

u(x, y, t) = cv(x, y, t) Uk(x, y) = cVk(x, y) (c is a constant)

u(x, y, t) = ctnv(x, y, t) Uk(x, y) = cv(x, y)δ(k − αn) =

{
1 k = αn

0 k ̸= αn

u(x, y, t) = v(x, y, t)w(x, y, t) Uk(x, y) =
k∑

k1=0

Vk1
(x, y)Wk−k1

(x, y)

u(x, y, t) = v(x, y, t)w(x, y, t)z(x, y, t) Uk(x, y) =
k∑

k2=0

k2∑
k1=0

Vk1
(x, y)Wk2−k1

(x, y)Zk−k2
(x, y)

u(x, y, t) = ∂Nα

∂tNα v(x, y, t) Uk(x, y) =
Γ(kα+Nα+1)

Γ(kα+1)
Vk+N (x, y)

u(x, y, t) = ∂m+n

∂xm∂yn v(x, y, t) Uk(x, y) =
∂m+n

∂xm∂yn Vk(x, y)

Table 1. Some basic reduced differential transformations.

According to the RDTM and table 1, we can construct the following
iteration for the Eq. (1.1) as

Γ(kα+ α+ 1)

Γ(kα+ 1)
Uk+1(x, y) = Bδ(k) +

k∑
s=0

s∑
r=0

Vr(x, y)Us−r(x, y)Uk−s(x, y)− (A+ 1)Uk(x, y)

+ λ
( ∂2

∂x2
Uk(x, y) +

∂2

∂y2
Uk(x, y)

)
Γ(kβ + β + 1)

Γ(kβ + 1)
Vk+1(x, y) = AUk(x, y)−

k∑
s=0

s∑
r=0

Vr(x, y)Us−r(x, y)Uk−s(x, y)

+ λ
( ∂2

∂x2
Vk(x, y) +

∂2

∂y2
Vk(x, y)

)
.

(3.6)

Initial condition (1.2) gives

U0(x, y) = e−x−y

V0(x, y) = ex+y.(3.7)

By substituding of Eqs. (3.7) into (3.6) we can obtain the next terms
of Uk(x, y) and Vk(x, y) as
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U1(x, y) =
(
1− 4A+ 4λ+ 4Bex+y

) e−(x+y)

4Γ(1 + α)
,

U2(x, y) =

[(
− 16 + 16A+ 4(1 + 4λ)e2(x+y)

)
Γ(1 + α)

− e2(x+y)
(
− 5− 16A2 − 16Bex+y − 24λ− 16λ2 + 24A

+ 16Bex+y + 32λ
)
Γ(1 + β)

]
e−3(x+y)

16Γ(1 + 2α)Γ(1 + β)
, · · · .

(3.8)

V1(x, y) =
(
− 4 + 4A+ (1 + 4λ)e2(x+y)

) ex+y

4Γ(1 + β)
,

V2(x, y) =

[(
− 4 + (1 + 4λ)e2(x+y)

)(
− 4 + 4A+ (1 + 4λ)e2(x+y)

)
Γ(1 + α)

+ 4
(
− 2 +A

)
e2(x+y)

(
1− 4A+ 4λ+ 4Bex+y

)
Γ(1 + β)

]
e−3(x+y)

16Γ(1 + α)Γ(1 + 2β)
, · · · .

(3.9)

The time fractional reaction-diffusion Brusselator system (1.1) when
A = 1, B = 0, α = β = 1 and λ = 0.25 has the exact solution
u(x, y, t) = e−x−y−0.5t and v(x, y, t) = ex+y+0.5t [7]. By considering
of ten terms, we can get the approximation solution ũ10(x, y, t) and
ṽ10(x, y, t), which is very close to exact solution. A comparison between
the exact and the approximation solution have been presented in Table 2.
Also, the exact and approximation solution in this case and approximate
solution for different values of α and β have been indicated in Figure 1
for u(x, y, t) and Figure 2 for v(x, y, t) respectively. finally in figure 3,
the exact and approximate solution at x = y = 0.5 and 0 ≤ t ≤ 1, have
been compared.
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Figure 1. Solutions using the ũ10(x, y, t) for different values

of α and β when λ = 0.25: (a) exact (α = β = 1), (b) (α =

β = 1), (c) α = β = 0.75 and (d) α = β = 0.5.

Figure 2. Solutions using the ṽ10(x, y, t) for different values

of α and β when λ = 0.25: (a) exact (α = β = 1), (b) (α =

β = 1), (c) α = β = 0.75 and (d) α = β = 0.5.

Figure 3. Comparison between exact and approximate so-

lution at x = y = 0.5 and 0 ≤ t ≤ 1: (a) u(x, y, t) and (b)

v(x, y, t)

x y t |u(x, t)− ũ10(x, y, t)| |v(x, t)− ṽ10(x, y, t)|
x=0.3 y=0.3 t=1 6.44401E-12 2.32552E-11

t=2 1.26854E-8 4.97669E-8

x=0.6 y=0.6 t=1 3.53662E-12 4.2375E-11
t=2 6.96188E-9 9.06812E-8

x=0.9 y=0.9 t=1 1.94088E-12 7.72058E-11

t=2 3.82076E-9 1.65232E-7

x=1.2 y=1.2 t=1 1.06519E-12 1.40684E-10
t=2 2.09688E-9 3.01072E-7

x=1.5 y=1.5 t=1 5.84588E-13 2.56335E-10
t=2 1.15079E-9 5.48589E-7

Table 2. Comparison between the exact solution and the approximate solution for

α = β = 1 and λ = 0.25.

4. Conclusion

In this paper, the reduced differential transform method was success-
fully applied for the time fractional reaction-diffusion Brusselator sys-
tem. Figurse 1, 2, 3 and Table 2 indicate that, the mentioned method is
a very powerful and effcient technique for finding approximate solutions
for nonlinear problems, and does not require linearization, discretization
or perturbation.
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