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NOTES ON REDUCED, ARTINIAN AND
MULTIPLICATION MODULES

JAFAR A’ZAMI AND MAHDIEH SAVAEDI

ABSTRACT. Let M be a unitary module over a commutative ring
R with identity. In this paper we consider the concepts of Artinian,
semi-Artinian, reduced and multiplication modules . Also we call
an R-module M radical, if it has no maximal submodule. By P(M)
we denote the sum of the radical submodules of M and we show
that P(M/(P(M)) = 0.
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1. INTRODUCTION

In this note all rings are commutative rings with identity and all mod-
ules are unital. Let R be a ring and M an R-module, then M is called
a multiplication module provided for every submodule N of M there
exists an ideal I of R such that N = IM.

Like in [1], we call an R-module M radical, if it has no maximal sub-
modules. By P(M) we denote the sum of the radical submodules of M,
P(M) is the largest radical submodule of M, If P(M) = 0, M is called
reduced.

An R-module M is called semi-Artinian if every proper submodule of
M contains a minimal submodule. We denote by L(M) the sum of
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all Artinian submodules of M. L(M) is the largest semi-Artinian R-
module and always has a decomposition L(M) = @,craz(r)Lm(M),
where L, (M) = ¥22,(0 :py m™) and Max(R) is the set of all maximal
ideal of R.

For each R-module L, we denote by AsspL the set of all associated
prime ideals of L. Also we denote by J(R) the radical jacobson of R
which is the intersection of all maximal ideals of R. For any unexplained
notation and terminology we refer the reader to [1] and [3].

2. REDUCED MODULES

Theorem 2.1. Let M be an R-module. Then L(M) is reduced and
artinian R-module if and only if L(M) is Noetherian R-module.

Proof. Suppose that L(M) is reduced and artinian. Let Supp L(M) =
{m1,...,m,} and set I = mj...m,. Consider the following descending
chain of submodule of L(M) such that

L(M) 2 IL(M) 2 I*L(M) 2 ...
Since L(M) is artinian, it follows that there exists ¢ € N, such that

I'L(M) =T""'L(M) = ...

Set N = I'L(M), therefore N = IN. We show that N is a radical
submodule of L(M). Let K be a maximal submodul of N. Then there
exists maximal ideal m of R such that % R~ % . This isomorphism shows
that m € Supp L(M) and so there is a 1 < i < n, such that m = m,.
Now m € Supp L(M) and N = IN CmN C K C N and so N = K
which is a contradiction.

Therefore N has no maximal submodule and so IV is a radical submodule
of L(M). Since L(M) has no radical submodule then N = 0 and so we
have the following

N=0=IN=0=0=IN=ILI'"LIM) = I""' (M)
Then L(M) is Noetherian.

converse follows from definition. O
Lemma 2.2. Let R be a ring and M be an R-module. Then P(M/P(M))
=0.

Proof. Let T/P(M) be a radical submodule of M/P(M). We show
that T/P(M) = 0. By definition T'/P(M) has no maximal submodule.
Therefore T/P(M)®prR/m = 0. (Otherwise T'/(mT + P(M)) is a vector
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space over the field R/m and so has a maximal subspace, consequently
T/P(M) has a maximal submodule which is a contradiction). To show
that T'/P(M) = 0 it is enough to prove that T is a radical submodule
of M. Let T be not a radical submodule of M, so by definition T" has
a maximal submodule . Let L be a maximal submodule of 7. Hence
R/m ~ T/L for some maximal ideal of R and we have mT C L # T.
Therefore T'/mT # 0. Consider the exact sequence

0—-PM)—>T—-T/P(M)—0
Which implies the following exact sequence:
0—-PM)®grR/m -T®rR/m - T/P(M)®r R/m=0— 0.

The second exact sequence shows that P(M) ®gr R/m # 0.0n the other
hand P(M) = ¥Kwhere K is a radical submodule of M. Now we have
the following relation:

mP(M) = mEK = ¥mK = SK = P(M).

This shows that mP(M) = P(M) and so P(M) ®r R/m = 0 which is a
contradiction. O

Theorem 2.3. Let R be a ring,and M be an R-module. Let I , J
be two mazimal ideal of R. Then the R-module M/IJM ‘s a reduced
R — module.

Proof. First we show that M/IJM ~ M/IM & M/JM. To do this
consider the exact sequence

0—R/IJ—-R/I®R/J—R/I+J=0—0,

which implies that R/IJ = R/(INJ) ~ R/I®R/J. Hence R/IJ® M ~
R/IIT®@M@®R/JR®M = M/IM & M/JM. 1t is enough to show that
M/IM & M/JM is a reduced R—module. Since M /IMand M/JM are
vector space over the fields R/I and R/J respectively, it follows that
M = M/IM & M/JM is a direct sum of simple R—modules. So let
M=M/IM®M/JM = ®;cxS;, where S; is a simple R—module. Now
we assume that K be a radical submodule of M = M/IM & M/JM.
We show that K = 0. Suppose on the contrary K # 0. Hence K =
@icycxSi. But K has a maximal submodule which is a contradiction.

O

Theorem 2.4. Let R be a ring, and M be an R-module. If N be a
submodule of M and P(M/N)=0. Then P(M) C N.
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Proof. Suppose on the contrary that P(M) ¢ N. So there is a radical

submodule L of M such that L ¢ N. Since NLOL ~ % # 0 and L has

no maximal submodule, it follows that the R-module & ]‘\';L is also has no

N+L
N

maximal submodule. Therefore is a radical submodule of % and
by hypothesis is equal to zero submodule. In this case L C N, which is
a contradiction. O

Theorem 2.5. Let {M;}°, be a family of submodules of M over lo-
cal ring (R,m) such that each M; is finitely generated and M is semi-
artinian R-module. Then ®;2,M; = K is a reduced R-module.

Proof. Let N be a radical submodule of K. We show that N = 0. Let
N #0and 0 # z € N, then z € K and © = 21 + ... + x; such that
x; € M;. Since M is semi-artinian module, it follows that each M; is
artinian and so for large s € N, we have m*M; = 0 for ¢ = 1, ..., ¢. Since
N is a radical submodule of K, it follows that N = mN.

(otherwise % is a non-zero vector space over field % and so has a
maximal subspace).

Now N = mN and so for large s, we have N = m®N consequently
x € m*N. Then there is an element b € m® and an element y € N
such that x=by. Also y € K and y = y1 + ... + y, where y; € M,.
Therefore by; = 0 for ¢ = 1,...,n and consequently by = 0 which is a

contradiction. O

Theorem 2.6. Let (R,m) be a local ring and let M be an R-module.
Then the R-module K = &2,(0 :py m?) is a reduced .

Proof. Let N be a radical submodule of K. We show that N = 0.
Suppose on the contrary that N # 0 and 0 # « € N. Since N is a
radical submodule of K, it follows that N = mN (otherwise mLN is a
non-zero vector space over field % and so has a maximal subspace).
Now z € K and & = x;, + ... + x;, where z;; € (0 :py m%), therefore
xijmij = 0. Then for large n, we have xijm" =0= ozm"” =0.

On the other hand N = m/N and so N =m"N = x € m"N = ¢ =
by ;b € m"™ and y € N. By the above argument, ym™ = 0. Therefore
by = 0 which is a contradiction. 0

3. ARTINIAN AND MULTIPLICATION MODULES

Theorem 3.1. Let (R,m) be a local artinian principal ideal ring and
E(R/m") be an injective hull of R/m* . Then E(R/mF) ~ R.
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Proof. If k = 1 we show that E(R/m) ~ R. By [5, Lemma 6.6] , R is
injective R-module and so is Gorenstein ring. Therefore by [!, Theorem
3.2.6] , E(R/m) ~ R.
Now let k > 1, in this case we have

k—1

Soc(R/m*) = 0 i s m = —— ~ R/m

m
by[5, Proposition 3.17 | , E(Soc(R/m*)) = E(R/m*). Then by above

relation we have
E(R/m*) = E(Soc(R/m*) = E(R/m) = R
O

Theorem 3.2. Let (R,m) be a local artinian ring. Then the following
are equivalent:

(i) R is Gorenstein ring.
(il) E(R/m) is multiplication module.
(iii) for all non-zero ideals I and J ; INJ #0.

Proof. (i = ii) Since R is Gorenstein ring, so by [l, Theorem 3.2.6]
, BE(R/m) ~ R. It follows that E(R/m) is cyclic module and so is
multiplication module.

(19 = 4ii) Let E(R/m) be a multiplication R-module. Let I and J be
two non-zero ideales of R. We show that I NJ # 0 . Suppose on the
contrary that 7 NJ = 0.

Since 0 :p I < E and 0 :g J < E , it follows that there exist ideals a
and b of Rsuch that O:g I =aF and 0 :g J = bE.

but F is injective and so we have 0 :g INJ =0:5 [ +0 :g J. therefore
we have

AE+bE=0:5INJ=0:50=FE= (a+b)E=FE=RE

Since E is multiplication and faithfull, it follows from [2, Theorem 3.1]
that a + b = R. On the other hand a C m and b C m. (otherwise if
agm, then a = R and so

Oipl=aE=RE=F=IE=0=1C0:g E=0

Consequently a + b C m = R = m which is a contradiction).

(140 = i) By [l, Theorem 3.2.10], it is enough to show that r(R) = 1.
Suppose on the contrary that »(R) > 1. Since r(R) = dimg Hom(K, R),
it follows that there exist subspaces U and V of a vector space Hompg(K, R)
such that Homp(K,R) = U @ V. In this case U NV = 0. But
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Homp(K, R) is isomorphic with a submodule of R and so R has ideals
I and J such that I NJ = 0, which is a contradiction. O

Theorem 3.3. Let R be an artinian ring and p and q be prime ideals
of R such that p # q. Then R, ®gr Ry =0

Proof. Let R, ®r Ry # 0, Then Suppr(R, ®r Ry) # 0. Let p/ €
Suppr(Rp ®r Rq) s0 (Rp)y g, (Rq)y # 0. It follows that (R,)y # 0
and (Rq)y # 0. In this case we have p’ C ¢ and p’ C p. (otherwise if

p € p= 3t ep\pand R, N R, is an isomorphism, consequently

(Rp)y A, (Rp)y is an isomorphism. Therefore (Ry,)y = t/1(R,)y

and so t/1 is invertible. On the other hand ¢/1 € p’R, which is a
contradiction). Since p’ C q and p’ C p , it follows that p’ =p=¢q . O

Theorem 3.4. Let R be a noetherian ring, a an ideal of R and M be
an R-module . If Hom(R/a, M) is artinian , then Hom(R/a™, M) for
all n € N is artinian R-module.

Proof. We use induction on n. The case n = 1 is true by hypothesis.
Now, let n > 1 and suppose that the result has been proved for n — 1.
We know that

HOHIR(R/CIn, M) ~0 ‘M a.

Consider the exact sequence

O—)O:Ma—)O:Ma"Lal(O:Ma”)@---@at(O:Ma”)—)O,

where a = (ay,...,a:) and f is defined by f(x) = (a1z,...,a;z). Clearly,
a;(0 :p7 a™) is a submodule of 0 :3; a” ! for all i = 1,2, ...,t. Therefore,
by induction hypothesis, a;(0 :p; a™) is Artinian for all i = 1,2,...,¢.
Thus a1(0 :pr a™) @ -+ @ ar(0 :py ™) is Artinian. Hence 0 :p; a™ is
Artinian. O

Theorem 3.5. Let M be a non-semi-artinian R-module over noetherian
local ring (R, m). Then there exists a submodule N of M such that N is
isomorphic to % for some

m # P € Spec(R).

Proof. Since M be a non-semi-artinian R-module, it follows that there
is a non-zero proper submodule K of M such that K not contains any
minimal submodule. In this case Ass(M) ¢ {m}, (otherwise there is a

0#x € M, such that m =0 :g z and Rx = 0:7;$ = % therefore there is

monomorphism g : % — M. Now we have () # Ass(K) C Ass(M) =
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{m} = Ass(K) = {m} and so & ~ (&

which is a contradiction).

Therefore Ass(M) ¢ {m} and then there exists P € Ass(M) such that
P # m. Now there is a monomorphism 5 : % — M and % ~ h(%) =
N <M. O

Theorem 3.6. Let M be an R-module and N a submodule of M such
that L(%) = 0. Then every artinian submodule of M s contained in N.

) is a minimal submodule of K

Proof. Suppose on the contrary that there is an artinian submodule L

of M such that L ¢ N. Since 12+ ~ &3E £ 0 and L is artinian, it

follows that % is artinian submodule of % and so by hypothesis is

equal to the zero submodule of % In this case N]'\’,'L =0andso L C M,
which is a contradiction. 0

Theorem 3.7. Let M be an R-module and N be a submodule of M such
that % 1s artinian module over noetherian ring R. Then for every ideal
™M
"N

I of R and for any positive integer n , the R-module 18 artinian

R-module.

Proof. Let I =< aq,...,a; > for some a; € R. Now we define the
R-homomorphism
. "M
I"N
fle1+N,..,zy + N)=a1x1 + ... + agxy + I"N
It is clear that f is an epimorphism and so % is artinian R-module. [

Corollary 3.8. Let M be an R-module and I be an ideal of noetherian
ring R such that % s artinian. Then for each positive integer n , the

R-module

I,{”M 18 artintan.

Proof. By induction on n. If n = 1, by hypothesis % is artinian. Now

suppose that the result has been proved for n — 1 and % be an
-y

artinian module. By theorem 3.8 and hypothesis the R-module

is artinian. Therefore the exact sequence i
0— "M — M — M —0
M M 1M
Shows that the R-module I,{V[M is also artinian. O

Corollary 3.9. Let R be an artinian ring with radical jacobson J =
J(R) and M be a non- artinian R- module . Then JMM is not artinian
R-module.
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Proof. Since R is artinian, it follows that there exists n € N such that
J™ = 0. Suppose on the contrary that % is artinian. By the argument
as in Corollary 3.9 we show that the R-module M/J"M is artinian,

which is a contradiction. O
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