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NOTES ON REDUCED, ARTINIAN AND

MULTIPLICATION MODULES

JAFAR A’ZAMI AND MAHDIEH SAVAEDI

Abstract. Let M be a unitary module over a commutative ring
R with identity. In this paper we consider the concepts of Artinian,
semi-Artinian, reduced and multiplication modules . Also we call
an R-module M radical, if it has no maximal submodule. By P (M)
we denote the sum of the radical submodules of M and we show
that P (M/(P (M)) = 0.
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1. Introduction

In this note all rings are commutative rings with identity and all mod-
ules are unital. Let R be a ring and M an R-module, then M is called
a multiplication module provided for every submodule N of M there
exists an ideal I of R such that N = IM .
Like in [4], we call an R-module M radical, if it has no maximal sub-
modules. By P (M) we denote the sum of the radical submodules of M ,
P (M) is the largest radical submodule of M , If P (M) = 0, M is called
reduced.
An R-module M is called semi-Artinian if every proper submodule of
M contains a minimal submodule. We denote by L(M) the sum of
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all Artinian submodules of M . L(M) is the largest semi-Artinian R-
module and always has a decomposition L(M) = ⊕m∈Max(R)Lm(M),
where Lm(M) = Σ∞

n=1(0 :M mn) and Max(R) is the set of all maximal
ideal of R.
For each R-module L, we denote by AssRL the set of all associated
prime ideals of L. Also we denote by J(R) the radical jacobson of R
which is the intersection of all maximal ideals of R. For any unexplained
notation and terminology we refer the reader to [1] and [3].

2. Reduced modules

Theorem 2.1. Let M be an R-module. Then L(M) is reduced and
artinian R-module if and only if L(M) is Noetherian R-module.

Proof. Suppose that L(M) is reduced and artinian. Let SuppL(M) =
{m1, ...,mn} and set I = m1...mn. Consider the following descending
chain of submodule of L(M) such that

L(M) ⊇ IL(M) ⊇ I2L(M) ⊇ ...

Since L(M) is artinian, it follows that there exists t ∈ N , such that

ItL(M) = It+1L(M) = ...

Set N = ItL(M), therefore N = IN . We show that N is a radical
submodule of L(M). Let K be a maximal submodul of N . Then there
exists maximal ideal m of R such that N

K ≈ R
m . This isomorphism shows

that m ∈ SuppL(M) and so there is a 1 ⩽ i ⩽ n, such that m = mi.
Now m ∈ SuppL(M) and N = IN ⊆ mN ⊆ K ⊆ N and so N = K
which is a contradiction.
ThereforeN has no maximal submodule and soN is a radical submodule
of L(M). Since L(M) has no radical submodule then N = 0 and so we
have the following

N = 0 =⇒ IN = 0 =⇒ 0 = IN = I.ItL(M) = It+1L(M)

Then L(M) is Noetherian.
converse follows from definition. □
Lemma 2.2. Let R be a ring and M be an R-module. Then P (M/P (M))
= 0.

Proof. Let T/P (M) be a radical submodule of M/P (M). We show
that T/P (M) = 0. By definition T/P (M) has no maximal submodule.
Therefore T/P (M)⊗RR/m = 0. (Otherwise T/(mT+P (M)) is a vector
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space over the field R/m and so has a maximal subspace, consequently
T/P (M) has a maximal submodule which is a contradiction). To show
that T/P (M) = 0 it is enough to prove that T is a radical submodule
of M . Let T be not a radical submodule of M , so by definition T has
a maximal submodule . Let L be a maximal submodule of T . Hence
R/m ≃ T/L for some maximal ideal of R and we have mT ⊆ L ̸= T .
Therefore T/mT ̸= 0. Consider the exact sequence

0 → P (M) → T → T/P (M) → 0

Which implies the following exact sequence:

0 → P (M)⊗R R/m → T ⊗R R/m → T/P (M)⊗R R/m = 0 → 0.

The second exact sequence shows that P (M)⊗R R/m ̸= 0.On the other
hand P (M) = ΣKwhere K is a radical submodule of M . Now we have
the following relation:

mP (M) = mΣK = ΣmK = ΣK = P (M).

This shows that mP (M) = P (M) and so P (M)⊗R R/m = 0 which is a
contradiction. □

Theorem 2.3. Let R be a ring,and M be an R-module. Let I , J
be two maximal ideal of R. Then the R-module M/IJM is a reduced
R−module.

Proof. First we show that M/IJM ≃ M/IM ⊕ M/JM . To do this
consider the exact sequence

0 → R/IJ → R/I ⊕R/J → R/I + J = 0 → 0,

which implies that R/IJ = R/(I ∩J) ≃ R/I⊕R/J. Hence R/IJ⊗M ≃
R/I ⊗ M ⊕ R/J ⊗ M = M/IM ⊕ M/JM. It is enough to show that
M/IM ⊕M/JM is a reduced R−module. Since M/IMand M/JM are
vector space over the fields R/I and R/J respectively, it follows that
M = M/IM ⊕ M/JM is a direct sum of simple R−modules. So let
M = M/IM⊕M/JM = ⊕i∈XSi, where Si is a simple R−module. Now
we assume that K be a radical submodule of M = M/IM ⊕ M/JM .
We show that K = 0. Suppose on the contrary K ̸= 0. Hence K =
⊕i∈Y⊆XSi. But K has a maximal submodule which is a contradiction.

□

Theorem 2.4. Let R be a ring, and M be an R-module. If N be a
submodule of M and P (M/N) = 0. Then P (M) ⊆ N.



Notes on Reduced, Artinian 111

Proof. Suppose on the contrary that P (M) ⊈ N . So there is a radical

submodule L of M such that L ⊈ N . Since L
N∩L ≈ N+L

N ̸= 0 and L has

no maximal submodule, it follows that the R-module N+L
N is also has no

maximal submodule. Therefore N+L
N is a radical submodule of M

N and
by hypothesis is equal to zero submodule. In this case L ⊆ N , which is
a contradiction. □

Theorem 2.5. Let {Mi}∞i=1 be a family of submodules of M over lo-
cal ring (R,m) such that each Mi is finitely generated and M is semi-
artinian R-module. Then ⊕∞

i=1Mi = K is a reduced R-module.

Proof. Let N be a radical submodule of K. We show that N = 0. Let
N ̸= 0 and 0 ̸= x ∈ N , then x ∈ K and x = x1 + ... + xt such that
xi ∈ Mi. Since M is semi-artinian module, it follows that each Mi is
artinian and so for large s ∈ N, we have msMi = 0 for i = 1, ..., t. Since
N is a radical submodule of K, it follows that N = mN .
(otherwise N

mN is a non-zero vector space over field R
m and so has a

maximal subspace).
Now N = mN and so for large s, we have N = msN consequently
x ∈ msN . Then there is an element b ∈ ms and an element y ∈ N
such that x=by. Also y ∈ K and y = y1 + ... + yn where yi ∈ Mi.
Therefore byi = 0 for i = 1, ..., n and consequently by = 0 which is a
contradiction. □

Theorem 2.6. Let (R,m) be a local ring and let M be an R-module.
Then the R-module K = ⊕∞

i=1(0 :M mi) is a reduced .

Proof. Let N be a radical submodule of K. We show that N = 0.
Suppose on the contrary that N ̸= 0 and 0 ̸= x ∈ N . Since N is a
radical submodule of K, it follows that N = mN (otherwise N

mN is a

non-zero vector space over field R
m and so has a maximal subspace).

Now x ∈ K and x = xi1 + ... + xit where xij ∈ (0 :M mij ), therefore

xijm
ij = 0. Then for large n, we have xijm

n = 0 =⇒ xmn = 0.
On the other hand N = mN and so N = mnN =⇒ x ∈ mnN =⇒ x =
by ; b ∈ mn and y ∈ N . By the above argument, ymn = 0. Therefore
by = 0 which is a contradiction. □

3. Artinian and multiplication modules

Theorem 3.1. Let (R,m) be a local artinian principal ideal ring and
E(R/mk) be an injective hull of R/mk . Then E(R/mk) ≈ R.
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Proof. If k = 1 we show that E(R/m) ≈ R. By [5, Lemma 6.6] , R is
injective R-module and so is Gorenstein ring. Therefore by [1, Theorem
3.2.6] , E(R/m) ≈ R.
Now let k > 1 , in this case we have

Soc(R/mk) = 0 :R/mk m =
mk−1

mk
≈ R/m

by[5, Proposition 3.17 ] , E(Soc(R/mk)) = E(R/mk). Then by above
relation we have

E(R/mk) = E(Soc(R/mk) = E(R/m) = R

□
Theorem 3.2. Let (R,m) be a local artinian ring. Then the following
are equivalent:

(i) R is Gorenstein ring.
(ii) E(R/m) is multiplication module.
(iii) for all non-zero ideals I and J ; I ∩ J ̸= 0.

Proof. (i ⇒ ii) Since R is Gorenstein ring, so by [1, Theorem 3.2.6]
, E(R/m) ≈ R. It follows that E(R/m) is cyclic module and so is
multiplication module.
(ii ⇒ iii) Let E(R/m) be a multiplication R-module. Let I and J be
two non-zero ideales of R. We show that I ∩ J ̸= 0 . Suppose on the
contrary that I ∩ J = 0.
Since 0 :E I ≤ E and 0 :E J ≤ E , it follows that there exist ideals a
and b of R such that 0 :E I = aE and 0 :E J = bE.
but E is injective and so we have 0 :E I ∩ J = 0 :E I +0 :E J . therefore
we have

aE + bE = 0 :E I ∩ J = 0 :E 0 = E =⇒ (a+ b)E = E = RE

Since E is multiplication and faithfull, it follows from [2, Theorem 3.1]
that a + b = R. On the other hand a ⊂ m and b ⊂ m. (otherwise if
a ⊈ m, then a = R and so

0 :E I = aE = RE = E =⇒ IE = 0 =⇒ I ⊆ 0 :R E = 0

Consequently a+ b ⊆ m =⇒ R = m which is a contradiction).
(iii ⇒ i) By [1, Theorem 3.2.10], it is enough to show that r(R) = 1.
Suppose on the contrary that r(R) > 1. Since r(R) = dimK Hom(K,R),
it follows that there exist subspaces U and V of a vector spaceHomR(K,R)
such that HomR(K,R) = U ⊕ V . In this case U ∩ V = 0. But
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HomR(K,R) is isomorphic with a submodule of R and so R has ideals
I and J such that I ∩ J = 0, which is a contradiction. □
Theorem 3.3. Let R be an artinian ring and p and q be prime ideals
of R such that p ̸= q. Then Rp ⊗R Rq = 0

Proof. Let Rp ⊗R Rq ̸= 0 , Then SuppR(Rp ⊗R Rq) ̸= ∅. Let p′ ∈
SuppR(Rp ⊗R Rq) so (Rp)p′ ⊗Rp′ (Rq)p′ ̸= 0. It follows that (Rp)p′ ̸= 0

and (Rq)p′ ̸= 0. In this case we have p′ ⊆ q and p′ ⊆ p. (otherwise if

p′ ⊈ p =⇒ ∃t ∈ p′\p and Rp
t−→ Rp is an isomorphism, consequently

(Rp)p′
t/1−→ (Rp)p′ is an isomorphism. Therefore (Rp)p′ = t/1(Rp)p′

and so t/1 is invertible. On the other hand t/1 ∈ p′Rp′ which is a
contradiction). Since p′ ⊆ q and p′ ⊆ p , it follows that p′ = p = q . □
Theorem 3.4. Let R be a noetherian ring, a an ideal of R and M be
an R-module . If Hom(R/a,M) is artinian , then Hom(R/an,M) for
all n ∈ N is artinian R-module.

Proof. We use induction on n. The case n = 1 is true by hypothesis.
Now, let n > 1 and suppose that the result has been proved for n − 1.
We know that

HomR(R/an,M) ≃ 0 :M an.

Consider the exact sequence

0 → 0 :M a → 0 :M an
f→ a1(0 :M an)⊕ · · · ⊕ at(0 :M an) → 0,

where a = (a1, . . . , at) and f is defined by f(x) = (a1x, . . . , atx). Clearly,
ai(0 :M an) is a submodule of 0 :M an−1 for all i = 1, 2, . . . , t. Therefore,
by induction hypothesis, ai(0 :M an) is Artinian for all i = 1, 2, . . . , t.
Thus a1(0 :M an) ⊕ · · · ⊕ at(0 :M an) is Artinian. Hence 0 :M an is
Artinian. □
Theorem 3.5. Let M be a non-semi-artinian R-module over noetherian
local ring (R,m). Then there exists a submodule N of M such that N is
isomorphic to R

P for some
m ̸= P ∈ Spec(R).

Proof. Since M be a non-semi-artinian R-module, it follows that there
is a non-zero proper submodule K of M such that K not contains any
minimal submodule. In this case Ass(M) ⊈ {m}, (otherwise there is a

0 ̸= x ∈ M , such that m = 0 :R x and Rx ≈ R
0:Rx = R

m therefore there is

monomorphism g : R
m −→ M . Now we have ∅ ≠ Ass(K) ⊆ Ass(M) =



114 Jafar A’zami and Mahdieh Savaedi

{m} =⇒ Ass(K) = {m} and so R
m ≈ g(Rm ) is a minimal submodule of K

which is a contradiction).
Therefore Ass(M) ⊈ {m} and then there exists P ∈ Ass(M) such that

P ̸= m. Now there is a monomorphism h : R
P −→ M and R

P ≈ h(RP ) :=
N ⩽ M . □
Theorem 3.6. Let M be an R-module and N a submodule of M such
that L(MN ) = 0. Then every artinian submodule of M is contained in N .

Proof. Suppose on the contrary that there is an artinian submodule L
of M such that L ⊈ N . Since L

N∩L ≈ N+L
N ̸= 0 and L is artinian, it

follows that N+L
N is artinian submodule of M

N and so by hypothesis is

equal to the zero submodule of M
N . In this case N+L

N = 0 and so L ⊆ M ,
which is a contradiction. □
Theorem 3.7. Let M be an R-module and N be a submodule of M such
that M

N is artinian module over noetherian ring R. Then for every ideal

I of R and for any positive integer n , the R-module InM
InN is artinian

R-module.

Proof. Let In =< a1, ..., at > for some ai ∈ R. Now we define the
R-homomorphism

f : (
M

N
)t −→ InM

InN
f(x1 +N, ..., xt +N) = a1x1 + ...+ atxt + InN

It is clear that f is an epimorphism and so InM
InN is artinian R-module. □

Corollary 3.8. Let M be an R-module and I be an ideal of noetherian
ring R such that M

IM is artinian. Then for each positive integer n , the

R-module M
InM is artinian.

Proof. By induction on n. If n = 1, by hypothesis M
IM is artinian. Now

suppose that the result has been proved for n − 1 and M
In−1M

be an

artinian module. By theorem 3.8 and hypothesis the R-module In−1M
InM

is artinian. Therefore the exact sequence

0 −→ In−1M

InM
−→ M

InM
−→ M

In−1M
−→ 0

Shows that the R-module M
InM is also artinian. □

Corollary 3.9. Let R be an artinian ring with radical jacobson J =
J(R) and M be a non- artinian R- module . Then M

JM is not artinian
R-module.
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Proof. Since R is artinian, it follows that there exists n ∈ N such that
Jn = 0. Suppose on the contrary that M

JM is artinian. By the argument
as in Corollary 3.9 we show that the R-module M/JnM is artinian,
which is a contradiction. □
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