NOTES ON REDUCED, ARTINIAN AND MULTIPLICATION MODULES

JAFAR A’ZAMI AND MAHDIEH SAVAEDI

Abstract

Let M be a unitary module over a commutative ring R with identity. In this paper we consider the concepts of Artinian, semi-Artinian, reduced and multiplication modules . Also we call an R-module M radical, if it has no maximal submodule. By $P(M)$ we denote the sum of the radical submodules of M and we show that $P(M /(P(M))=0$.

Key Words: Artinian modules, Associated primes, Semi-Artinian modules, Multiplication modules, Reduced modules.
2010 Mathematics Subject Classification: Primary: 13D45; Secondary: 14B15, 13E05.

1. Introduction

In this note all rings are commutative rings with identity and all modules are unital. Let R be a ring and M an R-module, then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that $N=I M$.
Like in [4], we call an R-module M radical, if it has no maximal submodules. By $P(M)$ we denote the sum of the radical submodules of M, $P(M)$ is the largest radical submodule of M, If $P(M)=0, M$ is called reduced.
An R-module M is called semi-Artinian if every proper submodule of M contains a minimal submodule. We denote by $L(M)$ the sum of

[^0]all Artinian submodules of $M . L(M)$ is the largest semi-Artinian R module and always has a decomposition $L(M)=\oplus_{m \in \operatorname{Max}(R)} L_{m}(M)$, where $L_{m}(M)=\Sigma_{n=1}^{\infty}\left(0:_{M} m^{n}\right)$ and $\operatorname{Max}(\mathrm{R})$ is the set of all maximal ideal of R.
For each R-module L, we denote by $\operatorname{Ass}_{R} L$ the set of all associated prime ideals of L. Also we denote by $J(R)$ the radical jacobson of R which is the intersection of all maximal ideals of R. For any unexplained notation and terminology we refer the reader to [1] and [3].

2. Reduced modules

Theorem 2.1. Let M be an R-module. Then $L(M)$ is reduced and artinian R-module if and only if $L(M)$ is Noetherian R-module.

Proof. Suppose that $L(M)$ is reduced and artinian. Let Supp $L(M)=$ $\left\{m_{1}, \ldots, m_{n}\right\}$ and set $I=m_{1} \ldots m_{n}$. Consider the following descending chain of submodule of $L(M)$ such that

$$
L(M) \supseteq I L(M) \supseteq I^{2} L(M) \supseteq \ldots
$$

Since $L(M)$ is artinian, it follows that there exists $t \in \mathbb{N}$, such that

$$
I^{t} L(M)=I^{t+1} L(M)=\ldots
$$

Set $N=I^{t} L(M)$, therefore $N=I N$. We show that N is a radical submodule of $L(M)$. Let K be a maximal submodul of N. Then there exists maximal ideal \mathfrak{m} of R such that $\frac{N}{K} \approx \frac{R}{\mathfrak{m}}$. This isomorphism shows that $\mathfrak{m} \in \operatorname{Supp} L(M)$ and so there is a $1 \leqslant i \leqslant n$, such that $\mathfrak{m}=\mathfrak{m}_{i}$. Now $\mathfrak{m} \in \operatorname{Supp} L(M)$ and $N=I N \subseteq \mathfrak{m} N \subseteq K \subseteq N$ and so $N=K$ which is a contradiction.
Therefore N has no maximal submodule and so N is a radical submodule of $L(M)$. Since $L(M)$ has no radical submodule then $N=0$ and so we have the following

$$
N=0 \Longrightarrow I N=0 \Longrightarrow 0=I N=I \cdot I^{t} L(M)=I^{t+1} L(M)
$$

Then $L(M)$ is Noetherian. converse follows from definition.

Lemma 2.2. Let R be a ring and M be an R-module. Then $P(M / P(M))$ $=0$.

Proof. Let $T / P(M)$ be a radical submodule of $M / P(M)$. We show that $T / P(M)=0$. By definition $T / P(M)$ has no maximal submodule. Therefore $T / P(M) \otimes_{R} R / \mathfrak{m}=0$. (Otherwise $T /(\mathfrak{m} T+P(M))$ is a vector
space over the field R / \mathfrak{m} and so has a maximal subspace, consequently $T / P(M)$ has a maximal submodule which is a contradiction). To show that $T / P(M)=0$ it is enough to prove that T is a radical submodule of M. Let T be not a radical submodule of M, so by definition T has a maximal submodule . Let L be a maximal submodule of T. Hence $R / \mathfrak{m} \simeq T / L$ for some maximal ideal of R and we have $\mathfrak{m} T \subseteq L \neq T$. Therefore $T / \mathfrak{m} T \neq 0$. Consider the exact sequence

$$
0 \rightarrow P(M) \rightarrow T \rightarrow T / P(M) \rightarrow 0
$$

Which implies the following exact sequence:

$$
0 \rightarrow P(M) \otimes_{R} R / \mathfrak{m} \rightarrow T \otimes_{R} R / \mathfrak{m} \rightarrow T / P(M) \otimes_{R} R / \mathfrak{m}=0 \rightarrow 0
$$

The second exact sequence shows that $P(M) \otimes_{R} R / \mathfrak{m} \neq 0$. On the other hand $P(M)=\Sigma K$ where K is a radical submodule of M. Now we have the following relation:

$$
\mathfrak{m} P(M)=\mathfrak{m} \Sigma K=\Sigma \mathfrak{m} K=\Sigma K=P(M)
$$

This shows that $\mathfrak{m} P(M)=P(M)$ and so $P(M) \otimes_{R} R / \mathfrak{m}=0$ which is a contradiction.

Theorem 2.3. Let R be a ring, and M be an R-module. Let I, J be two maximal ideal of R. Then the R-module $M / I J M$ is a reduced R-module.

Proof. First we show that $M / I J M \simeq M / I M \oplus M / J M$. To do this consider the exact sequence

$$
0 \rightarrow R / I J \rightarrow R / I \oplus R / J \rightarrow R / I+J=0 \rightarrow 0
$$

which implies that $R / I J=R /(I \cap J) \simeq R / I \oplus R / J$. Hence $R / I J \otimes M \simeq$ $R / I \otimes M \oplus R / J \otimes M=M / I M \oplus M / J M$. It is enough to show that $M / I M \oplus M / J M$ is a reduced R-module. Since $M / I M$ and $M / J M$ are vector space over the fields R / I and R / J respectively, it follows that $M=M / I M \oplus M / J M$ is a direct sum of simple R-modules. So let $M=M / I M \oplus M / J M=\oplus_{i \in X} S_{i}$, where S_{i} is a simple R-module. Now we assume that K be a radical submodule of $M=M / I M \oplus M / J M$. We show that $K=0$. Suppose on the contrary $K \neq 0$. Hence $K=$ $\oplus_{i \in Y \subseteq X} S_{i}$. But K has a maximal submodule which is a contradiction.

Theorem 2.4. Let R be a ring, and M be an R-module. If N be a submodule of M and $P(M / N)=0$. Then $P(M) \subseteq N$.

Proof. Suppose on the contrary that $P(M) \nsubseteq N$. So there is a radical submodule L of M such that $L \nsubseteq N$. Since $\frac{L}{N \cap L} \approx \frac{N+L}{N} \neq 0$ and L has no maximal submodule, it follows that the R-module $\frac{N+L}{N}$ is also has no maximal submodule. Therefore $\frac{N+L}{N}$ is a radical submodule of $\frac{M}{N}$ and by hypothesis is equal to zero submodule. In this case $L \subseteq N$, which is a contradiction.

Theorem 2.5. Let $\left\{M_{i}\right\}_{i=1}^{\infty}$ be a family of submodules of M over local ring (R, \mathfrak{m}) such that each M_{i} is finitely generated and M is semiartinian R-module. Then $\oplus_{i=1}^{\infty} M_{i}=K$ is a reduced R-module.
Proof. Let N be a radical submodule of K. We show that $N=0$. Let $N \neq 0$ and $0 \neq x \in N$, then $x \in K$ and $x=x_{1}+\ldots+x_{t}$ such that $x_{i} \in M_{i}$. Since M is semi-artinian module, it follows that each M_{i} is artinian and so for large $s \in \mathbb{N}$, we have $\mathfrak{m}^{s} M_{i}=0$ for $i=1, \ldots, t$. Since N is a radical submodule of K, it follows that $N=\mathfrak{m} N$.
(otherwise $\frac{N}{\mathfrak{m} N}$ is a non-zero vector space over field $\frac{R}{\mathfrak{m}}$ and so has a maximal subspace).
Now $N=\mathfrak{m} N$ and so for large s, we have $N=\mathfrak{m}^{s} N$ consequently $x \in \mathfrak{m}^{s} N$. Then there is an element $b \in \mathfrak{m}^{s}$ and an element $y \in N$ such that $\mathrm{x}=$ by. Also $y \in K$ and $y=y_{1}+\ldots+y_{n}$ where $y_{i} \in M_{i}$. Therefore $b y_{i}=0$ for $i=1, \ldots, n$ and consequently $b y=0$ which is a contradiction.

Theorem 2.6. Let (R, \mathfrak{m}) be a local ring and let M be an R-module. Then the R-module $K=\oplus_{i=1}^{\infty}\left(0:_{M} \mathfrak{m}^{i}\right)$ is a reduced .

Proof. Let N be a radical submodule of K. We show that $N=0$. Suppose on the contrary that $N \neq 0$ and $0 \neq x \in N$. Since N is a radical submodule of K, it follows that $N=\mathfrak{m} N$ (otherwise $\frac{N}{\mathfrak{m} N}$ is a non-zero vector space over field $\frac{R}{\mathrm{~m}}$ and so has a maximal subspace).
Now $x \in K$ and $x=x_{i_{1}}+\ldots+x_{i_{t}}$ where $x_{i_{j}} \in\left(0:_{M} \mathfrak{m}^{i_{j}}\right)$, therefore $x_{i_{j}} \mathfrak{m}^{i_{j}}=0$. Then for large n, we have $x_{i_{j}} \mathfrak{m}^{n}=0 \Longrightarrow x \mathfrak{m}^{n}=0$.
On the other hand $N=\mathfrak{m} N$ and so $N=\mathfrak{m}^{n} N \Longrightarrow x \in \mathfrak{m}^{n} N \Longrightarrow x=$ $b y ; b \in \mathfrak{m}^{n}$ and $y \in N$. By the above argument, $y \mathfrak{m}^{n}=0$. Therefore $b y=0$ which is a contradiction.

3. Artinian and multiplication modules

Theorem 3.1. Let (R, \mathfrak{m}) be a local artinian principal ideal ring and $E\left(R / \mathfrak{m}^{k}\right)$ be an injective hull of R / \mathfrak{m}^{k}. Then $E\left(R / \mathfrak{m}^{k}\right) \approx R$.

Proof. If $k=1$ we show that $E(R / \mathfrak{m}) \approx R$. By [5, Lemma 6.6], R is injective R-module and so is Gorenstein ring. Therefore by [1, Theorem 3.2.6], $E(R / \mathfrak{m}) \approx R$.

Now let $k>1$, in this case we have

$$
\operatorname{Soc}\left(R / \mathfrak{m}^{k}\right)=0:_{R / \mathfrak{m}^{k}} \mathfrak{m}=\frac{\mathfrak{m}^{k-1}}{\mathfrak{m}^{k}} \approx R / \mathfrak{m}
$$

by[5, Proposition 3.17$], E\left(\operatorname{Soc}\left(R / \mathfrak{m}^{k}\right)\right)=E\left(R / \mathfrak{m}^{k}\right)$. Then by above relation we have

$$
E\left(R / \mathfrak{m}^{k}\right)=E\left(\operatorname{Soc}\left(R / \mathfrak{m}^{k}\right)=E(R / \mathfrak{m})=R\right.
$$

Theorem 3.2. Let (R, \mathfrak{m}) be a local artinian ring. Then the following are equivalent:
(i) R is Gorenstein ring.
(ii) $E(R / \mathfrak{m})$ is multiplication module.
(iii) for all non-zero ideals I and $J ; I \cap J \neq 0$.

Proof. ($i \Rightarrow i i$) Since R is Gorenstein ring, so by [1, Theorem 3.2.6] , $E(R / \mathfrak{m}) \approx R$. It follows that $E(R / \mathfrak{m})$ is cyclic module and so is multiplication module.
($i i \Rightarrow$ iii) Let $E(R / \mathfrak{m})$ be a multiplication R-module. Let I and J be two non-zero ideales of R. We show that $I \cap J \neq 0$. Suppose on the contrary that $I \cap J=0$.
Since $0:_{E} I \leq E$ and $0:_{E} J \leq E$, it follows that there exist ideals \mathfrak{a} and \mathfrak{b} of R such that $0:_{E} I=\mathfrak{a} E$ and $0:_{E} J=\mathfrak{b} E$.
but E is injective and so we have $0:_{E} I \cap J=0:_{E} I+0:_{E} J$. therefore we have

$$
\mathfrak{a} E+\mathfrak{b} E=0:_{E} I \cap J=0:_{E} 0=E \Longrightarrow(\mathfrak{a}+\mathfrak{b}) E=E=R E
$$

Since E is multiplication and faithfull, it follows from [2, Theorem 3.1] that $\mathfrak{a}+\mathfrak{b}=R$. On the other hand $\mathfrak{a} \subset \mathfrak{m}$ and $\mathfrak{b} \subset \mathfrak{m}$. (otherwise if $\mathfrak{a} \nsubseteq \mathfrak{m}$, then $\mathfrak{a}=R$ and so

$$
0:_{E} I=\mathfrak{a} E=R E=E \Longrightarrow I E=0 \Longrightarrow I \subseteq 0:_{R} E=0
$$

Consequently $\mathfrak{a}+\mathfrak{b} \subseteq \mathfrak{m} \Longrightarrow R=\mathfrak{m}$ which is a contradiction).
$(i i i \Rightarrow i)$ By [1, Theorem 3.2.10], it is enough to show that $r(R)=1$. Suppose on the contrary that $r(R)>1$. Since $r(R)=\operatorname{dim}_{K} \operatorname{Hom}(K, R)$, it follows that there exist subspaces U and V of a vector space $\operatorname{Hom}_{R}(K, R)$ such that $\operatorname{Hom}_{R}(K, R)=U \oplus V$. In this case $U \cap V=0$. But
$\operatorname{Hom}_{R}(K, R)$ is isomorphic with a submodule of R and so R has ideals I and J such that $I \cap J=0$, which is a contradiction.

Theorem 3.3. Let R be an artinian ring and p and q be prime ideals of R such that $p \neq q$. Then $R_{p} \otimes_{R} R_{q}=0$

Proof. Let $R_{p} \otimes_{R} R_{q} \neq 0$, Then $\operatorname{Supp}_{R}\left(R_{p} \otimes_{R} R_{q}\right) \neq \emptyset$. Let $p^{\prime} \in$ $\operatorname{Supp}_{R}\left(R_{p} \otimes_{R} R_{q}\right)$ so $\left(R_{p}\right)_{p^{\prime}} \otimes_{R_{p^{\prime}}}\left(R_{q}\right)_{p^{\prime}} \neq 0$. It follows that $\left(R_{p}\right)_{p^{\prime}} \neq 0$ and $\left(R_{q}\right)_{p^{\prime}} \neq 0$. In this case we have $p^{\prime} \subseteq q$ and $p^{\prime} \subseteq p$. (otherwise if $p^{\prime} \nsubseteq p \Longrightarrow \exists t \in p^{\prime} \backslash p$ and $R_{p} \xrightarrow{t} R_{p}$ is an isomorphism, consequently $\left(R_{p}\right)_{p^{\prime}} \xrightarrow{t / 1}\left(R_{p}\right)_{p^{\prime}}$ is an isomorphism. Therefore $\left(R_{p}\right)_{p^{\prime}}=t / 1\left(R_{p}\right)_{p^{\prime}}$ and so $t / 1$ is invertible. On the other hand $t / 1 \in p^{\prime} R_{p^{\prime}}$ which is a contradiction). Since $p^{\prime} \subseteq q$ and $p^{\prime} \subseteq p$, it follows that $p^{\prime}=p=q$.
Theorem 3.4. Let R be a noetherian ring, \mathfrak{a} an ideal of R and M be an R-module. If $\operatorname{Hom}(R / \mathfrak{a}, M)$ is artinian, then $\operatorname{Hom}\left(R / \mathfrak{a}^{n}, M\right)$ for all $n \in \mathbb{N}$ is artinian R-module.

Proof. We use induction on n. The case $n=1$ is true by hypothesis. Now, let $n>1$ and suppose that the result has been proved for $n-1$. We know that

$$
\operatorname{Hom}_{R}\left(R / \mathfrak{a}^{n}, M\right) \simeq 0:_{M} \mathfrak{a}^{n} .
$$

Consider the exact sequence

$$
0 \rightarrow 0:_{M} \mathfrak{a} \rightarrow 0:_{M} \mathfrak{a}^{n} \xrightarrow{f} a_{1}\left(0:_{M} \mathfrak{a}^{n}\right) \oplus \cdots \oplus a_{t}\left(0:_{M} \mathfrak{a}^{n}\right) \rightarrow 0,
$$

where $\mathfrak{a}=\left(a_{1}, \ldots, a_{t}\right)$ and f is defined by $f(x)=\left(a_{1} x, \ldots, a_{t} x\right)$. Clearly, $a_{i}\left(0:_{M} \mathfrak{a}^{n}\right)$ is a submodule of $0:_{M} \mathfrak{a}^{n-1}$ for all $i=1,2, \ldots, t$. Therefore, by induction hypothesis, $a_{i}\left(0:_{M} \mathfrak{a}^{n}\right)$ is Artinian for all $i=1,2, \ldots, t$. Thus $a_{1}\left(0:_{M} \mathfrak{a}^{n}\right) \oplus \cdots \oplus a_{t}\left(0:_{M} \mathfrak{a}^{n}\right)$ is Artinian. Hence $0:_{M} \mathfrak{a}^{n}$ is Artinian.

Theorem 3.5. Let M be a non-semi-artinian R-module over noetherian local ring (R, \mathfrak{m}). Then there exists a submodule N of M such that N is isomorphic to $\frac{R}{P}$ for some $\mathfrak{m} \neq P \in \operatorname{Spec}(R)$.

Proof. Since M be a non-semi-artinian R-module, it follows that there is a non-zero proper submodule K of M such that K not contains any minimal submodule. In this case $\operatorname{Ass}(M) \nsubseteq\{\mathfrak{m}\}$, (otherwise there is a $0 \neq x \in M$, such that $\mathfrak{m}=0:_{R} x$ and $R x \approx \frac{R}{0: R_{R} x}=\frac{R}{\mathfrak{m}}$ therefore there is monomorphism $g: \frac{R}{\mathrm{~m}} \longrightarrow M$. Now we have $\emptyset \neq \operatorname{Ass}(K) \subseteq \operatorname{Ass}(M)=$
$\{\mathfrak{m}\} \Longrightarrow \operatorname{Ass}(K)=\{\mathfrak{m}\}$ and so $\frac{R}{\mathfrak{m}} \approx g\left(\frac{R}{\mathfrak{m}}\right)$ is a minimal submodule of K which is a contradiction).
Therefore $\operatorname{Ass}(M) \nsubseteq\{\mathfrak{m}\}$ and then there exists $P \in \operatorname{Ass}(M)$ such that $P \neq \mathfrak{m}$. Now there is a monomorphism $h: \frac{R}{P} \longrightarrow M$ and $\frac{R}{P} \approx h\left(\frac{R}{P}\right):=$ $N \leqslant M$.
Theorem 3.6. Let M be an R-module and N a submodule of M such that $L\left(\frac{M}{N}\right)=0$. Then every artinian submodule of M is contained in N.
Proof. Suppose on the contrary that there is an artinian submodule L of M such that $L \nsubseteq N$. Since $\frac{L}{N \cap L} \approx \frac{N+L}{N} \neq 0$ and L is artinian, it follows that $\frac{N+L}{N}$ is artinian submodule of $\frac{M}{N}$ and so by hypothesis is equal to the zero submodule of $\frac{M}{N}$. In this case $\frac{N+L}{N}=0$ and so $L \subseteq M$, which is a contradiction.

Theorem 3.7. Let M be an R-module and N be a submodule of M such that $\frac{M}{N}$ is artinian module over noetherian ring R. Then for every ideal I of R and for any positive integer n, the R-module $\frac{I^{n} M}{I^{n} N}$ is artinian R-module.
Proof. Let $I^{n}=<a_{1}, \ldots, a_{t}>$ for some $a_{i} \in R$. Now we define the R-homomorphism

$$
\begin{gathered}
f:\left(\frac{M}{N}\right)^{t} \longrightarrow \frac{I^{n} M}{I^{n} N} \\
f\left(x_{1}+N, \ldots, x_{t}+N\right)=a_{1} x_{1}+\ldots+a_{t} x_{t}+I^{n} N
\end{gathered}
$$

It is clear that f is an epimorphism and so $\frac{I^{n} M}{I^{n} N}$ is artinian R-module.
Corollary 3.8. Let M be an R-module and I be an ideal of noetherian ring R such that $\frac{M}{I M}$ is artinian. Then for each positive integer n, the R-module $\frac{M}{I^{M} M}$ is artinian.
Proof. By induction on n. If $n=1$, by hypothesis $\frac{M}{I M}$ is artinian. Now suppose that the result has been proved for $n-1$ and $\frac{M}{I^{n-1} M}$ be an artinian module. By theorem 3.8 and hypothesis the R-module $\frac{I^{n-1} M}{I^{n} M}$ is artinian. Therefore the exact sequence

$$
0 \longrightarrow \frac{I^{n-1} M}{I^{n} M} \longrightarrow \frac{M}{I^{n} M} \longrightarrow \frac{M}{I^{n-1} M} \longrightarrow 0
$$

Shows that the R-module $\frac{M}{I^{n} M}$ is also artinian.
Corollary 3.9. Let R be an artinian ring with radical jacobson $J=$ $J(R)$ and M be a non- artinian R-module. Then $\frac{M}{J M}$ is not artinian R-module.

Proof. Since R is artinian, it follows that there exists $n \in \mathbb{N}$ such that $J^{n}=0$. Suppose on the contrary that $\frac{M}{J M}$ is artinian. By the argument as in Corollary 3.9 we show that the R-module $M / J^{n} M$ is artinian, which is a contradiction.

Acknowledgments

The authors are deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

[1] Bruns, W. and Herzog, J., Cohen Macualay rings, Cambridgestudies in advanced mathematics, (1997).
[2] El-Bast, Z. A. and Smith, P. F., Multiplication modules, Comm. in Algebra, 16(1988), 755-779.
[3] Matsumura, H., Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
[4] Rudlof, P., On minimax and related modules, Can. J. Math. Vol. 44(1),(1992), 154-166.
[5] Sharpe, D. W. and Vamos, P., Injective modules, (Lectures in pure Mathematics), University of sheffield, (1972).

Jafar A'zami
Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, P.O.Box 56199-11367, Ardabil, Iran.
Email: jafar.azami@gmail.com
Mahdieh Savaedi
Department of Mathematics, Sosangerd Branch, Islamic Azad University , Sosangerd, Iran.
Email: mahdieh.savaadigmail.com

[^0]: Received: 4 May 2014, Accepted: 23 September 2014. Communicated by Ahmad Yousefian Darani;
 *Address correspondence to Jafar A'zami, E-mail: jafar.azami@gmail.com
 (C) 2014 University of Mohaghegh Ardabili.

