Journal of Hyperstructures 3 (2) (2014), 108-115. ISSN: 2322-1666 print/2251-8436 online

NOTES ON REDUCED, ARTINIAN AND MULTIPLICATION MODULES

JAFAR A'ZAMI AND MAHDIEH SAVAEDI

ABSTRACT. Let M be a unitary module over a commutative ring R with identity. In this paper we consider the concepts of Artinian, semi-Artinian, reduced and multiplication modules . Also we call an R-module M radical, if it has no maximal submodule. By P(M) we denote the sum of the radical submodules of M and we show that P(M/(P(M)) = 0.

Key Words: Artinian modules, Associated primes, Semi-Artinian modules, Multiplication modules, Reduced modules.

2010 Mathematics Subject Classification: Primary: 13D45; Secondary: 14B15, 13E05.

1. INTRODUCTION

In this note all rings are commutative rings with identity and all modules are unital. Let R be a ring and M an R-module, then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that N = IM.

Like in [4], we call an *R*-module *M* radical, if it has no maximal submodules. By P(M) we denote the sum of the radical submodules of *M*, P(M) is the largest radical submodule of *M*, If P(M) = 0, *M* is called reduced.

An *R*-module M is called semi-Artinian if every proper submodule of M contains a minimal submodule. We denote by L(M) the sum of

Received: 4 May 2014, Accepted: 23 September 2014. Communicated by Ahmad Yousefian Darani;

 $[*] Address \ correspondence \ to \ Jafar \ A'zami, \ E-mail: \ jafar.azami@gmail.com$

^{© 2014} University of Mohaghegh Ardabili.

all Artinian submodules of M. L(M) is the largest semi-Artinian Rmodule and always has a decomposition $L(M) = \bigoplus_{m \in Max(R)} L_m(M)$, where $L_m(M) = \sum_{n=1}^{\infty} (0 :_M m^n)$ and Max(R) is the set of all maximal ideal of R.

For each *R*-module *L*, we denote by $\operatorname{Ass}_R L$ the set of all associated prime ideals of *L*. Also we denote by J(R) the radical jacobson of *R* which is the intersection of all maximal ideals of *R*. For any unexplained notation and terminology we refer the reader to [1] and [3].

2. Reduced modules

Theorem 2.1. Let M be an R-module. Then L(M) is reduced and artinian R-module if and only if L(M) is Noetherian R-module.

Proof. Suppose that L(M) is reduced and artinian. Let $\text{Supp } L(M) = \{m_1, ..., m_n\}$ and set $I = m_1...m_n$. Consider the following descending chain of submodule of L(M) such that

$$L(M) \supseteq IL(M) \supseteq I^2L(M) \supseteq \dots$$

Since L(M) is artinian, it follows that there exists $t \in \mathbb{N}$, such that

$$I^{t}L(M) = I^{t+1}L(M) = \dots$$

Set $N = I^t L(M)$, therefore N = IN. We show that N is a radical submodule of L(M). Let K be a maximal submodul of N. Then there exists maximal ideal \mathfrak{m} of R such that $\frac{N}{K} \approx \frac{R}{\mathfrak{m}}$. This isomorphism shows that $\mathfrak{m} \in \operatorname{Supp} L(M)$ and so there is a $1 \leq i \leq n$, such that $\mathfrak{m} = \mathfrak{m}_i$. Now $\mathfrak{m} \in \operatorname{Supp} L(M)$ and $N = IN \subseteq \mathfrak{m}N \subseteq K \subseteq N$ and so N = Kwhich is a contradiction.

Therefore N has no maximal submodule and so N is a radical submodule of L(M). Since L(M) has no radical submodule then N = 0 and so we have the following

$$N = 0 \Longrightarrow IN = 0 \Longrightarrow 0 = IN = I.I^t L(M) = I^{t+1}L(M)$$

Then L(M) is Noetherian.

converse follows from definition.

Lemma 2.2. Let R be a ring and M be an R-module. Then P(M/P(M)) = 0.

Proof. Let T/P(M) be a radical submodule of M/P(M). We show that T/P(M) = 0. By definition T/P(M) has no maximal submodule. Therefore $T/P(M) \otimes_R R/\mathfrak{m} = 0$. (Otherwise $T/(\mathfrak{m}T + P(M))$ is a vector

space over the field R/\mathfrak{m} and so has a maximal subspace, consequently T/P(M) has a maximal submodule which is a contradiction). To show that T/P(M) = 0 it is enough to prove that T is a radical submodule of M. Let T be not a radical submodule of M, so by definition T has a maximal submodule . Let L be a maximal submodule of T. Hence $R/\mathfrak{m} \simeq T/L$ for some maximal ideal of R and we have $\mathfrak{m}T \subseteq L \neq T$. Therefore $T/\mathfrak{m}T \neq 0$. Consider the exact sequence

$$0 \to P(M) \to T \to T/P(M) \to 0$$

Which implies the following exact sequence:

$$0 \to P(M) \otimes_R R/\mathfrak{m} \to T \otimes_R R/\mathfrak{m} \to T/P(M) \otimes_R R/\mathfrak{m} = 0 \to 0.$$

The second exact sequence shows that $P(M) \otimes_R R/\mathfrak{m} \neq 0.0$ the other hand $P(M) = \Sigma K$ where K is a radical submodule of M. Now we have the following relation:

$$\mathfrak{m}P(M) = \mathfrak{m}\Sigma K = \Sigma \mathfrak{m}K = \Sigma K = P(M).$$

This shows that $\mathfrak{m}P(M) = P(M)$ and so $P(M) \otimes_R R/\mathfrak{m} = 0$ which is a contradiction.

Theorem 2.3. Let R be a ring, and M be an R-module. Let I, J be two maximal ideal of R. Then the R-module M/IJM is a reduced R-module.

Proof. First we show that $M/IJM \simeq M/IM \oplus M/JM$. To do this consider the exact sequence

$$0 \to R/IJ \to R/I \oplus R/J \to R/I + J = 0 \to 0,$$

which implies that $R/IJ = R/(I \cap J) \simeq R/I \oplus R/J$. Hence $R/IJ \otimes M \simeq R/I \otimes M \oplus R/J \otimes M = M/IM \oplus M/JM$. It is enough to show that $M/IM \oplus M/JM$ is a reduced R-module. Since M/IM and M/JM are vector space over the fields R/I and R/J respectively, it follows that $M = M/IM \oplus M/JM$ is a direct sum of simple R-modules. So let $M = M/IM \oplus M/JM = \bigoplus_{i \in X} S_i$, where S_i is a simple R-module. Now we assume that K be a radical submodule of $M = M/IM \oplus M/JM$. We show that K = 0. Suppose on the contrary $K \neq 0$. Hence $K = \bigoplus_{i \in Y \subseteq X} S_i$. But K has a maximal submodule which is a contradiction.

Theorem 2.4. Let R be a ring, and M be an R-module. If N be a submodule of M and P(M/N) = 0. Then $P(M) \subseteq N$.

Proof. Suppose on the contrary that $P(M) \not\subseteq N$. So there is a radical submodule L of M such that $L \not\subseteq N$. Since $\frac{L}{N \cap L} \approx \frac{N+L}{N} \neq 0$ and L has no maximal submodule, it follows that the R-module $\frac{N+L}{N}$ is also has no maximal submodule. Therefore $\frac{N+L}{N}$ is a radical submodule of $\frac{M}{N}$ and by hypothesis is equal to zero submodule. In this case $L \subseteq N$, which is a contradiction.

Theorem 2.5. Let $\{M_i\}_{i=1}^{\infty}$ be a family of submodules of M over local ring (R, \mathfrak{m}) such that each M_i is finitely generated and M is semiartinian R-module. Then $\bigoplus_{i=1}^{\infty} M_i = K$ is a reduced R-module.

Proof. Let N be a radical submodule of K. We show that N = 0. Let $N \neq 0$ and $0 \neq x \in N$, then $x \in K$ and $x = x_1 + ... + x_t$ such that $x_i \in M_i$. Since M is semi-artinian module, it follows that each M_i is artinian and so for large $s \in \mathbb{N}$, we have $\mathfrak{m}^s M_i = 0$ for i = 1, ..., t. Since N is a radical submodule of K, it follows that $N = \mathfrak{m}N$.

(otherwise $\frac{N}{\mathfrak{m}N}$ is a non-zero vector space over field $\frac{R}{\mathfrak{m}}$ and so has a maximal subspace).

Now $N = \mathfrak{m}N$ and so for large s, we have $N = \mathfrak{m}^s N$ consequently $x \in \mathfrak{m}^s N$. Then there is an element $b \in \mathfrak{m}^s$ and an element $y \in N$ such that x=by. Also $y \in K$ and $y = y_1 + ... + y_n$ where $y_i \in M_i$. Therefore $by_i = 0$ for i = 1, ..., n and consequently by = 0 which is a contradiction.

Theorem 2.6. Let (R, \mathfrak{m}) be a local ring and let M be an R-module. Then the R-module $K = \bigoplus_{i=1}^{\infty} (0:_M \mathfrak{m}^i)$ is a reduced.

Proof. Let N be a radical submodule of K. We show that N = 0. Suppose on the contrary that $N \neq 0$ and $0 \neq x \in N$. Since N is a radical submodule of K, it follows that $N = \mathfrak{m}N$ (otherwise $\frac{N}{\mathfrak{m}N}$ is a non-zero vector space over field $\frac{R}{\mathfrak{m}}$ and so has a maximal subspace).

Now $x \in K$ and $x = x_{i_1} + \ldots + x_{i_t}$ where $x_{i_j} \in (0 :_M \mathfrak{m}^{i_j})$, therefore $x_{i_i}\mathfrak{m}^{i_j} = 0$. Then for large n, we have $x_{i_i}\mathfrak{m}^n = 0 \Longrightarrow x\mathfrak{m}^n = 0$.

On the other hand $N = \mathfrak{m}N$ and so $N = \mathfrak{m}^n N \Longrightarrow x \in \mathfrak{m}^n N \Longrightarrow x = by$; $b \in \mathfrak{m}^n$ and $y \in N$. By the above argument, $y\mathfrak{m}^n = 0$. Therefore by = 0 which is a contradiction.

3. Artinian and multiplication modules

Theorem 3.1. Let (R, \mathfrak{m}) be a local artinian principal ideal ring and $E(R/\mathfrak{m}^k)$ be an injective hull of R/\mathfrak{m}^k . Then $E(R/\mathfrak{m}^k) \approx R$.

Proof. If k = 1 we show that $E(R/\mathfrak{m}) \approx R$. By [5, Lemma 6.6], R is injective R-module and so is Gorenstein ring. Therefore by [1, Theorem 3.2.6], $E(R/\mathfrak{m}) \approx R$.

Now let k > 1, in this case we have

$$Soc(R/\mathfrak{m}^k) = 0:_{R/\mathfrak{m}^k} \mathfrak{m} = \frac{\mathfrak{m}^{k-1}}{\mathfrak{m}^k} \approx R/\mathfrak{m}$$

by [5, Proposition 3.17] , $E(Soc(R/\mathfrak{m}^k))=E(R/\mathfrak{m}^k).$ Then by above relation we have

$$E(R/\mathfrak{m}^k) = E(Soc(R/\mathfrak{m}^k) = E(R/\mathfrak{m}) = R$$

Theorem 3.2. Let (R, \mathfrak{m}) be a local artinian ring. Then the following are equivalent:

- (i) R is Gorenstein ring.
- (ii) $E(R/\mathfrak{m})$ is multiplication module.
- (iii) for all non-zero ideals I and J; $I \cap J \neq 0$.

Proof. $(i \Rightarrow ii)$ Since R is Gorenstein ring, so by [1, Theorem 3.2.6], $E(R/\mathfrak{m}) \approx R$. It follows that $E(R/\mathfrak{m})$ is cyclic module and so is multiplication module.

 $(ii \Rightarrow iii)$ Let $E(R/\mathfrak{m})$ be a multiplication R-module. Let I and J be two non-zero ideales of R. We show that $I \cap J \neq 0$. Suppose on the contrary that $I \cap J = 0$.

Since $0 :_E I \leq E$ and $0 :_E J \leq E$, it follows that there exist ideals \mathfrak{a} and \mathfrak{b} of R such that $0 :_E I = \mathfrak{a}E$ and $0 :_E J = \mathfrak{b}E$.

but E is injective and so we have $0:_E I \cap J = 0:_E I + 0:_E J$. therefore we have

$$\mathfrak{a} E + \mathfrak{b} E = 0 :_E I \cap J = 0 :_E 0 = E \Longrightarrow (\mathfrak{a} + \mathfrak{b}) E = E = RE$$

Since *E* is multiplication and faithfull, it follows from [2, Theorem 3.1] that $\mathfrak{a} + \mathfrak{b} = R$. On the other hand $\mathfrak{a} \subset \mathfrak{m}$ and $\mathfrak{b} \subset \mathfrak{m}$. (otherwise if $\mathfrak{a} \not\subseteq \mathfrak{m}$, then $\mathfrak{a} = R$ and so

$$0:_E I = \mathfrak{a} E = RE = E \Longrightarrow IE = 0 \Longrightarrow I \subseteq 0:_R E = 0$$

Consequently $\mathfrak{a} + \mathfrak{b} \subseteq \mathfrak{m} \Longrightarrow R = \mathfrak{m}$ which is a contradiction). (*iii* \Rightarrow *i*) By [1, Theorem 3.2.10], it is enough to show that r(R) = 1. Suppose on the contrary that r(R) > 1. Since $r(R) = \dim_K \operatorname{Hom}(K, R)$, it follows that there exist subspaces U and V of a vector space $\operatorname{Hom}_R(K, R)$ such that $\operatorname{Hom}_R(K, R) = U \oplus V$. In this case $U \cap V = 0$. But

112

 $\operatorname{Hom}_R(K, R)$ is isomorphic with a submodule of R and so R has ideals I and J such that $I \cap J = 0$, which is a contradiction.

Theorem 3.3. Let R be an artinian ring and p and q be prime ideals of R such that $p \neq q$. Then $R_p \otimes_R R_q = 0$

Proof. Let $R_p \otimes_R R_q \neq 0$, Then $Supp_R(R_p \otimes_R R_q) \neq \emptyset$. Let $p' \in Supp_R(R_p \otimes_R R_q)$ so $(R_p)_{p'} \otimes_{R_{p'}} (R_q)_{p'} \neq 0$. It follows that $(R_p)_{p'} \neq 0$ and $(R_q)_{p'} \neq 0$. In this case we have $p' \subseteq q$ and $p' \subseteq p$. (otherwise if $p' \not\subseteq p \Longrightarrow \exists t \in p' \setminus p$ and $R_p \xrightarrow{t} R_p$ is an isomorphism, consequently $(R_p)_{p'} \xrightarrow{t/1} (R_p)_{p'}$ is an isomorphism. Therefore $(R_p)_{p'} = t/1(R_p)_{p'}$ and so t/1 is invertible. On the other hand $t/1 \in p'R_{p'}$ which is a contradiction). Since $p' \subseteq q$ and $p' \subseteq p$, it follows that p' = p = q. \Box

Theorem 3.4. Let R be a noetherian ring, \mathfrak{a} an ideal of R and M be an R-module. If $Hom(R/\mathfrak{a}, M)$ is artinian, then $Hom(R/\mathfrak{a}^n, M)$ for all $n \in \mathbb{N}$ is artinian R-module.

Proof. We use induction on n. The case n = 1 is true by hypothesis. Now, let n > 1 and suppose that the result has been proved for n - 1. We know that

$$\operatorname{Hom}_R(R/\mathfrak{a}^n, M) \simeq 0 :_M \mathfrak{a}^n.$$

Consider the exact sequence

$$0 \to 0:_M \mathfrak{a} \to 0:_M \mathfrak{a}^n \xrightarrow{f} a_1(0:_M \mathfrak{a}^n) \oplus \cdots \oplus a_t(0:_M \mathfrak{a}^n) \to 0,$$

where $\mathfrak{a} = (a_1, \ldots, a_t)$ and f is defined by $f(x) = (a_1x, \ldots, a_tx)$. Clearly, $a_i(0:_M \mathfrak{a}^n)$ is a submodule of $0:_M \mathfrak{a}^{n-1}$ for all $i = 1, 2, \ldots, t$. Therefore, by induction hypothesis, $a_i(0:_M \mathfrak{a}^n)$ is Artinian for all $i = 1, 2, \ldots, t$. Thus $a_1(0:_M \mathfrak{a}^n) \oplus \cdots \oplus a_t(0:_M \mathfrak{a}^n)$ is Artinian. Hence $0:_M \mathfrak{a}^n$ is Artinian.

Theorem 3.5. Let M be a non-semi-artinian R-module over noetherian local ring (R, \mathfrak{m}) . Then there exists a submodule N of M such that N is isomorphic to $\frac{R}{P}$ for some $\mathfrak{m} \neq P \in Spec(R)$.

Proof. Since M be a non-semi-artinian R-module, it follows that there is a non-zero proper submodule K of M such that K not contains any minimal submodule. In this case $Ass(M) \nsubseteq \{\mathfrak{m}\}$, (otherwise there is a $0 \neq x \in M$, such that $\mathfrak{m} = 0 :_R x$ and $Rx \approx \frac{R}{0:_R x} = \frac{R}{\mathfrak{m}}$ therefore there is monomorphism $g : \frac{R}{\mathfrak{m}} \longrightarrow M$. Now we have $\emptyset \neq Ass(K) \subseteq Ass(M) =$

 $\{\mathfrak{m}\} \Longrightarrow Ass(K) = \{\mathfrak{m}\}$ and so $\frac{R}{\mathfrak{m}} \approx g(\frac{R}{\mathfrak{m}})$ is a minimal submodule of K which is a contradiction).

Therefore $Ass(M) \notin \{\mathfrak{m}\}$ and then there exists $P \in Ass(M)$ such that $P \neq \mathfrak{m}$. Now there is a monomorphism $h: \frac{R}{P} \longrightarrow M$ and $\frac{R}{P} \approx h(\frac{R}{P}) := N \leqslant M$.

Theorem 3.6. Let M be an R-module and N a submodule of M such that $L(\frac{M}{N}) = 0$. Then every artinian submodule of M is contained in N.

Proof. Suppose on the contrary that there is an artinian submodule L of M such that $L \notin N$. Since $\frac{L}{N \cap L} \approx \frac{N+L}{N} \neq 0$ and L is artinian, it follows that $\frac{N+L}{N}$ is artinian submodule of $\frac{M}{N}$ and so by hypothesis is equal to the zero submodule of $\frac{M}{N}$. In this case $\frac{N+L}{N} = 0$ and so $L \subseteq M$, which is a contradiction.

Theorem 3.7. Let M be an R-module and N be a submodule of M such that $\frac{M}{N}$ is artinian module over noetherian ring R. Then for every ideal I of R and for any positive integer n, the R-module $\frac{I^n M}{I^n N}$ is artinian R-module.

Proof. Let $I^n = \langle a_1, ..., a_t \rangle$ for some $a_i \in R$. Now we define the R-homomorphism

$$f: (\frac{M}{N})^t \longrightarrow \frac{I^n M}{I^n N}$$
$$f(x_1 + N, ..., x_t + N) = a_1 x_1 + ... + a_t x_t + I^n N$$

It is clear that f is an epimorphism and so $\frac{I^n M}{I^n N}$ is artinian R-module. \Box

Corollary 3.8. Let M be an R-module and I be an ideal of noetherian ring R such that $\frac{M}{IM}$ is artinian. Then for each positive integer n, the R-module $\frac{M}{I^nM}$ is artinian.

Proof. By induction on n. If n = 1, by hypothesis $\frac{M}{IM}$ is artinian. Now suppose that the result has been proved for n - 1 and $\frac{M}{I^{n-1}M}$ be an artinian module. By theorem 3.8 and hypothesis the *R*-module $\frac{I^{n-1}M}{I^nM}$ is artinian. Therefore the exact sequence

$$0 \longrightarrow \frac{I^{n-1}M}{I^nM} \longrightarrow \frac{M}{I^nM} \longrightarrow \frac{M}{I^{n-1}M} \longrightarrow 0$$

Shows that the *R*-module $\frac{M}{I^n M}$ is also artinian.

Corollary 3.9. Let R be an artinian ring with radical jacobson J = J(R) and M be a non- artinian R- module. Then $\frac{M}{JM}$ is not artinian R-module.

Proof. Since R is artinian, it follows that there exists $n \in \mathbb{N}$ such that $J^n = 0$. Suppose on the contrary that $\frac{M}{JM}$ is artinian. By the argument as in Corollary 3.9 we show that the R-module M/J^nM is artinian, which is a contradiction.

Acknowledgments

The authors are deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

- [1] Bruns, W. and Herzog, J., *Cohen Macualay rings*, Cambridgestudies in advanced mathematics, (1997).
- [2] El-Bast, Z. A. and Smith, P. F., *Multiplication modules*, Comm. in Algebra, 16(1988), 755-779.
- [3] Matsumura, H., Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
- [4] Rudlof, P., On minimax and related modules, Can. J. Math. Vol. 44(1),(1992), 154-166.
- [5] Sharpe, D. W. and Vamos, P., *Injective modules*, (Lectures in pure Mathematics), University of sheffield, (1972).

Jafar A'zami

Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, P.O.Box 56199-11367, Ardabil, Iran. Email: jafar.azami@gmail.com

Mahdieh Savaedi

Department of Mathematics, Sosangerd Branch, Islamic Azad University , Sosangerd, Iran.

Email: mahdieh.savaadigmail.com