HYPER JK-ALGEBRAS

MOHAMMAD ALI HASHEMI

Abstract

In this paper, we introduce the notion of hyper JKalgebras and investigate these algebras properties. Moreover, we present relationships between hyper JK-algebras and pseudo hyper BCK-algebras and hyper pseudo MV-algebras under some conditions.

Key Words: Equality algebra, Hyper equality algebra, Hyper JK-algebra, Hyper pseudo MV-algebra, JK-algebra, pseudo hyper BCK-algebra.
2010 Mathematics Subject Classification: 03G25, 06D35, 08A35.

1. Introduction

JK-algebras are introduced by Dvurečenskij and Zahiri in [5], where they show that pseudo equality algebras that were defined in [10], are equality algebras. The notion of pseudo equality algebras is a generalization of equality algebras that introduced by Jenei in [8]. An equality algebra consisting of two binary operations meet and equivalence, and constant 1. An equality algebra $\mathcal{E}=\langle X, \sim, \wedge, 1\rangle$ is an algebra of type $(2,2,0)$ such that, for all $x, y, z \in X$, the following axioms are fulfilled:
(E1) $\langle X, \wedge, 1\rangle$ is a commutative idempotent integral monoid (i.e. \wedge semilattice with top element 1).
(E2) $x \sim y=y \sim x$.
(E3) $x \sim x=1$.
(E4) $x \sim 1=x$.
(E5) $x \leq y \leq z$ implies $x \sim z \leq y \sim z$ and $x \sim z \leq x \sim y$.
(E6) $x \sim y \leq(x \wedge z) \sim(y \wedge z)$.
Received: 24 March 2021, Accepted: 14 November 2022. Communicated by Irina Cristea; *Address correspondence to Mohammad Ali Hashemi; E-mail: m_a_hashemi@pnu.ac.ir.
(c) 2022 University of Mohaghegh Ardabili.
(E7) $x \sim y \leq(x \sim z) \sim(y \sim z)$.
The operation \wedge is called meet (infimum) and \sim is an equality operation. We write $x \leq y$ if and only if $x \wedge y=x$, as usual. Some valuable results related to equality algebras are obtained in $[4,6,11,12]$.

Definition 1.1. [5] A JK-algebra is an algebra ($X ; \sim, \backsim, \wedge, 1$) of type $(2,2,2,0)$ that satisfies the following axioms, for all $a, b, c \in X$:
(F1) $(X ; \wedge, 1)$ is a meet-semilattice with top element 1 ;
(F2) $a \sim a=1=a \backsim a$;
(F3) $a \sim 1=a=1 \sim a$;
(F4) $a \leq b \leq c$ implies that $a \sim c \leq b \sim c, a \sim c \leq a \sim b, c \backsim a \leq c \backsim b$ and $c \backsim a \leq b \backsim a$;
(F5) $a \sim b \leq(a \wedge c) \sim(b \wedge c)$ and $a \backsim b \leq(a \wedge c) \backsim(b \wedge c)$;
(F6) $a \sim b \leq(c \sim a) \backsim(c \sim b)$ and $a \backsim b \leq(a \backsim c) \sim(b \backsim c)$;
(F7) $a \sim b \leq(a \sim c) \sim(b \sim c)$ and $a \backsim b \leq(c \backsim a) \backsim(c \backsim b)$.
Let H be a nonempty set and \circ be a function from $H \times H$ to the nonempty power set of $H, P(H)^{*}$ that is $P(H)-\emptyset$, it means that \circ : $H \times H \rightarrow P(H)^{*}$. Then \circ is said to be a hyperoperation on H. As a generalization of equality algebra, Cheng, Xin and Jun in [3] introduced hyper equality algebras as follows:

Definition 1.2. [3]

A hyper equality algebra $\mathcal{H}=\langle H ; \sim, \wedge, 1\rangle$ is a nonempty set H endowed with a binary operation \wedge, a binary hyperoperation \sim and a top element 1 such that, for all $x, y, z \in H$, the following axioms are fulfilled: (HE1) $\langle H, \wedge, 1\rangle$ is a meet-semilattice with top element 1.
(HE2) $x \sim y \ll y \sim x$.
(HE3) $1 \in x \sim x$.
(HE4) $x \in 1 \sim x$.
(HE5) $x \leq y \leq z$ implies $x \sim z \ll y \sim z$ and $x \sim z \ll x \sim y$.
(HE6) $x \sim y \ll(x \wedge z) \sim(y \wedge z)$.
(HE7) $x \sim y \ll(x \sim z) \sim(y \sim z)$.
Where $x \leq y$ if and only if $x \wedge y=x$ and $A \ll B$ is defined by, for all $x \in A$, there exists $y \in B$ such that $x \leq y$. Define the following two derived operations, the implication and the equivalence operation of the hyper equality algebra $\langle H, \sim, \wedge, 1\rangle$ by

$$
x \rightarrow y=x \sim(x \wedge y) \quad \text { and } \quad x \leftrightarrow y=(x \rightarrow y) \wedge(y \rightarrow x) .
$$

Basic properties and definitions related to hyper equality algebras are given in [3] and their relations with the other hyperstructures are studied in [7].

2. Hyper JK-algebras

We commence with the following definition:
Definition 2.1. A hyper JK-algebra $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$ is a nonempty set X endowed with binary operations \wedge, \sim, ๑ and a top element 1 such that, for all $x, y, z \in X$, the following axioms are fulfilled:
(HF1) $(X ; \wedge, 1)$ is a meet-semilattice with top element 1 ;
(HF2) $1 \in x \sim x, 1 \in x \odot x, x \sim y \ll y \sim x$ and $x \odot y \ll y \odot x$;
(HF3) $x \in(x \sim 1) \cap(1 \odot x)$;
(HF4) $x \leq y \leq z$ implies that $x \sim z \ll y \sim z, x \sim z \ll x \sim y, z \odot x \ll$ $z \odot y$ and $z \odot x \ll y \odot x$;
(HF5) $x \sim y \ll(x \wedge z) \sim(y \wedge z)$ and $x \odot y \ll(x \wedge z) \odot(y \wedge z)$;
(HF6) $x \sim y \ll(x \sim z) \odot(y \sim z)$ and $x \odot y \ll(x \odot z) \sim(y \odot z)$;
(HF7) $x \sim y \ll(x \sim z) \sim(y \sim z)$ and $x \odot y \ll(z \odot x) \odot(z \odot y)$.
Where $x \leq y$ if and only if $x \wedge y=x$ and $A \ll B$ is defined by, for all $x \in A$, there exists $y \in B$ such that $x \leq y$.

We now give some examples of hyper JK-algebras:
Example 2.2. (i) Let $\mathcal{X}=(X ; \sim, \wedge, 1)$ be a hyper equality algebra, then $\mathcal{X}=(X ; \sim, \sim, \wedge, 1)$ becomes a hyper JK-algebra.
(ii) Let $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$ be a JK-algebra. For all $x, y \in X$, define $x \circ y=\{x \sim y\}$ and $x \bullet y=\{x \odot y\}$. Then $\mathcal{Y}=(X ; \circ, \bullet, \wedge, 1)$ is a hyper JK-algebra.
(iii) Let $X=[0,1]$. For all $x, y \in X$, define \wedge, \sim and \odot on X as follows: $x \wedge y=\min \{x, y\}$,
$x \sim y=\left\{\begin{array}{ll}{[y, 1],} & x=1 . \\ X, & \text { otherwise. }\end{array} \quad\right.$ and $\quad x \odot y= \begin{cases}{[x, 1],} & y=1 . \\ X, & \text { otherwise } .\end{cases}$
Then by routine calculations, $(H ; \sim, \odot, \wedge, 1)$ is a hyper JKalgebra.
(iv) Let $X=\{0, a, 1\}$ such that $0<a<1$. For any $x, y \in X$, define the operations \wedge, \sim and \odot as follows: $x \wedge y=\min \{x, y\}$,

\sim	0	a	1	
0	$\{1\}$	$\{a, 1\}$	$\{a, 1\}$	
a	$\{a, 1\}$	$\{0, a, 1\}$	$\{a, 1\}$	
1	$\{0,1\}$	$\{a, 1\}$	$\{1\}$	
	\bigcirc	0	a	1
0	$\{1\}$	$\{a, 1\}$	$\{0,1\}$	
a	$\{a, 1\}$	$\{0, a, 1\}$	$\{a, 1\}$	
	1	$\{a, 1\}$	$\{a, 1\}$	$\{1\}$

Then $(X ; \sim, \odot, \wedge, 1)$ is a hyper JK-algebra.
In any hyper JK-algebra $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$, for any $x, y \in X$, we define the following derived binary operations on X as follows:

$$
x \rightarrow y:=(x \wedge y) \sim x, \quad \text { and } \quad x \rightsquigarrow y=x \odot(x \wedge y)
$$

Proposition 2.3. Let $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$ be a hyper JK-algebra and, for any $x, y, z \in X$, consider
(HF4a) $(x \wedge y \wedge z) \sim x \ll(x \wedge y) \sim x$ and $x \odot(x \wedge y \wedge z) \ll x \odot(x \wedge y)$. (HF4aa) $x \rightarrow(y \wedge z) \ll x \rightarrow y$ and $x \rightsquigarrow(y \wedge z) \ll x \rightsquigarrow y$.

Then (HF4), (HF4a) and (HF4aa) are equivalent.
Proof. The statements (HF4a) and (HF4aa) are equivalent, according to their definitions. We show that (HF4) implies (HF4a) and vice versa. For any $x, y, z \in X$, we have $x \wedge y \wedge z \leq x \wedge y \leq x$. Then by (HF4), we get

$$
(x \wedge y \wedge z) \sim x \ll(x \wedge y) \sim x
$$

and

$$
x \odot(x \wedge y \wedge z) \ll x \odot(x \wedge y)
$$

Now, suppose that (HF4a) holds and $x \leq y \leq z$. Then by (HF4a), we have

$$
x \sim z=(x \wedge y \wedge z) \sim z \ll(z \wedge y) \sim z=y \sim z
$$

and by (HF5),

$$
x \sim z=(z \wedge x) \sim z \ll(z \wedge x \wedge y) \sim(z \wedge y)=x \sim y
$$

Similarly, by (HF4a),

$$
z \odot x=z \odot(x \wedge y \wedge z) \ll z \odot(y \wedge z)=z \odot z
$$

and finally, by (HF5), we have

$$
z \odot x=z \odot(x \wedge z) \ll(z \wedge y) \odot(x \wedge z \wedge y)=y \odot x
$$

We now give some properties of hyper JK-algebras as follows:
Proposition 2.4. Let $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$ be a hyper JK-algebra, then for all $x, y, z \in X$ and $A, B, C \subseteq X$, we have
(i) $x \rightarrow y \ll(x \wedge z) \rightarrow y$ and $x \rightsquigarrow y \ll(x \wedge z) \rightsquigarrow y$;
(ii) $x \leq y$ implies $z \rightarrow x \ll z \rightarrow y$ and $z \rightsquigarrow x \ll z \rightsquigarrow y$;
(iii) $A \ll B$ implies $C \rightarrow A \ll C \rightarrow B$ and $C \rightsquigarrow A \ll C \rightsquigarrow B$;
(iv) $x \sim y \ll x \rightarrow y, x \sim y \ll y \rightarrow x, x \odot y \ll x \rightsquigarrow y$ and $x \odot y \ll y \rightsquigarrow x$;
(v) $A \sim B \ll B \rightarrow A$ and $A \odot B \ll A \rightsquigarrow B$;
(vi) $x \leq y$ implies $y \rightarrow x=x \sim y$ and $y \rightsquigarrow x=y \odot x$;
(vii) $1 \in x \rightarrow 1,1 \in x \rightarrow x, 1 \in x \rightsquigarrow 1,1 \in x \rightsquigarrow x, x \ll x \sim 1$ and $x \ll 1 \odot x ;$
(viii) $x \leq y$ implies $1 \in x \rightarrow y$ and $1 \in x \rightsquigarrow y$;
(ix) $x \leq y$ implies $x \sim 1 \ll y \sim 1, x \sim 1 \ll x \sim y, 1 \odot x \ll 1 \odot y$ and $1 \odot x \ll y \odot x$;
(x) $x \rightarrow y \ll(x \wedge z) \rightarrow y$ and $x \rightsquigarrow y \ll(x \wedge z) \rightsquigarrow y$;
(xi) $x \rightarrow(y \wedge z) \ll(x \wedge z) \rightarrow y$ and $x \rightsquigarrow(y \wedge z) \ll(x \wedge z) \rightsquigarrow y$;
(xii) $x \rightarrow y=x \rightarrow(x \wedge y)$ and $x \rightsquigarrow y=x \rightsquigarrow(x \wedge y)$;
(xiii) $x \rightarrow y \ll(z \rightarrow x) \rightarrow(z \rightarrow y)$ and $x \rightsquigarrow y \ll(z \rightsquigarrow x) \rightsquigarrow(z \rightsquigarrow y)$;
(xiv) $x \ll((y \sim x) \odot(y \sim 1)) \wedge((1 \odot y) \sim(x \odot y))$;
(xv) if, for all $x \in X, x \sim 1=x=1 \odot x$, then $x \ll((y \sim x) \odot y) \wedge$ $(y \sim(x \odot y)) ;$
(xvi) $x \ll y \rightarrow x$ and $x \ll y \rightsquigarrow x$;
(xvii) if $x \leq y$, then $x \ll y \sim x$ and $x \ll y \odot x$;
(xviii) $y \ll(x \rightarrow y) \rightarrow y$ and $y \ll(x \rightsquigarrow y) \rightsquigarrow y$;
(xix) if $x \leq y$, then $y \ll(x \sim y) \sim y$ and $y \ll(x \odot y) \odot y$;
(xx) if $x \leq y$, then $y \rightarrow z \ll x \rightarrow z$ and $y \rightsquigarrow z \ll x \rightsquigarrow z$;
(xxi) if $A \ll B$, then $B \rightarrow C \ll A \rightarrow C$ and $B \rightsquigarrow C \ll A \rightsquigarrow C$;
(xxii) $(x \rightarrow y) \rightsquigarrow z \ll y \rightsquigarrow(x \rightsquigarrow z)$ and $(x \rightsquigarrow y) \rightarrow z \ll y \rightarrow(x \rightarrow z)$.
(xxiii) $x \leq y$ and $y \leq x$ imply $x=y$.

Proof. (i) From (HF5), we have $(x \wedge y) \sim x \ll(x \wedge y \wedge z) \sim(x \wedge z)$. This means that $x \rightarrow y \ll(x \wedge z) \rightarrow y$. Similarly, by (HF5), we get that $x \odot(x \wedge y) \ll(x \wedge z) \odot(x \wedge y \wedge z)$. Hence, $x \rightsquigarrow y \ll(x \wedge z) \rightsquigarrow y$.
(ii) From $x \leq y$, one can write $z \rightarrow x=(x \wedge z) \sim z=(x \wedge y \wedge z) \sim z)$. Then by (HF4a) in Proposition 2.3, we have $z \rightarrow x \ll(y \wedge z) \sim z=$ $z \rightarrow y$. Similarly, we have

$$
z \rightsquigarrow x=z \odot(x \wedge z)=z \odot(x \wedge y \wedge z) \ll z \odot(y \wedge z)=z \rightsquigarrow y .
$$

(iii) The proof of is straightforward by (ii).
(iv) From (HF2) and (HF5), we have $x \sim y \ll(x \wedge y) \sim(y \wedge y)=$ $(x \wedge y) \sim y=y \rightarrow x$ and $x \odot y \ll(x \wedge x) \odot(x \wedge y)=x \odot(x \wedge y)=x \rightsquigarrow y$.
(v) The proof by (iv) is clear.
(vi) Straightforward.
(vii) Apply the axioms (HF2) and (HF3).
(viii) Since $x \leq y$, from (HF2), we have $1 \in x \sim x=(x \wedge y) \sim x=$ $x \rightarrow y$ and $1 \in x \odot x=x \odot(x \wedge y)=x \rightsquigarrow y$.
(ix) Since $x \leq y \leq 1$, the proof by (HF4) is clear.
(x) By (HF5), we can get $(x \wedge y) \sim x \ll(x \wedge y \wedge z) \sim(x \wedge z)$ and $x \odot(x \wedge y) \ll(x \wedge z) \odot(x \wedge z \wedge y)$. These imply (x).
(xi) By Proposition 2.3(HF4aa) and (x) the proof holds.
(xii) By (vi), $x \rightarrow y=x \sim(x \wedge y)=x \rightarrow(x \wedge y)$ and similarly $x \rightsquigarrow y=x \rightsquigarrow(x \wedge y)$.
(xiii) By (HF5),

$$
\begin{aligned}
x \rightarrow y & =(x \wedge y) \sim x \ll(x \wedge y \wedge z) \sim(x \wedge z) \quad \text { by }(\mathrm{HF} 7) \\
& \ll((x \wedge y \wedge z) \sim z) \sim((x \wedge z) \sim z) \\
& =(z \rightarrow(x \wedge y)) \sim(z \rightarrow x) \quad \text { by }(\mathrm{v}) \\
& \ll(z \rightarrow x) \rightarrow(z \rightarrow(x \wedge y)) \quad \text { by }(\mathrm{ii}) \\
& \ll(z \rightarrow x) \rightarrow(z \rightarrow y)
\end{aligned}
$$

Similarly, by (HF5), we have

$$
\begin{aligned}
x \rightsquigarrow y & =x \odot(x \wedge y) \ll(x \wedge z) \odot(x \wedge y \wedge z) \quad \text { by }(\text { HF } 7) \\
& \ll(z \odot(x \wedge z)) \odot(z \odot(x \wedge y \wedge z)) \\
& =(z \rightsquigarrow x) \odot(z \rightsquigarrow(x \wedge y)) \quad \text { by }(\mathrm{v}) \\
& \ll(z \rightsquigarrow x) \rightsquigarrow(z \rightsquigarrow(x \wedge y)) \quad \text { by }(\mathrm{ii}) \\
& \ll(z \rightsquigarrow x) \rightsquigarrow(z \rightsquigarrow y) .
\end{aligned}
$$

(xiv) By (vii) and (HF6), we get

$$
x \ll x \sim 1 \ll(y \sim x) \odot(y \sim 1)
$$

and

$$
x \ll 1 \odot x \ll(1 \odot y) \sim(x \odot y)
$$

Thus, $x \ll((y \sim x) \odot(y \sim 1)) \wedge((1 \odot y) \sim(x \odot y))$.
(xv) By (xiv), the proof is clear.
(xvi) By (vii), $x \ll x \sim 1$. Then by (iv), $x \ll x \sim 1 \ll 1 \rightarrow x$. Then by (x), we have $x \ll(1 \wedge y) \rightarrow x=y \rightarrow x$. Similarly, by (vii), (iv) and (x), we have $x \ll 1 \odot x \ll 1 \rightsquigarrow x \ll(1 \wedge y) \rightsquigarrow x=y \rightsquigarrow x$.
(xvii) By (xvi) the proof is clear.
(xviii) By (xvi), (xvii) and (vi), we have

$$
y \ll x \rightsquigarrow y \ll(x \rightsquigarrow y) \odot y \ll(x \rightsquigarrow y) \rightsquigarrow y .
$$

The case for \rightarrow is similar.
(xix) By (xvii) and (xviii) the proof holds.
(xx) Apply (x) and for (xxi) apply (xx).
(xxii) By (xvi), we have $z \ll x \rightsquigarrow z$. Then by (xxi), $(x \rightarrow y) \rightsquigarrow z \ll$ $(x \rightarrow y) \rightsquigarrow(x \rightsquigarrow z)$. Again by (xvi), we have $y \ll x \rightarrow y$. Then (xxi) together the above result, we have $(x \rightarrow y) \rightsquigarrow \ll y \rightsquigarrow(x \rightsquigarrow z)$. The other case is similar and the case (xxiii) is clear.

Proposition 2.5. Let $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$ be a hyper JK-algebra and $y \in X$ such that $y \sim 1=y$. Then for any $x \in X$,
(i) if $x \leq y$, then $x \ll(y \rightarrow x) \rightsquigarrow y$.
(ii) $x \ll y \rightarrow(y \rightsquigarrow x)$ and $x \ll y \rightsquigarrow(y \rightarrow x)$.

Proof. (i) From Proposition 2.4(xiv),

$$
\begin{gathered}
x \ll(y \sim x) \odot y=(y \sim(x \wedge y)) \odot y=(y \rightarrow x) \odot y \\
\ll(y \rightarrow x) \rightsquigarrow y \quad \text { by Proposition 2.4(v). }
\end{gathered}
$$

(ii) According to (HF3), $1 \odot y=y$. Then by Proposition 2.4(xiv), we have $x \ll y \sim(x \odot y)$. By Proposition 2.4(iv), $x \odot y \ll y \rightsquigarrow x$, then Proposition 2.4(iii) implies that $x \ll y \rightarrow(y \rightsquigarrow x)$.

Again by Proposition 2.4(xiv), $x \ll(y \sim x) \odot y$. Then by (HF2), $x \ll y \odot(y \sim x)$. By Proposition 2.4(v), $x \ll y \rightsquigarrow(y \sim x)$. Then by Proposition 2.4(iv) and (iii), we have $x \ll y \rightsquigarrow(y \rightarrow x)$.

3. Relationship with the other pseudo hyper algebras

In this section we investigate the existence of a relationship between pseudo hyper JK-algebras with a special version of pseudo hyper algebras, i. e., pseudo hyper BCK-algebras and pseudo hyper MV-algebras.
3.1. Pseudo hyper BCK-algebras. We recall pseudo hyper BCKalgebras from [1].
Definition 3.1. A hyper pseudo BCK-algebra is a structure ($H, \circ, *, 1$), where "*" and "o" are hyperoperations on H and " 1 " is a constant element, that satisfies the following:
(PHK1) $(x \circ z) \circ(y \circ z) \ll x \circ y,(x * z) *(y * z) \ll x * y$,
(PHK2) $(x \circ y) * z=(x * z) \circ y$,
(PHK3) $x \circ H \ll\{x\}, x * H \ll\{x\}$,
(PHK4) $x \leq y$ and $y \leq x$ imply $x=y$,
for all $x, y, z \in H$, where $x \leq y$ if and only if $1 \in x \circ y$ if and only if $1 \in x * y$ and for any $A, B \subseteq H, A \ll B$ is defined by for all $a \in A$, there exists $b \in B$ such that $a \leq b$

We now give the following definition:
Definition 3.2. Let $(H, \circ, *, 1)$ be a hyper pseudo BCK-algebra. We call $(H, 0, *, 1)$ a hyper pseudo BCK-meet-semilattice if (H, \leq) is a meet (\wedge)-semilattice.
Theorem 3.3. Let $\mathcal{X}=(X ; \sim, \odot, \wedge, 1)$ be a hyper JK-algebra such that $z \rightsquigarrow(y \rightarrow x)=y \rightarrow(z \rightsquigarrow x)$, for all $x, y, z \in H$. Then $(X, \circ, *, 1)$ is a hyper pseudo BCK-meet-semilattice, where for any $x, y \in X, x \circ y=$ $y \rightarrow x$ and $x * y=y \rightsquigarrow x$.
Proof. Define $1 \in x \circ y$ if and only if $1 \in x * y$ if and only if $x \leq^{\prime} y$. Moreover, for any $A, B \subseteq X$, we define $A<^{\prime} B$ if and only if for any $x \in A$ there exists $y \in B$ such that $x \leq^{\prime} y$. By Proposition 2.4(xiii), $y \rightarrow x \ll(z \rightarrow y) \rightarrow(z \rightarrow x)$. This implies that there are $a \in y \rightarrow x$ and $b \in(z \rightarrow y) \rightarrow(z \rightarrow x)$ such that $a \leq b$. Then Proposition 2.4(viii) implies that $1 \in a \rightarrow b$. Hence, $1 \in b \circ a$ and this holds if and only if $b \leq^{\prime} a$ if and only if $(x \circ z) \circ(y \circ z) \ll x \circ y$. By a similar argument we have $(x * z) *(y * z) \ll x * y$. So, the axiom (PHK1) holds.

The axiom (PHK2) by the assumption $z \rightsquigarrow(y \rightarrow x)=y \rightarrow(z \rightsquigarrow x)$ holds.
(PHK3) By Proposition 2.4(xvi), we have $x \ll y \rightarrow x$, for all $x, y \in X$. Thus, $x \ll X \rightarrow x$. This means that $x \circ X \lll<\{x\}$. Similarly, one can show that $x * X<^{\prime}\{x\}$. The axiom (PHK4), by Proposition 2.4 (xxiii) holds. Thus, $(X, \circ, *, 1)$ is a hyper pseudo BCK-meet-semilattice.

Question 3.4. Let $\mathcal{B}=(H, \circ, *, \wedge, 1)$ be a hyper pseudo BCK-meetsemilattice. Under which conditions is a \mathcal{B} becomes a hyper JK-algebra?
3.2. Hyper pseudo MV-algebras. We recall the definition of hyper pseudo MV-algebras from [2] as follows:
Definition 3.5. A hyper pseudo MV-algebra is a non-empty set M with a binary hyperoperation + , two unary operations ${ }^{\prime}, *$ and two constants 0,1 satisfying the following conditions, for all $x, y, z \in M$,
(HSMV1) $x+(y+z)=(x+y)+z$,
(HSMV2) $1 \in(x+1) \cap(1+x)$,
(HSMV3) $1^{*}=1^{\prime}=0$,
(HSMV4) $\left(x^{\prime}+y^{\prime}\right)^{*}=\left(x^{*}+y^{*}\right)^{\prime}$,
(HSMV5) $x+\left(x^{*} \odot y\right)=y+\left(y^{*} \odot x\right)=\left(x \odot y^{\prime}\right)+y=\left(y \odot x^{\prime}\right)=x$,
(HSMV6) $x \odot\left(x^{\prime}+y\right)=\left(x+y^{*}\right) \odot y$,
(HSMV7) $\left(x^{\prime}\right)^{*}=x$,
(HSMV8) $1 \in\left(x+x^{*}\right) \cap\left(x^{\prime}+x\right)$,
(HSMV9) $1 \in\left(x^{\prime}+y\right) \cap\left(y^{\prime}+x\right)$ implies $x=y$,
(HSMV10) $1 \in x^{\prime}+y$ if and only if $1 \in y+x^{*}$,
where $y \odot x=\left(x^{\prime}+y^{\prime}\right)^{*}, A^{\prime}=\left\{a^{\prime}: a \in A\right\}, A^{*}=\left\{a^{*}: a \in A\right\}$, $A \odot B=\bigcup\{a \odot b: a \in A, b \in B\}$ and $A+B=\{a+b: a \in A, b \in B\}$, for any $A, B \subseteq M$.
Proposition 3.6. [2] Let $\mathcal{M}=\left(M ;+{ }^{\prime}, *, 0,1\right)$ be a hyper pseudo $M V$ algebra. The following properties, for any $x, y, z \in M$ hold:
(i) $\left(x^{*}\right)^{\prime}=x$.
(ii) $x \leq 1$ and $0 \leq x$.
(iii) $x \in(0+x) \cap(x+0)$.
(iv) $x \leq y$ if and only if $y^{\prime} \leq x^{\prime}$ if and only if $y^{*} \leq x^{*}$.
(v) $x \leq y$ implies that $x+z \leq y+z$ and $z+x \leq z+y$.
(vi) $x \ll x+y$ and $y \ll x+y$.
(vii) $x \leq y$ if and only if $1 \in y+x^{*}$.

Theorem 3.7. Let $\mathcal{M}=\left(M ;+,,^{\prime}, 0,1\right)$ be a linearly ordered hyper pseudo MV-algebra such that for any $x, y, z \in M$,
(i) $x \in 1+x^{*}$.
(ii) $y+x^{*} \ll\left(x+z^{*}\right)^{\prime}+\left(y+z^{*}\right)$ and $y \ll\left(z+y^{*}\right)^{\prime}$.
(iii) $x^{\prime}+y \ll\left(z^{\prime}+y\right)+\left(z^{\prime}+x\right)^{*}$ and $y \ll\left(y^{\prime}+z\right)^{*}$.
(iv) $y+x^{*} \ll\left(z+x^{*}\right)+\left(z+y^{*}\right)^{*}$ and $x^{*} \ll\left(x+z^{*}\right)^{*}$.
(v) $x^{\prime}+y \ll\left(y^{\prime}+z\right)^{\prime}+\left(x^{\prime}+z\right)$ and $x^{\prime} \ll\left(z^{\prime}+x\right)^{\prime}$.

Then it is a hyper JK-algebra.
Proof. Let $\mathcal{M}=\left(M ;+, *,{ }^{\prime}, 0,1\right)$ be a linearly ordered hyper pseudo MValgebra with the order \leq. For any $x, y \in M$, we define the operations \sim and \odot on M as follow:

$$
x \sim y=x \leftrightarrow y=(x \rightarrow y) \wedge(y \rightarrow x)
$$

and

$$
x \odot y=x \leadsto y=(x \rightsquigarrow y) \wedge(y \rightsquigarrow x)
$$

where $x \rightarrow y=y+x^{*}$ and $x \rightsquigarrow y=x^{\prime}+y$. Now, we show that $\mathcal{X}=(M ; \sim, \odot, \wedge, 1\rangle$ is a JK-algebra. By Proposition 3.6(ii), (M, \leq) is a \wedge-semilattice with top element 1. Hence we have (HF1).
(HF2) Let $x, y \in M$. Then

$$
\begin{aligned}
x \sim y & =(x \rightarrow y) \wedge(y \rightarrow x) \\
& =\left(y+x^{*}\right) \wedge\left(x+y^{*}\right) \\
& =\left(x+y^{*}\right) \wedge\left(y+x^{*}\right) \\
& =(y \rightarrow x) \wedge(x \rightarrow y) \\
& =y \sim x
\end{aligned}
$$

and

$$
\begin{align*}
x \odot y & =(x \rightsquigarrow y) \wedge(y \rightsquigarrow x) \\
& =\left(x^{\prime}+y\right) \wedge\left(y^{\prime}+x\right) \\
& =\left(y^{\prime}+x\right) \wedge\left(x^{\prime}+y\right) \\
& =(y \rightsquigarrow x) \wedge(x \rightsquigarrow y) \\
& =y \odot x . \tag{3.2}
\end{align*}
$$

Moreover, $x \sim x=x+x^{*}$ and $x \odot x=x^{\prime}+x$. Then by (HSMV8), we have $1 \in x \sim x, x \odot x$. Thus, (HF2) holds.
(HF3) By Proposition 3.6(iii), for any $x \in M$, we have $x \in x+0$. Moreover, since $1 \in 1+x^{*}$, (HSMV10) implies that $1 \in x^{\prime}+1$. Then by $x \in 1+x^{*}, x^{\prime}+1$, definitions of \sim and \odot, the axiom (HF3) holds.
(HF4) Let $x, y, z \in M$ such that $x \leq y \leq z$. By Proposition 3.6(iv), $z^{*} \leq y^{*} \leq x^{*}$. Then by (HSMV8) and Proposition 3.6(v), we have $1 \in z+z^{*} \ll z+y^{*} \ll z+x^{*}$. Thus, for any $A \subseteq M$,

$$
\begin{equation*}
\left(z+x^{*}\right) \wedge A=\left(z+y^{*}\right) \wedge A \tag{3.3}
\end{equation*}
$$

Also, by Proposition $3.6(\mathrm{v})$, since $x \leq y$, we have

$$
\begin{equation*}
x+z^{*} \ll y+z^{*} \tag{3.4}
\end{equation*}
$$

Then, for any $x, y, z \in M$, by (3.3) and (3.4), we have

$$
\begin{aligned}
x \sim z & =(x \rightarrow z) \wedge(z \rightarrow x) \\
& =\left(z+x^{*}\right) \wedge\left(x+z^{*}\right) \\
& \ll\left(z+x^{*}\right) \wedge\left(y+z^{*}\right) \\
& =\left(z+y^{*}\right) \wedge\left(y+z^{*}\right) \\
& =y \sim z
\end{aligned}
$$

Similarly, by Proposition 3.6(iv), $z^{\prime} \leq y^{\prime} \leq x^{\prime}$. Then by (HSMV8) and Proposition 3.6(v), we have $1 \in z^{\prime}+z \ll y+z \ll x^{\prime}+z$. Thus, for
any $A \subseteq M$,

$$
\begin{equation*}
\left(x^{\prime}+z\right) \wedge A=\left(y^{\prime}+z\right) \wedge A . \tag{3.5}
\end{equation*}
$$

Also, by Proposition 3.6(v), since $x \leq y$, we have

$$
\begin{equation*}
z^{\prime}+x \ll z+y . \tag{3.6}
\end{equation*}
$$

Then, for any $x, y, z \in M$, by (3.5) and (3.6), we have

$$
\begin{aligned}
x \odot z & =(x \rightsquigarrow z) \wedge(z \rightsquigarrow x) \\
& =\left(x^{\prime}+z\right) \wedge\left(z^{\prime}+x\right) \\
& \ll\left(x^{\prime}+z\right) \wedge\left(z^{\prime}+y\right) \\
& =\left(y^{\prime}+z\right) \wedge\left(z^{\prime}+y\right) \\
& =y \odot z .
\end{aligned}
$$

Since $z^{*} \leq y^{*}$, by Proposition 3.6(v), we have

$$
\begin{equation*}
x+z^{*} \ll x+y^{*} . \tag{3.7}
\end{equation*}
$$

Moreover, by (HSMV8) and Proposition 3.6(v), since $x \leq y \leq z$, we get that

$$
1 \in x+x^{*} \ll y+x^{*} \ll z+x^{*}
$$

So, for any $A \subseteq M$,

$$
\begin{equation*}
\left(z+x^{*}\right) \wedge A=\left(y+x^{*}\right) \wedge A \tag{3.8}
\end{equation*}
$$

Then, for any $x, y, z \in M$, by (3.7), (3.8) and Proposition 3.6(v), we have

$$
\begin{aligned}
x \sim z & =(x \rightarrow z) \wedge(z \rightarrow x) \\
& =\left(z+x^{*}\right) \wedge\left(x+z^{*}\right) \\
& \ll\left(z+x^{*}\right) \wedge\left(x+y^{*}\right) \\
& =\left(y+x^{*}\right) \wedge\left(x+y^{*}\right) \\
& =x \sim y .
\end{aligned}
$$

On the other hand, since $z^{\prime} \leq y^{\prime}$, by Proposition 3.6(v), we have

$$
\begin{equation*}
z^{\prime}+x \ll y^{\prime}+x . \tag{3.9}
\end{equation*}
$$

Moreover, by (HSMV8) and Proposition 3.6(v), we get that

$$
1 \in x^{\prime}+x \ll x^{\prime}+y \ll x^{\prime}+z .
$$

So, for any $A \subseteq M$,

$$
\begin{equation*}
\left(x^{\prime}+z\right) \wedge A=\left(x^{\prime}+y\right) \wedge A . \tag{3.10}
\end{equation*}
$$

Then, for any $x, y, z \in M$, by (3.9), (3.10) and Proposition 3.6(v), we have

$$
\begin{aligned}
x \odot z & =(x \rightsquigarrow z) \wedge(z \rightsquigarrow x) \\
& =\left(x^{\prime}+z\right) \wedge\left(z^{\prime}+x\right) \\
& \ll\left(x^{\prime}+z\right) \wedge\left(y^{\prime}+x\right) \\
& =\left(x^{\prime}+y\right) \wedge\left(y^{\prime}+x\right) \\
& =x \odot y .
\end{aligned}
$$

The above arguments show that (HF4) holds.
Since \mathcal{M} is a linearly ordered hyper pseudo MV-algebra, clearly (HF5) holds.
(HF6) By Proposition 3.6(vi), we have $x^{*} \ll z+x^{*}$. Then by condition (ii) i.e., $y \ll\left(z+y^{*}\right)^{\prime}$, we have

$$
\begin{equation*}
y+x^{*} \ll\left(z+y^{*}\right)^{\prime}+\left(z+x^{*}\right) \tag{3.11}
\end{equation*}
$$

Then, for any $x, y, z \in M$, the condition (ii) and (3.11) imply that

$$
\begin{equation*}
x \rightarrow y \ll(z \rightarrow x) \rightsquigarrow(z \rightarrow y) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
x \rightarrow y \ll(y \rightarrow z) \rightsquigarrow(x \rightarrow z) . \tag{3.13}
\end{equation*}
$$

Without loss of generality, suppose $x, y, z \in M$ such that $x \leq y \leq z$. Since \mathcal{M} is linearly ordered. Then by Proposition $3.6(\mathrm{vii}), 1 \in z+x^{*}=$ $x \rightarrow z$ and $1 \in z+y^{*}=y \rightarrow z$. Then, by (3.12), we have

$$
\begin{align*}
x \rightarrow y & \ll(z \rightarrow x) \rightsquigarrow(z \rightarrow y) \\
& \ll((z \rightarrow x) \wedge(x \rightarrow z)) \rightsquigarrow((z \rightarrow y) \wedge(y \rightarrow z)) \\
& =(x \sim z) \rightsquigarrow(y \sim z) \tag{3.14}
\end{align*}
$$

and similarly by (3.13), we get that

$$
\begin{equation*}
x \rightarrow y \ll(y \sim z) \rightsquigarrow(x \sim z) . \tag{3.15}
\end{equation*}
$$

Thus, by (3.20) and (3.21), for all $x, y, z \in M$, we obtain that $x \rightarrow y \ll((x \sim z) \rightsquigarrow(y \sim z)) \wedge((y \sim z) \rightsquigarrow(x \sim z))=(x \sim z) \odot(y \sim z)$.

This shows that

$$
\begin{equation*}
x \sim y \ll(x \sim z) \odot(y \sim z) . \tag{3.16}
\end{equation*}
$$

By Proposition 3.6(v)-(vi) and the condition (iii) i.e., $y \leq\left(y^{\prime}+z\right)^{*}$, we have

$$
\begin{equation*}
x^{\prime}+y \ll\left(x^{\prime}+z\right)+\left(y^{\prime}+z\right)^{*} . \tag{3.17}
\end{equation*}
$$

Then, for any $x, y, z \in M$, the condition (iii) and (3.17) imply that

$$
\begin{equation*}
x \rightsquigarrow y \ll(z \rightsquigarrow x) \rightarrow(z \rightsquigarrow y) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
x \rightsquigarrow y \ll(y \rightsquigarrow z) \rightarrow(x \rightsquigarrow z) . \tag{3.19}
\end{equation*}
$$

Again, suppose that $x, y, z \in M$ such that $x \leq y \leq z$. Then by Proposition 3.6(vii), $1 \in z+x^{*}$ and $1 \in z+y^{*}$. Then, by (HSMV10), $1 \in x^{\prime}+z=x \rightsquigarrow z$ and $1 \in y^{\prime}+z=y \rightsquigarrow z$ (3.12). Then by (3.18), we have

$$
\begin{align*}
x \rightsquigarrow y & \ll(z \rightsquigarrow x) \rightarrow(z \rightsquigarrow y) \\
& \ll((z \rightsquigarrow x) \wedge(x \rightsquigarrow z)) \rightarrow((z \rightsquigarrow y) \wedge(y \rightsquigarrow z)) \\
& =(x \odot z) \rightarrow(y \odot z) \tag{3.20}
\end{align*}
$$

and similarly by (3.19), we get that

$$
\begin{equation*}
x \rightsquigarrow y \ll(y \odot z) \rightarrow(x \odot z) . \tag{3.21}
\end{equation*}
$$

Thus, by (3.20) and (3.21), for all $x, y, z \in H$, we obtain that $x \rightsquigarrow y \ll((x \odot z) \rightarrow(y \odot z)) \wedge((y \odot z) \rightarrow(x \odot z))=(x \odot z) \sim(y \odot z)$.

Hence,

$$
\begin{equation*}
x \odot y \ll(x \odot z) \sim(y \odot z) . \tag{3.22}
\end{equation*}
$$

Then (3.16) and (3.22) imply (HF6).
(HF7) By the condition (iv) i.e., $y+x^{*} \ll\left(z+x^{*}\right)+\left(z+y^{*}\right)^{*}$, $x^{*} \ll\left(x+z^{*}\right)^{*}$ and by Proposition 3.6(v)-(vi), we have

$$
\begin{equation*}
x \rightarrow y \ll(y \rightarrow z) \rightarrow(x \rightarrow z) \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
x \rightarrow y \ll(z \rightarrow x) \rightarrow(z \rightarrow y) . \tag{3.24}
\end{equation*}
$$

By a similar argument that we have discussed for the axiom (HF6), by (3.23) and (3.24), one can see that

$$
\begin{equation*}
x \sim y \ll(x \sim z) \sim(y \sim z) . \tag{3.25}
\end{equation*}
$$

By the condition (v) and by Proposition 3.6(v)-(vi), we have

$$
\begin{equation*}
x \rightsquigarrow y \ll(y \rightsquigarrow z) \rightsquigarrow(x \rightsquigarrow z) \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
x \rightsquigarrow y \ll(z \rightsquigarrow x) \rightsquigarrow(z \rightsquigarrow y) . \tag{3.27}
\end{equation*}
$$

So, similarly, by applying (3.26) and (3.27), we have

$$
\begin{equation*}
x \odot y \ll(x \odot z) \odot(y \odot z) . \tag{3.28}
\end{equation*}
$$

Hence, (3.24) and (3.28) imply (FH7). Thus, $\mathcal{X}=(M ; \sim, \odot, \wedge, 1)$ is a hyper JK-algebra.

Example 3.8. [2] Let $M=\{0, a, b, c, 1\}$ be a set such that $0 \leq a \leq b \leq$ $c \leq 1$ and define the operations \sim and © on M as follow:

+	0	a	b	c	1	
0	$\{0\}$	$\{0, a\}$	$\{0, b\}$	$\{0, c\}$	M	
a	$\{0, a\}$	$\{0, a\}$	$\{a, b\}$	M	M	
b	$\{0, b\}$	M	$\{0, b\}$	$\{b, c\}$	M	
c	$\{0, c\}$	$\{a, c\}$	M	$\{0, c\}$	M	
1	M	M	M	M	M	
		\prime	0	a	b	c

Then $\mathcal{M}=\left(M ;+,,^{\prime}, 0,1\right)$ is a hyper pseudo MV-algebra that satisfies the conditions of Theorem 3.7. Thus, $\mathcal{X}=(M ; \sim, \odot, \wedge, 1)$ is a hyper JK-algebra.

Question 3.9. How one can describe the converse of Theorem 3.7? i.e., if we have a hyper JK-algebra, under which condition it becomes a hyper pseudo MV-algebra?

4. Conclusions and Future Works

In this work we introduced a new version of hyperstructures that we called it hyper JK-algebra and we have given some properties of these new algebras. Moreover, we show that under some conditions any hyper JK-algebra is a pseudo BCK-algebra and by adding some conditions on a hyper pseudo MV-algebra we have obtained a hyper JKalgebra. The states and homomorphisms on hyper JK-algebras, some results on quotient structure and filter theory and positive implicative hyper equality algebras could be topics for our next task.

References

[1] R. A. Borzooei, A. Rezazadeh and R. Ameri, On Hyper Pseudo BCK-algebras, Iran. J. Math. Sci. Inf., 9(1) (2014), 13-29.
[2] R. A. Borzooei and O. Zahiri, On hyper pseuo MV-algebras, Ital. J. Pure Appl. Math. -N., 33 (2014), 201-224.
[3] X. Y. Cheng, X. L. Xin and Y. B. Jun, Hyper equality algebras, Quant. Logic Soft Comput., 2016, Adv. Intel. Sys. Comput., 510 (2016), 415-428.
[4] L. C. Ciungu, Internal states on equality algebras, Soft Computing, 19 (2015), 939-953.
[5] A. Dvurečenskij and O. Zahiri, Pseudo equality algebras: revision, Soft Comput., 20(6)(2016), 2091-2101.
[6] M. A. Hashemi and R. A. Borzooei, Tense like equality algebras, Categ. General Algeb. Struct. Appl., 13(1) (2020), 143-166.
[7] M. A. Hashemi and R. A. Borzooei, Results on hyper equality algebras, J. Math. Extension, 14(3) (2020), 169-193.
[8] S. Jenei, Equality algebras, Studia Log., 100 (2012), 1201-1209.
[9] S. Jenei, Equality algebras, Proceedings of the CINTI2010 Conference (11th IEEE International Symposium on Computational Intelligence and Informatics), Budapest, 2010.
[10] S. Jenei and L. Kóródi, Pseudo equality algebras, Arc. Math. Log., 52 (2013), 469-481.
[11] F. Zebardast, R. A. Borzooei and M. Aaly Kologani, Results on equality algebras, Info. Sci., 381 (2017), 270-282.
[12] M. Zarean, R. A. Borzooei and O. Zahiri, On state equality algebras, Quasigroups Relat. Syst., 25 (2017), 307-326.

Mohammad Ali Hashemi
Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran
Email: m_a_hashemi@pnu.ac.ir \& ali1978hashemi@gmail.com

