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SOME PROPERTIES OF FUZZY CONE SYMMETRIC

SPACES

TARKAN ÖNER

Abstract. In this work, we give a fuzzy analogy of cone symmet-
ric spaces that we call fuzzy cone symmetric spaces. Since these
structures are obtained by omitting the triangle inequality in fuzzy
cone metric spaces, there are topological degenerations. After men-
tioning these degenerations, we investigate the relationship between
cone (sym)metric and fuzzy cone (sym)metric spaces.
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1. Introduction

The fuzzy analogy of metric spaces has been introduced from a differ-
ent point of view ([3, 15, 2, 6, 7]). Similarly, the fuzzy analogy of cone
metric spaces defined by Bag [1] and Oner et al.[8] differently with the
name of fuzzy cone metric spaces. For these structures, Bag followed
the Kaleva et al. [6] type fuzzy metric spaces whereas Oner et al. used
George et al. [3] type. In this work, we define fuzzy cone symmetric
spaces by omitting triangle inequality in fuzzy cone metric spaces in
sense of [8]. Of course, this modification causes some topological degen-
erations. For example, M (x1, x2, ) : int (P ) → [0, 1] may not be non-
decreasing while it is non-decreasing in fuzzy cone metric spaces. As a
result, open balls do not necessarily form a base in the induced topology
(see Remark 3.11). We encounter second degeneration in the notion of
a convergent sequence. Convergent sequences are generally defined by
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distance function in distance spaces. But in the symmetric setting, this
definition does not coincide with the definition of convergent sequence
in topology. Therefore, we will call convergence (and related definitions)
in this structure as M-convergence to distinguish it with convergence in
topology. M-convergence implies convergence. We also supply an ex-
ample to show that an M-convergent sequence may have more than one
limit (see Example 3.6) while it is impossible in a fuzzy cone metric.
However, we can still characterize the M-convergence in these spaces
with the convergence in [0, 1] (see Theorem 3.5). One of the purposes
of this study is to give the connection between cone (sym)metric and
fuzzy cone (sym)metric spaces. A similar idea was given in [3] for met-
ric and fuzzy metric spaces. When a cone symmetric space is given, we
observed that a fuzzy cone symmetric space can be constructed which
we call standard fuzzy cone symmetric spaces (see Remark 3.7). Later
we characterize the convergence in normal cone metric spaces with the
convergence in induced standard fuzzy cone symmetric spaces (see The-
orem 3.9). We also observed that for a normal cone metric space with
K = 1, the induced standard fuzzy cone symmetric spaces is a fuzzy
cone metric space (see Remark 3.8). Moreover, we prove that these two
spaces induce the same topology (see Theorem 3.12) and one of them is
complete if and only if the other is complete (see Corollary 3.13). After
defining the contractions in these structures, we give a criterion for a
contraction in a normal cone metric space with K to be a contraction in
the standard fuzzy cone symmetric space. In [5], a contractive mapping
was given to show that the set of contractions defined on cone metric and
metric spaces are not the same. Similarly, this map is used to show that
the set of contractions defined on fuzzy cone metric and fuzzy metric
spaces are not the same (see Remark 3.16).

2. Preliminaries

Suppose that X 6= ∅, E is a real Banach space and θ ∈ E is the
zero. Huang et al. [5] defined cones in E as follows: Let P be a subset
of E such that nonempty, closed and P 6= {θ}. If a1t1 + a2t2 ∈ P and
t1,−t1 ∈ P implies t1 = θ for every a1, a2 ∈ R, a1, a2 ≥ 0 and every
t1, t2 ∈ P , then we say that P is a cone. Moreover, by using P , they
defined a partial ordering [5]: t1 � t2 ⇔ t2 − t1 ∈ P .

Also, we write t1 � t2 if t2 − t1 ∈ int (P ) and t1 ≺ t2 if t1 6= t2 and
t1 � t2. If there is a K > 0 satisfying θ � t1 � t2 → ‖t1‖ ≤ K‖t2‖
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for any t1, t2 ∈ E, then we say that P is normal. We call the smallest
number satisfying this inequality as the normal constant [5].

In [13], it was shown that for any s � θ, s ∈ E, there is ε > 0
satisfying x ∈ E, ‖x‖ < ε implies x� s and for every θ � t1 and θ � t2,
there is an element θ � t3 such that t3 � t1, t3 � t2.

We assume that int (P ) 6= ∅ for all cones in this paper.
Let d : X ×X → E be a map. Consider following conditions:

(C1) d (x1, x2) = θ ⇐⇒ x1 = x2 and θ � d (x1, x2),
(C2) d (x1, x2) = d (x2, x1),
(C3) d (x1, x3) � d (x1, x2) + d (x2, x3)
for any x1, x2, x3 ∈ X.

Definition 2.1 ([5]). If d satisfies the conditions (C1),(C2) and (C3)
then we say that d is a cone metric on X and (X, d) is a cone metric
space.

An open ball and the topology on this spaces are defined as follows
[13]: Let t � θ and x1 ∈ X. B (x1, t) = {x2 ∈ X : d (x1, x2) � t}, τd =
{U ⊂ X : ∀x1 ∈ U,∃B (x1, t) 3 B (x1, t) ⊂ U}

Definition 2.2 ([5]). Let (sn) be a sequence in a cone metric space
(X, d) and s ∈ X. We say that
i) (sn) converge to s if for all t ∈ int (P ) there is n0 ∈ N such that
d (sn, s) � t whenever n ≥ n0 and it is denoted by lim

n→∞
sn = s or

sn → s as n→∞.
ii) (sn) is Cauchy sequence if for all t ∈ int (P ) there is n0 ∈ N such that
d (sn, sm)� t whenever n,m ≥ n0.
iii) (X, d) is complete if all Cauchy sequence is convergent.

In [10], Radenovic and Kadelburg gave the following definition by
omitting the condition (C3) in the Definition 2.1 and investigated the
relations between them.

Definition 2.3 ([10]). If d satisfies the conditions (C1) and (C2) then
we say that d is a cone symmetric on X and (X, d) is a cone symmetric
space.

3. Fuzzy Cone Symmetric Spaces

Let P be a cone of E, M be a fuzzy set on X2× int (P ) where X 6= ∅
and ∗ be a continuous t-norm. Consider following conditions:
(FC1) M (x1, x2, t) > 0,
(FC2) M (x1, x2, t) = 1 ⇐⇒ x1 = x2,
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(FC3) M (x1, x2, t) = M (x2, x1, t),
(FC4) M (x1, x3, t1 + t2) ≥M (x1, x2, t1) ∗M (x2, x3, t2),
(FC5) M (x1, x2, ) : int (P )→ [0, 1] is continuous,
for any t1, t2, t ∈ int (P ) and x1, x2, x3 ∈ X.

Definition 3.1 ([8]). If M satisfies the conditions (FC1),(FC2),(FC3),
(FC4) and (FC5), then we say that M is fuzzy cone metric on X and
(X,M, ∗) is fuzzy cone metric space.

Now, we introduce the concept of fuzzy cone symmetric spaces by
omitting the condition (FC4) in the Definition 3.1.

Definition 3.2. If M satisfies the conditions (FC1),(FC2),(FC3) and
(FC5), then we say that M is fuzzy cone symmetric on X and (X,M, ∗)
is fuzzy cone symmetric space.

Example 3.3. Let E = R, P = [0,∞) , X = (0,∞) , ∗ = min and M :

X × X × int (P ) → [0, 1] defined as M(x1, x2, t) = min{x1,x2}+t
max{x1,x2}+t . Then

M is a fuzzy cone symmetric on X. On the other hand, since we have

M(x1, x2, t1) ∗M(x2, x3, t2) = min{min{1,2}+2
max{1,2}+2 ,

min{2,3}+1
max{2,3}+1}

= min{34 ,
3
4} = 3

4

> 4
6 = min{1,3}+3

max{1,3}+3 = M(x1, x3, t1 + t2).

for x1 = 1, x2 = 2, x3 = 3, t1 = 2, t2 = 1, M is not a fuzzy cone metric
on X.

It is clear that the set of fuzzy cone symmetric is larger then set of
fuzzy cone metric spaces.

Now let’s define the notion of convergence which does not coincide
with the definition of convergent sequence in topology.

Definition 3.4. Let (sn) be a sequence in a fuzzy cone symmetric space
(X,M, ∗) and s ∈ X. Then we say that
i) (sn) M-converge to s if for all t ∈ int (P ) and all r ∈ (0, 1) there is
n0 ∈ N such that 1− r < M (sn, s, t) whenever n ≥ n0 and it is denoted
by sn →

M
s as n→∞.

ii) (sn) is M-Cauchy sequence if for t ∈ int (P ) and all r ∈ (0, 1) there
is n0 ∈ N such that 1− r < M (sn, sm, t) whenever n,m ≥ n0.
iii) (X,M, ∗) is M-complete if all M-Cauchy sequence is M-convergent.

Theorem 3.5. Let (sn) be a sequence in a fuzzy cone symmetric space
(X,M, ∗) and s ∈ X.



Some properties of fuzzy cone symmetric spaces 259

1-) sn →
M
s ⇐⇒ M (sn, s, t)→ 1 as n→∞, for any t� θ.

2-) (sn) is M-Cauchy ⇐⇒ M (sn, sm, t) → 1 as n,m → ∞, for any
t� θ.

Proof. 1-) (⇒:) Let sn →
M

s. For any t � θ and r ∈ (0, 1), there is

n0 ∈ N satisfying 1 − r < M(sn, s, t) whenever n ≥ n0 which implies
M(sn, s, t) → 1 as n → ∞. (⇐:) Let M(sn, s, t) → 1 as n → ∞. For
any t � θ and r ∈ (0, 1), there is n0 ∈ N satisfying 1 −M(sn, s, t) < r
whenever n ≥ n0. Hence sn →

M
s as n→∞.

2-) Similar. �

Following example shows that an M-convergent sequence may have
more than one limit.

Example 3.6. Let E = R, P = [0,∞) , ∗ = ·, X = [0, 1] ∪ {2} and M :
X ×X × int (P )→ [0, 1] defined as

M(x1, x2, t) =


t

t+|x1−x2| if x1, x2 ∈ [0, 1]
t

t+x1
if x1 ∈ (0, 1] , x2 = 2

t
t+x2

if x2 ∈ (0, 1] , x1 = 2
t

t+1 if x1 = 0, x2 = 2 or x2 = 0, x1 = 2.

Then (X,M, ∗) is a fuzzy cone symmetric spaces. Since M(1/n, 2, t)→ 1
and M(1/n, 0, t)→ 1 as n→∞ for each t, (1/n) is M-convergent and 0
and 2 are distinct limit points.

In [3], for a given metric space (X, d), authors constructed the stan-
dard fuzzy metric space and investigate the connection between metric
and fuzzy metric spaces. Similarly, in the following, we give the connec-
tion between cone (sym)metric and fuzzy cone (sym)metric spaces.

Remark 3.7. A cone symmetric space (X, d) is given. If a1 ∗ a2 = a1 · a2
and Md (x1, x2, t) = ‖t‖

‖t‖+‖d(x1,y2)‖ , then Md is a fuzzy cone symmetric on

X and (X,Md, ·) is said to be the standard fuzzy cone symmetric space
induced by d.
1) Since for t� θ and d (x, y)� 0, we have ‖t‖ > 0 and ‖d (x1, x2) ‖ ≥ 0.

Then it is obvious that Md (x1, x2, t) = ‖t‖
‖t‖+‖d(x1,x2)‖ > 0.

2) For any t� θ and x1, x2 ∈ X, Md (x1, x2, t) = 1 iff ‖t‖
‖t‖+‖d(x1,x2)‖ = 1

iff ‖d (x1, x2) ‖ = 0 iff d (x1, x2) = 0 iff x1 = x2.
3) Since d (x1, x2) = d (x2, x1), we can write ‖d (x1, x2) ‖ = ‖d (x2, x1) ‖
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and Md (x1, x2, t) = ‖t‖
‖t‖+‖d(x1,x2)‖ = ‖t‖

‖t‖+‖d(x2,x1)‖ = Md (x2, x1, t)

4) For any x1, x2 ∈ X, we can think Md (x1, x2, ) as Md (x1, x2, ) =
‖.‖int(P ) ◦ f where ‖.‖ : E → [0,∞), t 7→ ‖t‖ and f : [0,∞) → [0, 1],
f (r) = r

r+‖d(x1,x2)‖ . Since ‖.‖ and f are continuous, Md (x1, x2, ) is

continuous.

Remark 3.8. If we are given a cone metric spaces with normal constant
K, for x1, x2, x3 ∈ X and t� θ, s� θ, we have d (x1, x3) � d (x1, x2) +
d (x2, x3) and by normality ‖d (x1, x3) ‖ ≤ K‖d (x1, x2) + d (x2, x3) ‖ ≤
K‖d (x1, x2) ‖+K‖d (x2, x3) ‖. Similarly, t � t+s implies ‖t‖ ≤ K‖t+s‖
and K‖t+s‖

‖t‖ ≥ 1, s � t + s implies ‖s‖ ≤ K‖t + s‖ and K‖t+s‖
‖s‖ ≥ 1. So

we can write;

‖d (x1, x3) ‖ ≤ K2 ‖t+s‖
‖t‖ ‖d (x1, x2) ‖+K2 ‖t+s‖

‖s‖ ‖d (x2, x3) ‖

1 + ‖d(x1,x3)‖
K2‖t+s‖ ≤ 1 + ‖s‖‖d(x1,x2)‖+‖t‖‖d(x2,x3)‖

‖s‖‖t‖
K2‖t+s‖+‖d(x1,x3)‖

K2‖t+s‖ ≤ ‖s‖‖t‖+‖s‖‖d(x1,x2)‖+‖t‖‖d(x2,x3)‖
‖s‖‖t‖

Since ‖d (x1, x2) ‖, ‖d (x2, x3) ‖ ≥ 0,

K2‖t+s‖+‖d(x1,x3)‖
K2‖t+s‖ ≤ ‖s‖‖t‖+‖s‖‖d(x1,x2)‖+‖t‖‖d(x2,x3)‖

‖s‖‖t‖
K2‖t+s‖+‖d(x1,x3)‖

K2‖t+s‖ ≤ ‖s‖‖t‖+‖s‖‖d(x1,x2)‖+‖t‖‖d(x2,x3)‖+‖d(x1,x2)‖‖d(x2,x3)‖
‖s‖‖t‖

‖s‖‖t‖
‖s‖‖t‖+‖t‖‖d(x1,x2)‖+‖t‖‖d(x2,x3)‖+‖d(x1,x2)‖‖d(x2,x3)‖ ≤

K2‖t+s‖
K2‖t+s‖+‖d(x1,x3)‖(

‖t‖
‖t‖+‖d(x1,x2)‖

)(
‖s‖

‖s‖+‖d(x2,x3)‖

)
≤ K2‖t+s‖

K2‖t+s‖+‖d(x1,x3)‖

≤ K2‖t+s‖
‖t+s‖+‖d(x1,x3)‖

Md (x1, x2, t) ·Md (x2, x3, s) ≤ K2Md (x1, x2, t+ s)

Hence, the induced standard fuzzy cone symmetric space (X,Md, ·) is
”almost ” a fuzzy cone metric space. In particular, if K = 1, the induced
standard fuzzy cone symmetric space (X,Md, ·) is a fuzzy cone metric
space.

Following characterizations can be given for convergent and Cauchy
sequences.

Theorem 3.9. Let (sn) be a sequence in a normal cone metric space
(X, d) with K, s ∈ X and (X,Md, ·) be the standard fuzzy cone symmet-
ric space.
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1-) sn → s in (X, d) ⇐⇒ sn →
M
s in (X,Md, ·).

2-) (sn) is Cauchy in (X, d) ⇐⇒ (sn) is M-Cauchy in (X,Md, ·)

Proof. 1-) In Lemma 1 of [5], it was proven that (sn) → s in (X, d) iff
‖d (sn, s) ‖ → 0 as n → ∞. By Theorem 3.5, sn →

M
s in (X,Md, ·) iff

for any t � θ, Md (sn, s, t) → 1 as n → ∞. Then ‖t‖
‖t‖+‖d(sn,s)‖ → 1 as

n → ∞ for any t � θ iff ‖d (sn, s) ‖ → 0 as n → ∞. Therefore sn → s
in (X, d).
2-) Similar. �

Definition 3.10. An open ball with center x1, radius r ∈ (0, 1) and
t� θ in a fuzzy cone symmetric space (X,M, ∗) is given by B (x1, r, t) =
{x2 ∈ X : 1− r < M (x1, x2, t)}.

Remark 3.11. M (x1, x2, ) : int (P ) → [0, 1] is non-decreasing in fuzzy
cone metric spaces [8]. But this is not valid for fuzzy cone symmetric
spaces since the triangle angle inequality is omitted. As we know from
symmetric structures, open balls do not necessarily form a base in fuzzy
cone symmetric spaces while they are a base in fuzzy cone metric spaces
(Theorem 2.6 in [8]). Even if they satisfies the following condition for a
given topology on this space:

U ⊂ X open iff ∀x, there is t� θ and r ∈ (0, 1) with B (x, r, t) ⊂ U

, an open ball is not necessarily open. Moreover, this topology may not
be Hausdorff and first countable. On the other hand, when a normal
cone metric space (X, d) with K = 1 is given, since (X,Md, ∗) is a fuzzy
cone metric space, open balls form a base for the topology

τMd
= {U ⊂ X : ∀x, there is t� θ and r ∈ (0, 1) with B (x, r, t) ⊂ U}

on X and clearly, an open ball is open. In the following, we show that
τMd

is the same with τd induced by corresponding cone metric.

Theorem 3.12. If (X, d) is a normal cone metric space with K = 1
and (X,Md, ·) is the standard fuzzy cone metric space induced by d, then
τMd

= τd.

Proof. Let B (x1, c) = {x2 ∈ X : d (x1, x2) � c} and B (x1, r, t) =

{x2 ∈ X : Md (x1, x2, t) > 1− r} = {x2 ∈ X : ‖t‖
‖t‖+‖d(x1,x2)‖ > 1− r} be

open balls with the center x. For an arbitrary open ball B (x1, r, t), if we

choose c =
r

1− r
t, then for x2 ∈ B (x1, c), we have d (x1, x2)� c = r

1−r t.
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Therefore we have ‖d (x1, x2) ‖ < r
(1−r)‖t‖ ⇒

‖t‖
‖t‖+‖d(x1,x2)‖ > 1 − r ⇒

Md (x1, x2, t) > 1− r. Hence x2 ∈ B (x1, r, t) and τMd
⊂ τd. Conversely,

let B (x1, c) be an arbitrary open ball. Then there exist ε > 0 such that
z � c whenever ‖z‖ < ε. If we choose r ∈ (0, 1) and t � θ such that

ε >
r‖t‖
1− r

, for x2 ∈ B (x1, r, t), we have M (x1, x2, t) = ‖t‖
‖t‖+‖d(x1,x2)‖ >

1 − r. Therefore we have ‖d (x1, x2) ‖ < r‖t‖
(1−r) < ε ⇒ d (x1, x2) � c

means x2 ∈ B (x1, c) and τd ⊂ τMd
. �

Corollary 3.13. If (X, d) is a normal cone metric space with K = 1
and (X,Md, ·) is the standard fuzzy cone metric space induced by d, then
(X, d) is complete if and only if (X,Md, ·) is complete.

Proof. From Theorem 3.9 and Remark 3.11. �

Definition 3.14. Let f : X → X be a mapping on a fuzzy cone symmet-
ric space (X,M, ∗). If there is a k ∈ (0, 1) satisfying 1

M(f(x1),f(x2),s)
−1 ≤

k
(

1
M(x1,x2,s)

− 1
)

for any s � θ and x1, x2 ∈ X, then f is said to be

fuzzy cone contractive and k is said to be the contractive constant of f.

Now we give a criterion for a contraction in a normal cone metric
space with K to be a contraction in the standard fuzzy cone symmetric
space.

Proposition 3.15. If (X, d) is a normal cone metric space with K and
T : X → X is a contraction on (X, d) satisfying d (T (x1) , T (x2)) �
kd (x1, x2) for any x1, x2 ∈ X where 0 < k < 1 and kK < 1, then T is
fuzzy cone contractive on (X,Md, ·).

Proof. By the normality, d (T (x1) , T (x2)) � kd (x1, x2) implies

‖d (T (x1) , T (x2)) ‖ ≤ kK‖d (x1, x2) ‖. Then we have ‖d(T (x1),T (x2))‖
‖s‖ ≤

kK ‖d(x1,x2)‖
‖s‖

⇒ ‖s‖+‖d(T (x1),T (x2))‖
‖s‖ − 1 ≤ kK

(
‖s‖+‖d(x1,x2)‖

‖s‖ − 1
)

⇒ 1
‖s‖

‖s‖+‖d(T (x1),T (x2))‖
− 1 ≤ kK

(
1
‖s‖

‖s‖+‖d(x1,x2)‖
− 1

)
⇒ 1

Md(T (x1),T (x2),s)
− 1 ≤ kK

(
1

Md(x1,x2,s)
− 1
)
. Hence T is fuzzy cone

contractive on (X,Md, ·). �
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Finally, a contractive mapping is given as an example to show that
set of contractions defined on fuzzy cone metric and fuzzy metric spaces
are not the same.

Remark 3.16. Let E = R2 and P = {(k1, k2) : k1,k2 ≥ 0} ⊂ E. Here
P is a normal cone with K = 1. On the other hand let X = {(x1, 0) ∈
R2 : x1 ∈ [0, 1]} ∪ {(0, y1) ∈ R2 : y1 ∈ [0, 1]} and d : X ×X → E be a
mapping given by

d ((x1, 0) , (x2, 0)) =
(
4
3 |x1 − x2|, |x1 − x2|

)
,

d ((0, y1) , (0, y2)) =
(
|y1 − y2|, 23 |y1 − y2|

)
,

d ((x1, 0) , (0, y1)) = d ((0, y1) , (x1, 0)) =
(
4
3x1 + y1, x1 + 2

3y1
)
.

In [5], it is noted that (X, d) is a complete cone metric space and more-
over, the mapping T defined onX given by T ((a, 0)) = (0, a) , T ((0, a)) =(
1
2a, 0

)
is a contraction on (X, d) satisfying the contractive condition

d (T ((x1, y1)) , T ((x2, y2))) � kd ((x1, y1) , (x2, y2)) for any (x1, y1) ,
(x2, y2) ∈ X with constant k = 3

4 which (0, 0) ∈ X is the unique fixed
point however in Euclidean metric on X, T is not a contraction. On the
other hand, by Remark 3.8, the standard fuzzy cone symmetric space
(X,Md, ·) induced by d is fuzzy cone metric space. Hence by Proposition
3.15, T is also a fuzzy cone contractive on (X,Md, ·) with contractive
constant 3

4 which has (0, 0) ∈ X as the unique fixed point. But if we
consider the Euclidean metric on X and (X,M, ·) is considered as the
standard fuzzy metric space induced by this metric, by Proposition 3.7
in [4], T is not a contraction on (X,M, ·)
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