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USING MODIFIED TWO-DIMENSIONAL

BLOCK-PULSE FUNCTIONS FOR THE NUMERICAL

SOLUTION OF NONLINEAR TWO-DIMENSIONAL

VOLTERRA INTEGRAL EQUATIONS

FARSHID MIRZAEE∗, ELHAM HADADIYAN

Abstract. In this paper, the Modified two-dimensional block-pulse
functions (M2D-BFs) are used as a new set of basis functions for
expanding two-dimensional functions. The main properties of M2D-
BFs are determined and an operational matrix for integration ob-
tained. M2D-BFs are used to solve nonlinear two-dimensional Volterra
integral equations of the first kind. Some theorems are included to
show convergence and advantage of the method. Finally, numerical
examples is presented to show the efficiency and accuracy of the
method.
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1. Introduction

Many phenomena in physics and engineering fields give rise to a non-
linear two-dimensional Volterra integral equation:

(1.1)

∫ x

0

∫ y

0
R(x, y, s, t, u(s, t))dtds = f(x, y); (x, y) ∈ D,
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where u(s, t) is an unknown scalar valued function defined on district
D = [0, T1)×[0, T2). The function R(x, y, s, t, u) is given function defined
on

(1.2) W = {(x, y, s, t, u) : 0 ≤ s ≤ x ≤ T1, 0 ≤ t ≤ y ≤ T2}.

In this paper, we put

(1.3) R(x, y, s, t, u) = k(x, y, s, t)[u(s, t)]p,

where p is positive integer [7, 11].

Since any finite interval [a,b] can be transformed to [0, 1] by linear
maps, without any loss of generality, we consider [0, 1) in replace of
[0, T1) or [0, T2). While several numerical methods for approximating
the solution of one-dimensional Volterra integral equations are known,
for two-dimensional only a few are discussed in the literature. The nu-
merical solution of equations of the type of (1.1) seems to have first been
considered by Bel’ tyukov and Kuznechikhina [2] where they proposed
an explicit Rung-Kutta type method of order 3 without any convergence
analysis. A bivariate cubic spline functions method of full continuity was
obtained by Singh [15]. Brunner and Kauthen [3] introduced collocation
and iterated collocation method for two-dimensional linear Volterra inte-
gral equations. An asymptotic error expansion of the iterated collocation
solution for two-dimensional linear and nonlinear Volterra integral equa-
tions was obtained by Han and Zhang [6] and Guoqiang [4], respectively.
Hadizadeh and Moatamedi [5] have investigated a differential transfor-
mation approach for nonlinear two-dimensional Volterra integral equa-
tions. Maleknejad et al. [9] used two-dimensional block-pulse functions
to nonlinear integral equations. Babolian et al.[1] used two-dimensional
triangular functions to nonlinear two-dimensional Volterra-Fredholm in-
tegral equations. Mirzaee and Rafei [11] used the block by block method
for the numerical solution of the nonlinear two-dimensional Volterra in-
tegral equations.

Mirzaee and Hadadiyan [12] use the modified two-dimensional block-
pulse functions method for the solutions mixed nonlinear Volterra- Fred-
holm type integral equations. In the present paper, we apply modifica-
tion of block-pulse functions [12], to solve the nonlinear two-dimensional
Volterra integral Eq. (1.1) with Eq. (1.2), and this is organized as fol-
lows: In Section 2, we will introduce M2D-BFs and its properties. In
Section 3, theorems are proved for convergence analysis. In Section 4,
we will apply these sets of M2D-BFs for approximating the solution of
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nonlinear Volterra integral equations. Numerical results are reported in
Section 5. Finally , Section 6 concludes the paper .

2. M2D-BFs and their properties

Definition. An (m+1)2-set of M2D-BFs consists of (m+1)2 functions
which are defined over district D as follows:

φi1,i2(x, y) =


1, (x, y) ∈ Di1,i2 , i1, i2 = 0(1)m

0, otherwise

,(2.1)

where

(2.2) Di1,i2 = {(x, y) : x ∈ Ii1,ε, y ∈ Ii2,ε},

and

Iα,ε =


[0, h− ε), α = 0

[αh− ε, (α+ 1)h− ε), α = 1(1)m

[1− ε, 1), α = m

,(2.3)

where m is arbitrary positive integer, and h = 1
m .

From Eq. (2.1), it is clearly that the M2D-BFs can be expressed by
the two modified one-dimensional block-pulse functions (M1D-BFs):

(2.4) φi1,i2(x, y) = φi1(x)φi2(y),

where φi1(x) and φi2(y) are the M1D-BFs related to variables x and y,
respectively [9].

The M2D-BFs are disjointed with each other:

φi1,i2(x, y)φj1,j2(x, y) =

{
φi1,i2(x, y), i1 = j1, i2 = j2

0, otherwise
,(2.5)

and are orthogonal with each other:

(2.6)∫ 1

0

∫ 1

0
φi1,i2(x, y)φj1,j2(x, y)dydx =

{
4(Ii1,ε)4(Ii2,ε), i1 = j1, i2 = j2

0, otherwise
,

where (x, y) ∈ D, i1, i2, j1, j2 = 0(1)m and 4(Ii1,ε) and 4(Ii2,ε) are
length of intervals Ii1,ε and Ii2,ε, respectively.



Using modified two-dimensional block-pulse functions 71

2.1. Vector forms. We can also define Φm,ε(x, y), the M2D-BFs
vector, as follows:
(2.7)

Φm,ε(x, y) = [φ0,0(x, y), . . . , φ0,m(x, y), . . . , φm,0(x, y), . . . , φm,m(x, y)]T ,

were (x, y) ∈ D and

(2.8) Φm,ε(x, y) = Φm,ε(x)⊗ Φm,ε(y),

and

(2.9) Φm,ε(x) = [φ0(x), φ1(x), . . . , φm(x)]T .

Also we have:∫ x

0

∫ y

0
Φm,ε(s, t)dtds =

∫ x

0

∫ y

0
Φm,ε(s)⊗ Φm,ε(t)dtds =∫ x

0
Φm,ε(s)ds⊗

∫ y

0
Φm,ε(t)dt = pm,ε ⊗ pm,ε = Pm,ε,(2.10)

where pm,ε is operational matrix of 1D-BFs defined over [0, 1), see [9].
From Eqs. (2.5) and (2.7) we have:

(2.11)

Φm,ε(x, y)ΦT
m,ε(x, y) =


φ0,0(x, y) 0 . . . 0

0 φ0,1(x, y) . . . 0
...

...
. . .

...
0 0 . . . φm,m(x, y)

 .

Let X be a (m+ 1)2-vector by using Eq. (2.7) we will have:

(2.12) Φm,ε(x, y)ΦT
m,ε(x, y)X = X̃Φm,ε(x, y),

where X̃ = diag(X) is a (m+1)2×(m+1)2 diagonal matrix. The disjoint
property of Φm,ε(x, y) also implies that for every (m + 1)2 × (m + 1)2-
matrix A, we have:

(2.13) ΦT
m,ε(x, y)AΦm,ε(x, y) = ÂTΦm,ε(x, y),

where ÂT is an (m + 1)2-vector with elements equal to the diagonal
entries of matrix A.
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2.2. M2D-BFs expansions. An arbitrary function f(x, y) defined
over district L2(D) can be expanded by the M2D-BFs as

f(x, y) ' fm,ε(x, y) =
m∑
i1=0

m∑
i2=0

fi1,i2φi1,i2(x, y)

= F Tm,εΦm,ε(x, y) = ΦT
m,ε(x, y)Fm,ε,(2.14)

where

(2.15) Fm,ε = [f0,0, . . . , f0,m, . . . , fm,0, . . . , fm,m]T ,

and fi1,i2 , are obtained as:

(2.16) fi1,i2 =
1

4(Ii1,ε)4(Ii2,ε)

∫
Ii1,ε

∫
Ii2,ε

f(x, y)dydx.

Similarly an arbitrary function of four variables, k(x, y, s, t), on dis-
trict L2(D × D) may be approximated with respect to M2D-BFs such
as:

(2.17) k(x, y, s, t) ' ΦT
m,ε(x, y)Km,εΦm,ε(s, t),

where Φm,ε(x, y) and Φm,ε(s, t) are M2D-BFs vector of dimension (m+
1)2, and Km,ε is the (m+ 1)2 × (m+ 1)2 M2D-BFs coefficients matrix.

3. Convergence analysis

In this sections, we show that the M2D-BFs method in the previous
sections, is convergent and its order of convergence is O( 1

km). For our
purposes we will need the following theorems.

Theorem 1. Let

(3.1) fm,ε(x, y) =

m∑
i1=0

m∑
i2=0

fi1,i2φi1,i2(x, y),

and for i1, i2 = 0(1)(m) we have:

(3.2) fi1,i2 =
1

4(Ii1,ε)4(Ii2,ε)

∫ 1

0

∫ 1

0
f(x, y)φi1,i2(x, y)dxdy .

Then the criterion of this approximation is that the mean square
error between f(x, y) and fm,ε(x, y) in the interval (x, y) ∈ D:

(3.3) ε =

∫ 1

0

∫ 1

0
(f(x, y)− fm,ε(x, y))2dxdy,
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reaches its minimum. Moreover, we have:

(3.4)

∫ 1

0

∫ 1

0
f2(x, y)dxdy =

∞∑
i1=0

∞∑
i2=0

f2
i1,i2 ||φi1,i2(x, y)||2.

Proof. Proof is like similar theorem in [8].

Theorem 2. Assume f(x, y) is continuous and is differentiable over dis-
trict [−h, 1+h]×[−h, 1+h], and fm,εi(x, y); εi = ih

k , for i = 0(1.1)(k−1),
are correspondingly M2D-BFs(ε0)=2D-BFs, M2D-BFs (ε1), · · · , M2D-
BFs(εk−1) expansions of f(x, y) base on (m+1)2 M2D-BFs over district
D and

(3.5) f̄m,k(x, y) =
1

k

k−1∑
i=0

fm,εi(x, y),

then for sufficient large m we have:

(3.6) ||f(x, y)− f̄m,k(x, y)||∞ ≤
1

k
max
εi
||f(x, y)− fm,εi(x, y)||∞.

Proof. see [12]

Theorem 3. Let the representation error between f(x, y) and its two-
dimensional block-pulse functions, fm(x, y) = fm,ε0(x, y) (M2D-BFs(ε0)=
2D-BFs), over the district D, as follows :

(3.7) e(x, y) = f(x, y)− fm(x, y).

Then ||e(x, y)|| = O( 1
m) and

(3.8) lim
m→+∞

fm(x, y) = lim
m→+∞

fm,ε0(x, y) = f(x, y).

Proof. Proof is like similar theorem in [10].

Theorem 2 and 3 conclude that error estimation for M2D-BFs is
||e(x, y)|| = O( 1

km).

Suppose that f(x, y) is approximated by

(3.9) fm,εi(x, y) =
m∑
i1=0

m∑
i2=0

fi1,i2φi1,i2(x, y),

from [12] we have:

(3.10) lim
m→+∞

fm,εi(x, y) = f(x, y).
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4. Method of solution

In this section, we solve two-dimensional nonlinear Volterra inte-
gral equations of the first kind of the form Eq. (1.1) with Eq. (1.3) by
using M2D-BFs.

We now approximate functions u(x, y), f(x, y), [u(x, y)]p and k(x, y, s, t)
with respect to M2D-BFs by the way mentioned in Section 2 as

(4.1)



u(x, y) ' UTm,εΦm,ε(x, y),

f(x, y) ' F Tm,εΦm,ε(x, y),

[u(x, y)]p ' ΦT
m,ε(x, y)Um,ε,p,

k(x, y, s, t) ' ΦT
m,ε(x, y)Km,εΦm,ε(s, t),

where Φm,ε(x, y) is defined in Eq. (2.4), the vectors Um,ε, Fm,ε, Um,ε,p,
and matrix Km,ε are M2D-BFs coefficients of u(x, y), f(x, y), [u(x, y)]p

and k(x, y, s, t), respectively.

Lemma 1. Let (m+1)2-vectors Um,ε and Um,ε,p be M2D-BFs coefficients
of u(x, y) and [u(x, y)]p, respectively. If

(4.2) Um,ε = [u0,0, . . . , u0,m, . . . , um,0, . . . , um,m]T ,

then

(4.3) Um,ε,p = [up0,0, . . . , u
p
0,m, . . . , u

p
m,0, . . . , u

p
m,m]T ,

where p ≥ 1, is a positive integer.

Proof.(By induction) When p = 1, Eq. (4.3) follows at once from
[u(x, y)]p = u(x, y). Suppose that Eq. (4.3) holds for p, we shall deduce
it for (p + 1). Since [u(x, y)]p+1 = u(x, y)[u(x, y)]p, from Eqs. (4.1),
(2.12) it follows that

[u(x, y)]p+1 = u(x, y)[u(x, y)]p ' UTm,εΦm,ε(x, y)ΦT
m,ε(x, y)Um,ε,p

= UTm,εŨm,ε,pΦm,ε(x, y).(4.4)

Now by using Eq. (4.3) we obtain

UTm,εŨm,ε,p = [up+1
0,0 , . . . , u

p+1
0,m , . . . , u

p+1
m,0 , . . . , u

p+1
m,m]T ,(4.5)

therefore Eq. (4.3) holds for (p+ 1), and the lemma is established.�
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To approximate the integral part in Eq. (1.1), from Eq. (4.1) we get∫ x

0

∫ y

0
k(x, y, s, t)[u(s, t)]pdtds '(4.6) ∫ x

0

∫ y
0 ΦT

m,ε(x, y)Km,εΦm,ε(s, t)Φ
T
m,ε(s, t)Um,ε,pdtds =

ΦT
m,ε(x, y)Km,ε

(∫ x
0

∫ y
0 Φm,ε(s, t)Φ

T
m,ε(x, y)Um,ε,pdtds

)
=

ΦT
m,ε(x, y)Km,ε

∫ x
0

∫ y
0 Ũm,ε,pΦm,ε(s, t)dtds =

ΦT
m,ε(x, y)Km,εŨm,ε,p

∫ x
0

∫ y
0 Φm,ε(s, t)dtds.

Now by using Eq. (2.10), we have:

(4.7)∫ x

0

∫ y

0
k(x, y, s, t)[u(s, t)]pdtds ' ΦT

m,ε(x, y)Km,εŨm,ε,pPm,εΦm,ε(x, y),

in which Km,εŨm,ε,pPm,ε is an (m+ 1)2× (m+ 1)2 matrix. By using Eq.
(2.13) we have:∫ x

0

∫ y

0
k(x, y, s, t)[u(s, t)]pdtds ' ÛTm,ε,pΦm,ε(x, y),(4.8)

where Ûm,ε,p is and (m+ 1)2-vector with elements equal to the diagonal

entries of matrix Km,εŨm,ε,pPm,ε. So, the ith component of the column

vector Ûm,ε,p will be

i∑
j=1

pjikijvj ; i = 1(1)(m+ 1)2,(4.9)

where pij , kij and vj are the elements of Pm,ε,Km,ε, Um,ε,p, respectively,
and

vj = (uj)
p.

Applying Eqs. (4.1) and (4.6) in Eq. (1.1) with Eq. (1.3), we get

ÛTm,ε,pΦm,ε(x, y) ' F Tm,εΦm,ε(x, y).(4.10)

Consequently we will have

(4.11) Ûm,ε,p = Fm,ε.
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After solving the above nonlinear system by using Newton-Raphson
method, we can find Um,ε and then

um,ε(x, y) = UTm,εΦm,ε(x, y).(4.12)

Then

u(x, y) ' ūm,k(x, y) =
1

k

k−1∑
i=0

um,εi(x, y),(4.13)

where εi = ih
k , i = 0(1)(k − 1) is the estimation of the solution of

two-dimensional Volterra integral equation of the first kind.

5. Numerical examples

In this section, the example is given to certify the convergence
and error bound of the presented method. All results are computed by
using a program written in the Matlab. The numerical experiments are
carried our for the selected grid point which are proposed as (2−l ; l =
1, 2, 3, 4, 5, 6) and m terms and k times of modifications of the M2D-BFs
series. The following problems have been tested.

Example 1. Consider the following linear two-dimensional Volterra
integral equation [10]:

(5.1)

∫ x

0

∫ y

0
(sin(y+s)+sin(x+t)+3)u(s, t)dtds = f(x, y); (x, y) ∈ D,

and f(x, y) is selected so that u(x, y) = cos(x+ y) is the exact solution.
Furthermore, Table 1 and Figures 1-2 illustrates the numerical results
for this example.
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Figure 1. Absolute value of error, Example 1 with m = 8 and k = 2, 3
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Figure 2. Absolute value of error, Example 1 with m = 16 and k = 2, 3

Table 1: Numerical results of Example 1 with M2D-BFs
Nodes (x,y) Error for m=8 Error for m=16

(x,y)=2−l k=1(Ref.[10]) k=2 k=3 k=1(Ref.[10]) k=2 k=3
l = 1 0.085303 0.048609 0.035575 0.042396 0.023996 0.017469
l = 2 0.052873 0.029492 0.021487 0.025605 0.014216 0.010271
l = 3 0.045225 0.019710 0.012312 0.013869 0.007682 0.005582
l = 4 0.003428 0.007026 0.000477 0.011432 0.004991 0.003125
l = 5 0.002421 0.000779 0.000313 0.000863 0.001769 0.000118
l = 6 0.003886 0.002244 0.001778 0.000602 0.000193 0.000077

Example 2. Consider the following nonlinear two-dimensional Volterra
integral equation [10]:

(5.2)

∫ x

0

∫ y

0
u2(s, t)dtds = f(x, y); (x, y) ∈ D,
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where

(5.3) f(x, y) =
1

45
xy(9x4 + 10x2y2 + 9y4).

The exact solution is u(x, y) = x2 + y2. Furthermore, Table 2 and
Figures 3-4 illustrates the numerical results for this example.
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Figure 3. Absolute value of error, Example 2 with m = 8 and k = 2, 3
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Figure 4. Absolute value of error, Example 2 with m = 16 and k = 2, 3
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Table 2: Numerical results of Example 2 with M2D-BFs
Nodes (x,y) Error for m=8 Error for m=16

(x,y)=2−l k=1(Ref.[10]) k=2 k=3 k=1(Ref.[10]) k=2 k=3
l = 1 0.266615 0.017766 0.003043 0.286467 0.007733 0.002964
l = 2 0.173809 0.016814 0.005273 0.162543 0.004442 0.000761
l = 3 0.216501 0.005137 0.003526 0.078379 0.004203 0.001318
l = 4 0.039305 0.006534 0.002632 0.098525 0.000188 0.000230
l = 5 0.017610 0.003268 0.002545 0.020213 0.000085 0.000658
l = 6 0.047430 0.004000 0.003277 0.009606 0.000817 0.000636

6. Conclusion

In this paper we have worked out a computational method for ap-
proximate solution of nonlinear two-dimensional Volterra integral equa-
tions of the first kind, based on the expansion of the solution as series of
M2D-BFs. This method converts a nonlinear two-dimensional Volterra
integral equation whose answer are the coefficients of M2D-BFs expan-
sion of the solution of nonlinear two-dimensional Volterra integral equa-
tion. Note that the find system extracted from the nonlinear equations
will be nonlinear and proper technique such Newton-Raphson method
could be applied. This method can be easily extended and applied to
nonlinear two-dimensional Volterra integral equations of the second kind
and nonlinear two-dimensional Fredholm integral equations.
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