
Journal of Hyperstructures 3 (1) (2014), 53-67.

ISSN: 2251-8436 print/2322-1666 online

PROPORTIONAL FACTORS ESTIMATION IN AN IHCP

MORTEZA GARSHASBI AND HATEF DASTOUR

Abstract. In this paper, a numerical scheme is developed based
on mollification method and space marching scheme for solving an
inverse heat conduction problem. The proposed inverse problem
contains the estimation of two unknown functions at the bound-
aries named proportional factors. The temperature and heat flux
measurements in an interior point are considered as overspecified
data with the presence of noise. Convergence and stability of the
solution for the proposed method are analyzed. To support the nu-
merical achievements, some numerical examples are considered and
discussed.
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1. Introduction

When a flat plate is cooled from an initial uniform temperature by a
fluid at another temperature, the temperature distribution, which varies
with time, can be described by the transient heat conduction solution.
Generally when the transfer of heat from liquids to solids is considered,
the heat flux is often taken to be proportional to the difference in the
boundary temperature of the solid and the temperature of the liquid.
The convection can provide a possible boundary condition for conduc-
tion problems in the form of a heat transfer coefficients. In dealing
with heat transfer by convection, i.e. energy transport between fluids
and surfaces, we are mainly concerned with determination of unknown
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parameters for various systems and investigating how the heat transfer
coefficient varies as a function of the fluids properties, such as thermal
conductivity, viscosity, density and specific heat, the system geometry,
the flow velocity and the temperature differences [14].

The identification of coefficients in parabolic equations named inverse
heat conduction problems (IHCPs) usually are ill-posed problems that
have received considerable attention from many researchers in a variety
of fields, using different methods [2, 4, 9]. The IHCPs arise in the model-
ing and control of processes with heat propagation in thermophysics and
mechanics of continuous media. Inverse problems are in nature unstable
because the unknown solutions and parameters have to be determined
from indirect observable data which contain measurement error. The
major difficulty in establishing any numerical algorithm for approximat-
ing the solution is due to the severe ill-posedness of the problem and the
ill-conditioning of the resultant discretized matrix. The studies of inverse
heat conduction problems are even more difficult. Although heat con-
duction process is very smooth, the process is irreducible. This means
that the characteristic of the solution (for instance, the shape of the inte-
rior heat flow) may not be affected by the observed data. Some detailed
treatments of problems in these areas can be found in [1, 5, 8, 11, 13, 15].

In this paper, the framework is a one dimensional nonlinear heat con-
duction model and our problem is to identify two time dependent coeffi-
cients in the boundary conditions of the proposed problem. Our strategy
is to obtain a numerical scheme for the approximation of the unknown
functions by implementing a combination of discrete mollification and
a space-marching finite difference numerical scheme. The regularization
tool is the mollification method, which is a reliable regularization pro-
cedure that has been widely applied for the stable numerical solution of
ill-posed problems based on parabolic equations [12, 11, 13, 10].

The remainder of the paper is organized as follows: In Section 2 we
review basic facts about the discrete mollification operator. Section 3 is
devoted to the identification problems. Section 4 includes the stability
and convergence analysis of the proposed numerical method. Finally in
section 5 two illustrative numerical examples are investigated.

2. Problem description

2.1. Inverse problem formulation. Consider the transfer of heat from
liquids to solids is occurred. As mentioned before, the heat flux is often
taken to be proportional to the difference in the boundary temperature
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of the solid and the temperature of the liquid. The mathematical model
of this phenomenon, in the one dimensional space, may be considered
as follows [3]

ut(x, t)− a2uxx(x, t) = f(x, t), 0 < x < 1, 0 < t < 1,(2.1)

u(x, 0) = γ(x), 0 ≤ x ≤ 1,(2.2)

ux(0, t) + ζ(t)u(0, t) = g(t), 0 ≤ t ≤ 1,(2.3)

ux(1, t) + η(t)u(1, t) = h(t), 0 ≤ t ≤ 1,(2.4)

where f(x, t) and γ(x) are considered to be a known bounded functions
and ζ(t) and η(t) are known as proportional factors. Identification of
these coefficients is the goal of this work. For this end one my needs some
overspecified data. Here we consider that the temperature and heat flux
at an interior point such as x∗ is at hand. With this assumption, the
following auxiliary problem is considered

ut(x, t)− a2uxx(x, t) = f(x, t), 0 < x < 1, 0 < t < 1,(2.5)

u(x, 0) = γ(x), 0 ≤ x ≤ 1,(2.6)

u(x∗, t) = ϕ1(t), 0 ≤ t ≤ 1,(2.7)

ux(x∗, t) = ϕ2(t), 0 ≤ t ≤ 1.(2.8)

By solving this problem and determining the functions u(x, t) and ux(x, t)
one may find the unknown functions ζ(t) and η(t).

In the sequel a numerical marching scheme based on mollification
method will be introduced to find the solution of the problem (2.5)-
(2.8) under the assumption that ϕ1(t), ϕ2(t), g(t) and h(t) are only
known approximately as ϕε1(t), ϕε2(t), gε(t) and hε(t) such that

‖ϕ1(t)− ϕε1(t)‖∞ ≤ ε,(2.9)

‖ϕ2(t)− ϕε2(t)‖∞ ≤ ε,(2.10)

‖g(t)− gε(t)‖∞ ≤ ε,(2.11)

‖h(t)− hε(t)‖∞ ≤ ε.(2.12)

Because of the presence of the noise in the problem’s data, we first
stabilize the problem using the mollification method [11, 12].

2.2. Regularized problem and the marching scheme. To solve
the problem (2.5)-(2.8), first it reduces to determining v(x, t), vx(x, t) ∈



56 Morteza Garshasbi and Hatef Dastour

[0, 1]× [0.1] while they are satisfying following conditions

vt(x, t)− a2uxx(x, t) = f(x, t), 0 < x < 1, 0 < t < 1,(2.13)

v(x, 0) = Jδ′iγ(x), 0 ≤ x ≤ 1,(2.14)

v(x∗, t) = Jδ0ϕ1(t), 0 ≤ t ≤ 1,(2.15)

vx(x∗, t) = Jδ∗0ϕ2(t), 0 ≤ t ≤ 1,(2.16)

where the radii of mollification, δ0, δ∗0 and δ′ are chosen automatically
using the generalized cross validation (GCV) method [11]. Then Zeta(t)
and Eta(t) (mollified versions of ζ(t) and η(t)) from the following equa-
tions.

vx(0, t) + Zeta(t)v(0, t) = J
δ
′′
0
g(t), 0 ≤ t ≤ 1,(2.17)

vx(1, t) + Eta(t)v(1, t) = J
δ
′′
M
h(t), 0 ≤ t ≤ 1.(2.18)

Let M and N be two positive integers to generate an algorithm of space
marching scheme, and then h = ∆x = 1/M and k = ∆t = 1/N be
the parameters of the finite differences discretization of I = [0, 1] and
M∗ = [x∗/h]. Firstly, introducing Ui,n, Wi,n, Qi,n, Fi,n, Zi,n and Ei,n as
discrete computed approximations of (respectively) v(ih, nk), vt(ih, nk),
vx(ih, nk), f(ih, nk), Zeta(nk) and Eta(nk) and then the algorithm
regarding solving the problem (2.13)-(2.16) may be written as follows

(1) Select δ0, δ∗0 and δ′.
(2) Perform mollification of ϕε1,ϕε2 in the interval [0, 1].

UM∗,n = JδM∗ϕ
ε
1(nk) (n 6= 0), Ui,0 = Jδ′if

ε(ih), i ∈ {0, 1, . . . ,M},
QM∗,n = Jδ∗

M∗
ϕε2(nk).

(3) Perform mollified differentiation in time of JδM∗α
ε(nk). Set

WM∗,n = Dt(JδM∗ϕ
ε
1(nk)) (n 6= 0), WM∗,0 = Dt(Jδ′

M∗
f ε(M∗h)).

(4) Initialize i = M∗. Do while i ≤M − 1,

Ui+1,n = Ui,n + hQi,n, (n 6= 0),(2.19)

Qi+1,n = Qi,n +
h

a2
(Wi,n − Fi,n) ,(2.20)

Wi+1,n = Wi,n + h Dt(Jδ∗iQi,n).(2.21)

(5) Initialize i = M∗. Do while i ≥ 1,

Ui−1,n = Ui,n − hQi,n, (n 6= 0),(2.22)

Qi−1,n = Qi,n −
h

a2
(Wi,n − Fi,n) ,(2.23)

Wi−1,n = Wi,n − h Dt(Jδ∗iQi,n).(2.24)
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Finally

Zn =
1

U0,n

[
J
δ
′′
0
g(t)−Q0,n

]
,(2.25)

En =
1

UM,n

[
J
δ
′′
M
h(t)−QM,n

]
.(2.26)

From now on, to simplify the notations, it is denoted |Xi| = maxn |Xi,n|
if Xi,n is a discrete function. In addition, a smoothing assumption is
considered to discuss the stability and convergence of the scheme as
follows

u(x, t) ∈ C2(I × I).

3. Stability and convergence analysis

In this section, the stability and convergence of the proposed marching
scheme are analyzed.

Theorem 3.1 (Stability of the algorithm). For the forward algorithm
(2.19)-(2.21) there exists a constant Λ1 such that

Λ1 max{|UM |, |QM |, |WM |,Mf} ≤ max{|UM∗ |, |QM∗ |, |WM∗ |,Mf},
and for the backward algorithm (2.22)-(2.24) there exists a constant Λ2

such that

Λ2 max{|U0|, |Q0|, |W0|,Mf} ≤ max{|UM∗ |, |QM∗ |, |WM∗ |,Mf}.
Proof. Firstly, the first inequality is proved.

Considering
|δ|−∞ = mini(δi, δ

∗
i , δ
′
i) and Mf = max(x,t)∈[0,1]×[0,1]{|f(x, t)} and apply-

ing theorem 2.4 from [6] yields

(3.1) |Dt(Qi,n)| ≤ C

|δ|−∞
|Qi,n|,

where C is a constant. Now as a result of using (2.21) and (3.1)

|Wi+1,n| ≤
(

1 + h
C

|δ|−∞

)
max{|Qi,n|, |Wi,n|}.(3.2)

Besides, from (2.19) and (2.20) we have

|Ui+1,n| ≤ (1 + h) max{|Ui,n|, |Qi,n|},(3.3)

|Qi+1,n| ≤
(

1 +
h

a2

)
max{|Qi,n|, |Wi,n|,Mf}.(3.4)
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Let Cδ = max
{

1, 1
a2
, C
|δ|−∞

}
, it can be obtained from (3.2)-(3.4)

max{|Ui+1|, |Qi+1|, |Wi+1|,Mf} ≤ (1 + hCδ) max{|Ui|, |Qi|, |Wi|,Mf},
and then, iterating the last inequality M1 = M −M∗ times leads to the
following equation

max{|UM |, |QM |, |WM |,Mf} ≤ (1 + hCδ)
M1 max{|UM∗ |, |QM∗ |, |WM∗ |,Mf},

which implies

max{|UM |, |QM |, |WM |,Mf} ≤ exp(Cδ) max{|UM∗ |, |QM∗ |, |WM∗ |,Mf}.
The first inequality is proved with assumption Λ1 = exp (Cδ). Now it is
time to prove the second inequality. Similarly, from(2.22)-(3.1)

|Ui−1,n| ≤ (1 + h) max{|Ui,n|, |Qi,n|},(3.5)

|Qi−1,n| ≤
(

1 +
h

a2

)
max{|Qi,n|, |Wi,n|,Mf},(3.6)

|Wi−1,n| ≤
(

1 + h
C

|δ|−∞

)
max{|Qi,n|, |Wi,n|}.(3.7)

Letting Cδ = max
{

1, 1
a2
, C
|δ|−∞

}
and using (3.8)-(3.10)

max{|Ui−1|, |Qi−1|, |Wi−1|,Mf} ≤ (1 + hCδ) max{|Ui|, |Qi|, |Wi|,Mf},
Iterating this inequality M∗ times leads

max{|U0|, |Q0|, |W0|,Mf} ≤ (1+hC ′δ)
M∗ max{|UM∗ |, |QM∗ |, |WM∗ |,Mf}

which means

max{|U0|, |Q0|, |W0|,Mf} ≤ exp(C ′δ) max{|UM∗ |, |QM∗ |, |WM∗ |,Mf}.
Finally with assumption Λ2 = exp (C ′δ) the second inequality is proved.

�

Theorem 3.2 (Formal convergence). For fixed δ as h, k and ε tend
to zero, the discrete mollified solution converges to the mollified exact
solution restricted to the grid points.

Proof. Here the convergence of the forward marching scheme (2.19)-
(2.21) is going to be proved only since the convergence of the backward
marching scheme (2.22)-(2.24) may be proved similarly. From the defi-
nitions of discrete error functions let

∆Ui,n = Ui,n − v(ih, nk), ∆Qi,n = Qi,n − vx(ih, nk),

∆Wi,n = Wi,n − vt(ih, nk).
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Using Taylor series, a number of useful equations satisfied by the molli-
fied solution v can be obtained, namely,

v((i+ 1)h, nk) = v(ih, nk) + hvx(ih, nk) +O(h2),

vx((i+ 1)h, nk) = vx(ih, nk) +
h

a2
(vt(ih, nk)− f(ih, nk)) +O(h2),

vt((i+ 1)h, nk) = vt(ih, nk) + h

(
d

dt
vx(ih, nk)

)
+O(h2).

One may write

∆Ui+1,n = ∆Ui,n + (Ui+1,n − Ui,n)− (v((i+ 1)h, nk)− v(ih, nk))

= ∆Ui,n + h∆Qni +O(h2),(3.8)

∆Qi+1,n = ∆Qi,n + (Qi+1,n −Qi,n)− (vx((i+ 1)h, nk)− vx(ih, nk))

= ∆Qi,n +
h

a2
∆Wi,n +O(h2),(3.9)

∆Wi+1,n = ∆Wi,n + (Wn
i+1 −Wn

i )− (vt((i+ 1)h, nk)− vt(ih, nk))

= ∆Wi,n + h(Dt(Jδ∗iQi,n)− vxt(ih, nk)) +O(h2).(3.10)

Now from equalities (3.8)-(3.10), using the error estimates of discrete
mollification from Theorem 2.3 from [6] we have

|∆Ui+1,n| ≤ |∆Ui,n|+ h|∆Qi,n|+O(h2),

|∆Qi+1,n| ≤ |∆Qi,n|+
h

a2
|∆Wi,n|+O(h2),

|∆Wi+1,n| ≤ |∆Wi,n|+ h

(
C
|∆Qi,n|+ k

|δ|−∞
+ Cδ∗k

2

)
+O(h2).

Suppose

∆i = max{|∆Ui,n|, |∆Wi,n|, |∆Qi,n|},

C0 = max

{
1,

1

a2
,

C

|δ|−∞

}
, C1 =

ck

|δ|−∞
+ Cδ∗k

2.

Then we obtain

∆i+1 ≤ (1 + hC0)∆i + hC1 +O(h2) ≤ (1 + hC0)(∆i + C1) +O(h2),

and after L iterations

(3.11) ∆L ≤ exp(C0)(∆0 + C1).
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Moreover from

|∆UM∗,n| ≤ C(ε+ k),

|∆QM∗,n| ≤ C(ε+ k),

|∆WM∗,n| ≤
C

δM∗
(ε+ k) + Cδk

2,

It can be observed that when ε, h, and k tend to 0, ∆0 and C1 tend to 0.
Consequently (∆0 + C1) tends to 0 and so does ∆L and this completes
the proof of this theorem. �

4. Numerical examples

In this section, two numerical results are presented. In all cases, with-
out loss of generality, we set p = 3 (see [7]). The radii of mollification are
always chosen automatically using the mollification and GCV methods.
Discretized measured approximations of boundary data are modeled by
adding random errors to the exact data functions. For example, for the
boundary data function h(x, t), its discrete noisy version is generated by

hεj,n = h(xj , tn) + εj,n, j = 0, 1, . . . , N, n = 0, 1, . . . , T,

where the(εj,n)’s are Gaussian random variables with variance ε2.
The errors exact and approximate solution are measured by the relative
weighted l2-norm given by[

(1/(M + 1)(N + 1))ΣM
i=0 ΣN

j=0|v(ih, jl)− Ui,j |2
]1/2

[
(1/(M + 1)(N + 1))ΣM

i=0 ΣN
j=0|v(ih, jl)|2

]1/2
.

Example 4.1. As the first test case, in problem (2.5)-(2.8) consider

x
∗
= 0.65, ϕ1(t) =

13t

10(t2 + 569/400)
+ 1, ϕ2(t) =

2t(t2 + 231/400)

(t2 + 569/400)2
, γ(x) = 1,

f(x, t) =
2x(−t4 + 24t3 − 8tx2 + 24t+ x4 + 2x2 + 1)

(t2 + x2 + 1)3
, k(t) = sin(t), h(t) = cos(t).

The exact solution for u(x, t) may be derived as

u(x, t) =
(x+ t)2 + 1

1 + x2 + t2
, ζ(t) = sin(t) −

2t

t2 + 1
, η(t) = (t

2
+ 2)

(
cos(t) −

2t3

(t2 + 2)2

)
.

Table 1 shows the comparison between the exact and numerical solu-
tions and the relative l2 errors. Figures 1 and 2 demonstrate the com-
parison between the exact and numerical results for the functions ζ(t)
and η(t) for three noise levels ε = 0.01, 0.001, 0.0001 when M = N = 64
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Table 1. Relative l2 error norms for Example 4.1.

M N ε v vt vx ζ η
128 128 0.0001 0.0012996 0.0085254 0.0031048 0.0053743 0.002487
256 256 0.0001 0.00094905 0.011001 0.0028282 0.0055478 0.0020288
512 512 0.0001 0.00076799 0.012082 0.0026855 0.0070051 0.0017318
1024 1024 0.0001 0.00030978 0.0046026 0.0010416 0.0035897 0.00093223
128 128 0.001 0.0012372 0.01329 0.0033996 0.0054388 0.0028889
256 256 0.001 0.000877 0.014497 0.0030274 0.0066642 0.0026709
512 512 0.001 0.00069051 0.016522 0.0031956 0.018784 0.0043266
1024 1024 0.001 0.0002675 0.024003 0.0015646 0.031533 0.006938
128 128 0.01 0.00097665 0.023496 0.0047145 0.013806 0.0055608
256 256 0.01 0.0014169 0.040586 0.0054737 0.034067 0.0088908
512 512 0.01 0.0011731 0.087198 0.004451 0.077764 0.017649
1024 1024 0.01 0.0013244 0.080186 0.0028624 0.074567 0.016956

0 0.25 0.5 0.75 1

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

t

ζ(
t)

 

 

Exact ζ

Computed ζ, ε = 0.0001

Computed ζ, ε = 0.001

Computed ζ, ε = 0.01

Figure 1. The analytical and numerical solutions for the
boundary function ζ(t) for Example 4.1.

(64 was chosen since less mesh points was more visible than others
in the graph). Furthermore Figures 3 and 4 show the absolute error
between the exact and computed ζ(t) and η(t) in three noise levels
ε = 0.01, 0.001, 0.0001 when M = N = 64

As it is expected the smaller finite difference steps, the better l2-norm
in the solutions. It can be clearly observed that there is significant
difference between the solution that has been obtained from M = N =
64 and the one has been obtained from M = N = 1024. The
conspicuous point in the figures is that the solutions are almost stable
even with a higher level of noise.
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Figure 2. The analytical and numerical solutions for the
boundary function η(t) for Example 4.1.
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Figure 3. The absolute error between the exact and
computed ζ(t) in three noise levels for Example 4.1 (M =
N = 64).

Example 4.2. In the problem (2.5)-(2.8) consider

x∗ = 0.5, ϕ1(t) = 0, ϕ2(t) = −πe−t, γ(x) = cos(πx),

f(x, t) = 0, k(t) = tanh(t) + 1, h(t) = tanh(t) + 1.
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Figure 4. The absolute error between the exact and
computed η(t) in three noise levels for Example 4.1 (M =
N = 64).

The exact solution for u(x, t) may be derived as

u(x, t) = e−t + cos(πx), ζ(t) = et(tanh(t) + 1), η(t) = −et(tanh(t) + 1).

Table 1 shows the comparison between the exact and numerical solu-
tions and the relative l2 errors. Figures 5 and 6 compare the exact
and numerical results for the functions ζ(t) and η(t) for three noise
levels ε = 0.01, 0.001, 0.0001 when M = N = 64. The absolute er-
ror between the exact and computed ζ(t) and η(t) in three noise levels
ε = 0.01, 0.001, 0.0001 when M = N = 64 are demonstrated in the
Figures 7 and 8 for three noise levels ε = 0.01, 0.001, 0.0001 when
M = N = 64.
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Table 2. Relative l2 error norms for Example 4.2.

M N ε v vt vx ζ η
128 128 0.0001 0.011308 0.0078255 0.014317 0.037886 0.018427
256 256 0.0001 0.0057044 0.0062057 0.0071703 0.018763 0.0090689
512 512 0.0001 0.002892 0.0052849 0.0036225 0.0092635 0.0046467
1024 1024 0.0001 0.0015252 0.0081113 0.0019591 0.0052981 0.0045298
128 128 0.001 0.011564 0.020737 0.014438 0.036885 0.018829
256 256 0.001 0.0061052 0.020922 0.0075559 0.019681 0.013457
512 512 0.001 0.0033298 0.017317 0.0041267 0.010615 0.0086791
1024 1024 0.001 0.0020974 0.027872 0.0026545 0.01182 0.015628
128 128 0.01 0.012465 0.037556 0.014769 0.036638 0.020994
256 256 0.01 0.0073294 0.082729 0.0098999 0.030019 0.034128
512 512 0.01 0.0048359 0.03791 0.0045608 0.014056 0.014843
1024 1024 0.01 0.0030146 0.033548 0.0032274 0.0062359 0.0080511
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Figure 5. The analytical and numerical solutions for the
boundary functions ζ(t) for Example 4.2.

The numerical results show a good agreement between numerical and
exact solutions and more, the stability of numerical solutions with re-
spect to the noises in input data.

5. Conclusion

As a conclusion, a class of inverse heat conduction problems has been
investigated in this work. The main goal of this work was the estimation
of two unknown boundary functions. To this end at an interior point,
the temperature and heat flux have been considered as overspecified
condition. The known initial and boundary functions have considered
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Figure 6. The analytical and numerical solutions for the
boundary functions η(t) for Example 4.2.
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Figure 7. The absolute error between the exact and
computed ζ(t) in three noise levels for Example 4.2 (M =
N = 64).

noisy, and then a spatial regularization method based on mollification
scheme and space marching method was applied to solve the proposed
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Figure 8. The absolute error between the exact and
computed η(t) in three noise levels for Example 4.2 (M =
N = 64).

non-well posed inverse problem. The error analysis in this study have
demonstrated the stability and convergence of the proposed method.
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