تعداد نشریات | 27 |
تعداد شمارهها | 350 |
تعداد مقالات | 3,008 |
تعداد مشاهده مقاله | 4,466,715 |
تعداد دریافت فایل اصل مقاله | 3,047,028 |
Numerical solution of variational problems via parametric quintic spline method | ||
Journal of Hyperstructures | ||
دوره 3، شماره 1، شهریور 2014، صفحه 40-52 اصل مقاله (360.91 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2014.2572 | ||
نویسندگان | ||
M. Zarebnia* ؛ Z. Sarvari | ||
Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran | ||
چکیده | ||
In this paper, the parametric quintic spline method is used for finding the solution of variational problems associated in engineering and physics. The present approximation reduce the problems to an explicit system of algebraic equations. Some numerical examples are also given to illustrate the accuracy and applicability of the presented method. | ||
کلیدواژهها | ||
Calculus of variation؛ Parametric quintic spline؛ Boundary value problem | ||
مراجع | ||
[1] R. Weinstock, Calculus of Variations: With Applications to Physics and Engineer-ing, Dover, 1974. [2] B. Horn and B. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185–203. [3] K. Ikeuchi and B. Horn, Numerical shape from shading and occluding boundaries,Artificial Intelligence,17(1981),141–184. [4] L. Elsgolts, Differential Equations and Calculus of Variations, Mir: Moscow, 1977 (translated from the Russian by G. Yankovsky). [5] I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall: Englewood Cliffs, NJ, 1963. [6] C.F. Chen and C.H. Hsiao, it A walsh series direct method for solving variational problems, J. Franklin Inst., 300 (1975), 265–280. [7] R.Y. Chang and M.L. Wang, Shifted Legendre direct method for variational prob-lems, J. Optim. Theory Appl., 39 (1983), 299–306. [8] . I.R. Horng and J.H. Chou, Shifted Chebyshev direct method for solving variational problems, Internat. J. Systems Sci., 16 (1985), 855–861. [9] C. Hwang and Y.P. Shih, Laguerre series direct method for variational problems,J. Optim. Theory Appl.,39(1983),143–149. [10] S. Dixit, V.K. Singh, A.K. Singh and O.P. Singh, Bernstein Direct Method for Solving Variational Problems, International Mathematical Forum, 5 (2010), 2351–2370. [11] M. Razzaghi and S. Yousefi,Legendre wavelets direct method for variational prob-lems, Mathematics and Computers in Simulation, 53 (2000), 185–192. [12] M. Tatari and M. Dehghan, The numerical solution of problems in calculus of variation using Chebyshev finite difference method, Physics Letters A 372 (2008),4037–4040. [13] J.H. Ahlberg, E.N. Nilson and J.L. Walsh, The Theory of Splines and Their Ap-plications, Academic Press: New York 1967. [14] T.N.E. Greville, Introduction to spline functions, in: Theory and Application of Spline Functions, Academic Press: New York 1969. [15] P.M. Prenter, Splines and Variational Methods, John Wiley & Sons INC. 1975. [16] G. Micula and Sanda Micula, Hand Book of Splines, Kluwer Academic Publisher’s 1999. [17] S.S. Siddiqi and G. Akram, Numerical solution of a system of fourth order bound-ary value problems using cubic non polynomial spline method, Applied Mathemat-ics and Computation, 190 (2007), 652–661. [18] M.A. Ramadan, I.F. Lashien and W.K. Zahra, Polynomial and nonpolynomial spline approaches to the numerical solution of second order boundary value prob-lems, Applied Mathematics and Computation, 184 (2007), 476-484. [19] A. Khan, Parametric cubic spline solution of two point boundary value problems, Applied Mathematics and Computation, 154 (2004), 175–182. [20] A. Khan and T. Aziz, Parametric cubic spline approach to the solution of a system of second-order boundary-value problems, Journal of Optimization Theory and Applications, 118 (2003), 45–54. [21] J. Rashidinia, R. Jalilian and R. Mohammadi, Non-polynomial spline methods for the solution of a system of obstacle problems, Applied Mathematics and Compu-tation, 188 (2007) 1984–1990. [22] J. Rashidinia, R. Jalilian and R. Mohammadi, Convergence analysis of spline solution of certain two-point boundary value problems, Computer Science and En-gineering and Electrical Engineering,16 (2009), 128–136. [23] M. Zarebnia and N. Aliniya , Sinc-Galerkin method for the solution of problems in calculus of variations, International Journal of Engineering and Natural Sciences,5 (2011), 140–145. | ||
آمار تعداد مشاهده مقاله: 23 تعداد دریافت فایل اصل مقاله: 47 |