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GRAPH BASED ON RESIDUATED LATTICES

LIDA TORKZADEH, AFSANEH AHADPANAH AND MOHADESEH BEHZADI

Abstract. In this paper, the residuated graph of residuated lat-
tices will be studied. To do so, the notion of zero divisors of a
nonempty subset of a residuated lattice is first introduced and some
related properties are investigated. By means of the set of all zero-
divisors of an element of a residuated lattice L, the residuated graph
Γ(L) is defined and several examples are given. This graph is con-
nected and also some necessary conditions for the residuated graph
to be a star graph are found. Finally, the relation between a resid-
uated lattice L and the residuated graph Γ(L) are studied.
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1. Introduction

Non-classical logic has become a formal and useful tool for computer sci-
ence to deal with uncertain information and fuzzy information. The al-
gebraic counterparts of some non-classical logics satisfy residuation and
those logics can be considered in a frame of residuated lattices [1]. For
example, Hajek’s BL (basic logic [2]), Lukasiewiczs MV (many-valued
logic[3]) and MTL (monoidal t-norm based logic [4]) are determined by
the class of BL-algebras, MV -algebras and MTL-algebras, respectively.
All of these algebras have lattices with residuation as a common support
set. Thus it is very important to investigate properties of algebras with
residuation. Residuated lattices, introduced by Ward and Dilworth [5],
are on one hand a generalization of lattice-ordered groups (L-groups),
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and on the other hand provide algebraic semantics to the non-classical
logical calculi known as substructural logics [6,7]. It is well known that
residuated lattices are also one of the important algebraic structures
associated with fuzzy logic and have been extensively studied for their
importance in fuzzy logic and in some related areas [8].
Many authors studied the graph theory in connection with semigroups
and rings. Beck in [9] associated to any commutative ring R its zero
divisors graph G(R), whose vertices are the zero divisors of R, with
two vertices a, b jointed by an edge in case ab = 0. In [10], Jun and
Lee introduced the notion of associated graph of BCK/BCI-algebras
by zero divisors in BCK/BCI-algebras and verified some properties of
this graph.
The main object of this paper is to study the interplay of residuated-
theoretic properties of L with graph-theoretic properties of residuated
graph Γ(L).
In the following, some preliminary theorems and definitions are stated
from [5, 9, 11]. In section 3, we define the notion of zero divisors of a
nonempty subset A of a residuated lattice L and we obtain some related
results . After that we introduce the set of all zero divisors Dx of an
element x of L and we show that D0 = Ds(L)( the set of dense elements
of L). We associate a graph to a residuated lattice L, denoted by Γ(L),
and prove some theorems. We show Γ(L) is always a connected graph
and its diameter is at most two.

2. Preliminaries

At first we recall the definition of a residuated lattice. By a residuated
lattice, we mean an algebraic structure L=(L,∧,∨,⊗,→, 0, 1), where
(LR1) (L,∧,∨, 0, 1) is a bounded lattice,
(LR2) (L,⊗, 1) is a commutative monoid with the unit element 1,
(LR3) For all a, b, c ∈ L, c ≤ a→ b if and only if a⊗ c ≤ b.

In [8] , residuated lattices are called commutative, integral, residuated
l-monoids.

Let L be a residuated lattice. We have the following results.

Theorem 2.1. The following properties hold for all x, y, z ∈ L:
(lr1) x→ x = 1, 1→ x = x,
(lr2) x→ y ≤ (z → x)→ (z → y),
(lr3) x→ y ≤ (y → z)→ (x→ z),
(lr4) x ≤ y ⇔ x→ y = 1,
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(lr5) x→ (y → z) = y → (x→ z) = (x⊗ y)→ z,
(lr6) x⊗ (x→ y) ≤ y, x ≤ y → x,
(lr7) If x ≤ y, then y → z ≤ x→ z and z → x ≤ z → y,
(lr8) If (x ∨ y)⊗ a = (x⊗ a) ∨ (y ⊗ a).

For each a ∈ L and ∅ 6= A ⊆ L, we define ā := a → 0 and Ā = {x̄ :
x ∈ A}.
B(L) denotes the boolean algebra of all complemented elements in the
lattice L. We have a ∈ B(L) if and only if a ∨ ā = 1.[7]
A nonempty subset I of L is called an ideal of the lattice L, if it satisfies
the following properties:

(LI1) ∀a, b ∈ I, a ∨ b ∈ I,
(LI2) If a ∈ I, b ∈ L and b ≤ a, then b ∈ I.

A nonempty subset F of L is called a filter of L if
(F1) x ∈ F and x ≤ y imply y ∈ F ,
(F2) for all x, y ∈ F , x⊗ y ∈ F .

The set of all filters of L is denoted by F (L).
Let G be a graph with the vertex set V (G) and edge set E(G). The
edge which connects two distinct vertices x and y is denoted by x −
y. Note that, x − y and y − x are the same. A graph H is called a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph G = (V,E)
is connected , if any two distinct vertices x and y of G linked by a
path in G, otherwise the graph is disconnected. For distinct vertices
x and y of G, let d(x, y) be the length of the shortest path from x to
y. If there is no x − y path, then d(x, y) = ∞. The diameter of G is
diam(G) = sup{d(x, y) | x and y are distinct vertices of V (G)}. A tree
is a connected graph with no cycles. A graph G is called complete graph
if x − y ∈ E(G), for any distinct elements x, y ∈ V (G). A graph G is
called a star graph in case there is a vertex x in G such that every other
vertex in G is an end, connected to x and no other vertex by an edge.[11]

3. Residuated graph Γ(L)

From now on, in this paper, L=(L,∧,∨,⊗,→, 0, 1) or simply L is a
residuated lattice.

Definition 3.1. Let A be a nonempty subset of L. The set of all zero
divisors of A is denoted by ZA and is defined as follows:

ZA = {x ∈ L : a⊗ x = 0, ∀a ∈ A}.
Proposition 3.2. Let A and B be nonempty subsets of L. Then the
following statements hold:
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(1) 0 ∈ ZA,
(2) A ⊆ B implies ZB ⊆ ZA,
(3) If ZA − {1} 6= ∅, then ZZA−{1} ⊆ ZA,

(4) If 1 ∈ A, then ZA = {0},
(5) ZF = {0}, for all F ∈ F (L),
(6) 1 ∈ ZA if and only if A = {0} if and only if ZA = L,
(7) If 0 ∈ A, then ZA = ZA−{0},
(8) ZA∩ZB = ZA∨B = ZA∪B, where A∨B = {a∨b | a ∈ A and b ∈ B},
(9) If a ∈ B(L), then Z{a,ā} = {0}.

Proof. (1) The proof is easy by (LR3).
(2) Let x ∈ ZB. Then x⊗ b = 0, for all b ∈ B and so x⊗ a = 0, for all
a ∈ A. Thus x ∈ ZA, that is ZB ⊆ ZA.
(3) Assume that x ∈ ZZA−{1}, then x⊗ y = 0, for all y ∈ ZA−{1}. Put

y = t̄, for t ∈ ZA − {0}. Hence x ⊗ t̄ = 0, for all t ∈ ZA − {0}, and we
get that t̄ ≤ x̄, for all t ∈ ZA − {0}. Since t ∈ ZA − {0}, then t⊗ a = 0,
for all a ∈ A, i.e a ≤ t̄, for all a ∈ A. Thus we can obtain a ≤ x̄, that is
x⊗ a = 0, for all a ∈ A. Therefore x ∈ ZA.
(4) Let 1 ∈ A and x ∈ ZA. Then x = x⊗ 1 = 0, and so ZA = {0}.
(5) The proof follows from (4).
(6) Let 1 ∈ ZA. Then 1 ⊗ a = 0, for all a ∈ A and so A = {0}.
Conversely, let A = {0}. Then ZA = L. We get that 1 ∈ ZA. It is easy
to prove that ZA = L if and only if 1 ∈ ZA.
(7) Straightforward.
(8) By definition 3.1 we have:

x ∈ ZA ∩ ZB ⇔ x⊗ a = x⊗ b = 0, ∀a ∈ A, b ∈ B
⇔ x⊗ (a ∨ b) = 0, ∀a ∈ A, b ∈ B
⇔ x ∈ ZA∨B

Similarly, we can prove ZA ∩ ZB = ZA∪B.
(9) Let a ∈ B(L). Then a ∨ ā = 1. Hence by parts (4) and (8) we have
Z{a,ā} = Z{a}∪{ā} = Z{a∨ā} = Z{1} = {0}. �

By the following example we show that the inverse inclusion of Propo-
sition 3.2, part (3) and the converse of Proposition 3.2, part (9) may not
be true.

Example 3.3. (1) Let L = {0, a, b, c, d, e, f, 1}, with 0 < d < c < b < a <
1 and 0 < d < e < f < a < 1 and elements b, f and c, e are pairwise
incomparable. The binary operations ”→ ” and ”⊗ ” are given by the
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tables below:

⊗ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 c c c 0 d d a
b 0 c c c 0 0 d b
c 0 c c c 0 0 0 c
d 0 0 0 0 0 0 0 d
e 0 d 0 0 0 d d e
f 0 d d 0 0 d d f
1 0 a b c d e f 1

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 a a f f f 1
b e 1 1 a f f f 1
c f 1 1 1 f f f 1
d a 1 1 1 1 1 1 1
e b 1 a a a 1 1 1
f c 1 a a a a 1 1
1 0 a b c d e f 1

Then L is a residuated lattice (see [1]). Consider A = {c, d} , we have:
ZA = {0, d, e, f}, ZA = {a, b, c, 1} and ZZA−{1} = {0, d}. Thus ZA 6⊆
ZZA−{1}. Therefore the inverse inclusion of Proposition 3.2, part (3)

dose not hold.
(2) Let L = {0, a, b, c, 1}, with 0 < a, b < c < 1 but a, b are incomparable.
The binary operations ”→ ” and ”⊗ ” are given by the tables below:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then L is a residuated lattice (see [12]). Also we have B(L) = {0, 1} and
Z{a,ā} = Z{a,b} = {0} while a 6∈ B(L). So the converse of Proposition
3.2, part (8) dose not hold.

Lemma 3.4. Let A be a nonempty subset of L. Then ZA is an ideal of
the lattice L.
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Proof. Since 0 ∈ ZA, ZA is nonempty. Let x ≤ y, y ∈ ZA and x ∈ L.
Then y ⊗ a = 0, for all a ∈ A and so x ⊗ a = 0, for all a ∈ A. Thus
x ∈ ZA, hence (LI1) holds.
Now let x, y ∈ ZA. Then x ⊗ a = y ⊗ a = 0, for all a ∈ A. Hence
(x ∨ y) ⊗ a = (x ⊗ a) ∨ (y ⊗ a) = 0, for all a ∈ A, that is x ∨ y ∈ ZA.
Therefore ZA is an ideal of lattice L. �

For x ∈ L, the set Dx = {y ∈ L : Z{x,y} = {0}} is called the set of all
zero divisors of x. By Poroposition 3.2 part (2) we have, Z{x} = {0} if
and only if Dx = L.
By Proposition 3.2, we can get that D1 = L and 1 ∈ Dx, for all x ∈ L.

Lemma 3.5. Dx is a filter of L, for x ∈ L.

Proof. By Proposition 3.2 part (4), Z{1,x} = {0}, then 1 ∈ Dx i.e. Dx 6=
∅. We show that (F1) and (F2) hold.
(F1) Let y ≤ t, y ∈ Dx and t ∈ L. We show that t ∈ Dx. Let h ∈ Z{x,t}.
We get that h ⊗ x = h ⊗ t = 0. Since y ≤ t, we have h ⊗ y = 0. Thus
h ∈ Z{x,y} = {0}, that is h = 0. Therefore Z{x,t} = {0}, i.e. t ∈ Dx.
(F2) Let y1, y2 ∈ Dx and h ∈ Z{x,y1⊗y2}. Then we have

h⊗ (y1 ⊗ y2) = h⊗ x = 0,

Thus

(h⊗ y1)⊗ x = (h⊗ y1)⊗ y2 = 0.

Hence h ⊗ y1 ∈ Z{x,y2} = {0}, we get that h ⊗ y1 = 0. Thus h ⊗ x =
h⊗ y1 = 0, and we conclude h ∈ Z{x,y1} = {0}. Therefore h = 0, that is
Z{x,y1⊗y2} = {0} and so y1 ⊗ y2 ∈ Dx. �

The set of dense elements of a residuated lattice L is denoted by
Ds(L) = {x ∈ L : x̄ = 0}.

Theorem 3.6. D0 = Ds(L).

Proof. Let y ∈ D0. Then

{0} = Z{0,y} = {t : t⊗ y = 0} = {t : t ≤ ȳ}.

Since ȳ ∈ Z{0,y}, hence ȳ = 0. Thus y ∈ Ds(L), that is D0 ⊆ Ds(L).
Conversely, let y ∈ Ds(L). Then ȳ = 0. Since t ≤ ȳ, for all t ∈ Z{0,y},
so t = 0. Thus Z{0,y} = {0} i.e. y ∈ D0. Therefore D0 = Ds(L). �
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Definition 3.7. Γ(L) is called a residuated graph if vertices are just
the elements of L, and for distinct x, y ∈ L, there is an edge connecting
x and y if and only if Z{x,y} = {0}.
The edge which connects two vertices x and y is denoted by x− y.

Example 3.8. Let L = {0, a, b, c, d, 1}, with 0 < a, b < c < 1 and 0 < b <
d < 1. The binary operations ” → ” and ” ⊗ ” are given by the tables
below:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then L is a residuated lattice (see [13]). We have:

Z{0,a} = {0, b, d},
Z{a,1} = Z{b,1} = Z{c,1} = Z{d,1} = Z{c,d} = Z{b,c}
= Z{0,1} = Z{0,c} = Z{a,b} = Z{a,c} = Z{a,d} = {0}

Z{0,b} = Z{0,d} = Z{b,d} = {0, a}.

Therefore, E(Γ(L)) = {0 − 1, 0 − c, a − 1, b − 1, c − 1, d − 1, a − b, a −
c, a− d, b− c, c− d} and Γ(L) is given by Fig. 1.

Figure 1. Associated graph Γ(L) of L
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Theorem 3.9. Γ(L) is a connected graph with diameter at most two. .

Proof. Since Z{1,x} = {0} for all x ∈ L, then 1 is connected to all
points of L. Hence both vertices are connected by a path, and so Γ(L)
is connected. Let x, y be two vertices in Γ(L). If Z{x,y} = {0}, then
d(x, y) = 1. If Z{x,y} 6= {0}, then we have path (x − 1 − y) and so
d(x, y) = 2. Therefore diam(Γ(L)) = sup{d(x, y) | x, y ∈ L} ≤ 2. �

Theorem 3.10. Ds(L) = L− {0} if and only if Γ(L) is complete.

Proof. Let Ds(L) = L − {0}. For a, b ∈ L − {0} such that a 6= b, we
have:

Z{a,b} = {t : t⊗ a = 0, t⊗ b = 0}
= {t : t ≤ ā, t ≤ b̄}
= {t : t ≤ 0}
= {0}.

Also we can obtain Z{0,a} = {0} for a ∈ L − {0}. Therefore, Γ(L) is
complete.
Conversely, suppose that Γ(L) is complete. Then Z{0,x} = {0}, for
all x ∈ L − {0} and so D0 = L − {0}. Therefore by Theorem 3.6,
Ds(L) = L− {0}. �

Recall that nontrivial residuated lattice L is directly indecomposable
if and only if B(L) = {0, 1}(see [1]).
From Theorem 3.10 we have the following corollaries:

Corollary 3.11. If Γ(L) is complete, then B(L) = {0, 1} and moreover
L is subdirectly irreducible.

Corollary 3.12. If |L| > 2 and Ds(L) = L−{0}, then Γ(L) is not tree.

Theorem 3.13. If Γ(L) is tree, then |Ds(L)| = 1.

Proof. Let Γ(L) is tree. We know 1 ∈ Ds(L). Now suppose that
|Ds(L)| > 1. Then, there is 1 6= x ∈ L such that x̄ = 0. Thus by
Theorem 3.6 we have Z{0,x} = {0} and so (0− x− 1− 0) is cycle, which
is a contradiction, since Γ(L) is tree . Therefore |Ds(L)| = 1. �

The converse of the above theorem does not hold in general.

Example 3.14. Let L = {0, a, b, c, d, 1}, with 0 < a, b < c < 1 and
0 < b < d < 1, but a, b are incomparable. The binary operations ”→ ”
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and ”⊗ ” are given by the tables below:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then L is a residuated lattice (see [1]). We have:

Z{0,1} = Z{a,1} = Z{b,1} = Z{c,1} = Z{d,1} = Z{a,d} = Z{c,d} = {0}
Z{0,a} = {0, b, d}, Z{0,b} = {0, a, b, c}, Z{0,d} = Z{b,d} = {0, a}

Z{a,b} = Z{a,c} = Z{b,c} = Z{0,c} = {0, b}.
Therefore, Γ(L) is given by Fig. 2. Also it is easy to see that |Ds(L)| = 1
and Γ(L) is not tree.

Figure 2. Associated graph Γ(L) of L is not a tree

Example 3.15. On L = [0, 1], the real unit interval, for x, y ∈ L we
define x ⊗ y = max{0, x + y − 1} and x → y = min{1, y − x + 1},
Then (L,max,min,⊗,→, 0, 1) is a residuated lattice (called Lukasiewicz
structure). Thus, |Ds(L)| = 1 and for all x, y ∈ L we have :

Z{x,y} = [0, 1− x] ∩ [0, 1− y].

We can see that Γ(L) is tree and also it is not complete.

Theorem 3.16. Γ(L) is a star graph if it satisfies the following condi-
tions:



36 L. Torkzadeh, A. Ahadpanah and M. Behzadi

(i) |Ds(L)| = 1,
(ii) There is a ∈ L− {0} such that a ≤ x, for all x ∈ L− {0}.

Proof. By Z{1,x} = {0} for all x ∈ L, we have 1 is connected to all points.
Now suppose that x, y ∈ L − {1} and x 6= y. By (i) we have x̄, ȳ 6= 0
and so by (ii) we get a ≤ x̄, ȳ. Thus a ∈ Z{x,y}, i.e. Z{x,y} 6= {0}.
Hence Γ(L) is a star graph. �

Corollary 3.17. Under two conditions of the above theorem, Γ(L) is a
tree.

By the following examples we show that any two conditions listed in
Theorem 3.16, are necessary.

Example 3.18. (i) Consider the residuated lattice L = {0, a, b, c, d, 1} in
Example 3.14. Then there is not a ∈ L − {0} such that a ≤ x, for all
x ∈ L− {0}. Also Z{a,d} = {0}, thus Γ(L) is not a star graph.
(ii) Let L = {0, a, b, c, 1}, with 0 < a, b < c < 1. The binary operations
”→ ” and ”⊗ ” are given by the tables below:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Then L is a residuated lattice (see [13]). Also |Ds(L)| 6= 1 and a ≤ x,
for all x ∈ L− {0}. We have:

Z{a,b} = Z{a,c} = Z{b,c} = {0}.
Clearly, Γ(L) is not a star graph.

If A1 and A2 are two residuated lattices we have A1 ×A2 is a residu-
ated lattice. Consider ∅ 6= B ⊆ A1 × A2, then there exist ∅ 6= B1 ⊆ A1,
∅ 6= B2 ⊆ A2 such that B = B1 × B2, so ZA1×A2

B = ZA1
B1
× ZA2

B2
.

Since ZA1×A2

{(0,0),(0,x)} 6= {(0, 0)} for all x ∈ A2, (0, 0) does not connect

to (0, x) in the graph Γ(A1×A2). Thus this graph is not complete. Also

ZA1×A2

{(x,1),(1,0)} = ZA1×A2

{(1,0),(1,1)} = ZA1×A2

{(x,1),(1,1)} = {(0, 0)} for all x ∈ A1, we

obtain that Γ(A1 ×A2) is not tree and star.
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Let A1 and A2 be two residuated lattices such that A1 ∩ A2 = {1}.
We define ⊗ on A = A1 ∩A2 (see[8]).

x⊗ y =

 x⊗i y if x, y ∈ Ai, i = 1, 2,
x if x ∈ A1 − {1}, y ∈ A2,
y if x ∈ A2, y ∈ A1 − {1}.

x→ y =

 x→i y if x, y ∈ Ai, i = 1, 2,
y if x ∈ A2, y ∈ A1 − {1},
1 if x ∈ A1 − {1}, y ∈ A2.

Then A is a residuated lattice and we denote the ordinal sum A =
A1 ⊕A2.

Proposition 3.19. Let A1 and A2 be two residuated lattices, A = A1⊕
A2 and ∅ 6= B ⊆ A . Then

ZA
B =


A if B = {01},

ZA1
B if B 6= {01}, B ⊆ A1,

{01} o.w ,

Proof. Let B = {01}. Then by Proposition 3.2 part (6) ZA
B = A. Now let

B 6= {01} and B ⊆ A1. Assume that t ∈ ZA
B , we obtain that t⊗b = {01}

for all b ∈ B, by definition ⊗ on A we get that t ∈ A1 and so t⊗1b = {01}
for all b ∈ B. Therefore t ∈ ZA1

B . It is easy to see that ZA1
B ⊆ ZA

B . Thus

ZA1
B = ZA

B for ∅ 6= B ⊆ A1. If B 6= {01}, B ∩ A2 6= ∅ and t ∈ ZA
B ,

then t⊗ b = {01} for some b ∈ B ∩ A2 and so we get that t = 01. Thus
ZA
B = {01}. �

By the above proposition we can conclude that in Γ(A), every vertex
of A2 connects to all vertices of A1 and A2.

Corollary 3.20. Γ(A) is complete if and only if Γ(A1) is complete.

Let F be a filter of L. Define a binary relation θ on L as follows:
(a, b) ∈ θ if and only if a → b, b → a ∈ F if and only if (a → b) ⊗
(b → a) ∈ F . Then, θ is a congruence relation and it is called the
equivalence relation induced by F . If L/F = {[x] | x ∈ L}, then L/F
is a residuated lattice. Moreover, let Π be a partition of L. The graph
whose vertexes are the elements of Π and for distinct elements u, v ∈ Π,
there is an edge connecting u and v if and only if x− y ∈ E(Γ(L)), for
some x ∈ u and y ∈ v, is denoted by Γ(L)/Π. Now, we want to verify
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the relation between the Γ(L/F ) and Γ(L)/Π, where F is a filter of L,
θ is a congruence relation induced by F and Π is the partition induced
by θ.

Theorem 3.21. Let F be a filter of L and Π be the partition of L
induced by F .Then Γ(L)/Π is a subgraph of Γ(L/F ).

Proof. Clearly, V (Γ(L/F )) = {[x] | x ∈ L} = V (Γ(L)/Π). Let [x]− [y] ∈
E(Γ(L)/Π). Then there are u ∈ [x] and v ∈ [y], such that u − v ∈
E(Γ(L)). Hence, ZL

{u,v} = {0}. Let [t] ∈ ZL/F
{[x],[y]}. Since [u] = [x] and

[v] = [y], then [t ⊗ u] = [t] ⊗ [u] = [0] = [t] ⊗ [v] = [t ⊗ v] and so
(t ⊗ u)̄ and (t ⊗ v)̄ ∈ F . Put (t ⊗ u)̄ = a and (t ⊗ v)̄ = b, for some
a, b ∈ F , then (a⊗ b)⊗ t ∈ ZL

{u,v} = {0} and we get that a⊗ b ≤ t̄. Since

a, b ∈ F and F be a filter of L, we have t̄ ∈ F , that is [t] = [0]. Hence

Z
L/F
{[x],[y]} = {[0]}. Therefore, [x] − [y] ∈ E(Γ(L/F )) and so Γ(L)/Π is a

subgraph of Γ(L/F ). �

4. Conclusion and Future Research

We have introduced the set of all zero divisors of an element of a
residuated lattice L and investigated some properties. We have associ-
ated to any residuated lattice L the graph Γ(L), whose vertices are just
the elements of L, with two distinct vertices a and b joined by an edge
in case Z{a,b} = {0}. we have shown that Γ(L) is connected and found
some conditions that Γ(L) be complete. We have investigated some rela-
tionships between a residuated lattice L and the residuated graph Γ(L).
Our future work is how to find some kinds of filters in a residuated lattice
by the residuated graph Γ(L).
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