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PURE SUBMODULES OF BCK- MODULES

NARGES MOTAHARI AND TAHEREH ROUDBARI

ABSTRACT. In this paper by considering the notion of BC K-module,
we introduce pure BC' K- submodules and we prove some results by
it. In particular, we show that if X is a BCK- algebra, M is a
cyclic BCK-module and N a prime BC K- submodule of M, then
N is a pure BC'K-submodule of M.
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1. INTRODUCTION

In 1966, Imai and Iseki [5, 8] introduced BC K-algebras. This notion
was originated from two different ways: (1) set theory, and (2) classi-
cal and no classical propositional calculi. Certain algebraic structures,
for example Boolean- algebra, MV-algebras, are introduced as BCK-
algebras [7]. Every module is an action of ring on certain group. This
is, indeed, a source of motivation to study the action of certain alge-
braic structures on groups. BC'K-module is an action of BC'K-algebra
on commutative group. In 1994, the notion of BC K-module was intro-
duced by M. Aslam, H. A. S. Abujabal and A. B. Thaheem [2]. They
established isomorphism theorems and studied some properties of BC K-
modules. The theory of BC' K-modules was further developed by Z. Per-
veen and M. Aslam [12]. Now, in this paper we introduce the concept of
pure BC K- submodules and we prove some results by it. In particular,
we show that if X is a BCK- algebra, M a cyclic BCK-module and N
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a prime BCK-submodule of M, then N is a pure BC' K-submodule of
M.

2. PRELIMINARIES

Let us to begin this section with the definition of a BC' K-algebra.

Definition 2.1.[9] Let X be a set with a binary operation * and a
constant 0. Then (X,x*,0) is called a BCK- algebra if it satisfies the
following axioms:

(BCK1)((z *y) * (x*2)) x (zxy) =0,

(BCK2) (z* (xxy))*xy =0,

(BCK3) zxx =0,

(BCK4) 0%z =0,

(BCK5) zxy =y * 2z =0 imply that x =y, for all z,y,z € X.

We can define a partial ordering < by = < y if and only if x xy = 0.

If there is an element 1 of a BCK- algebra X, satisfying  x 1 = 0,
for all z € X, the element 1 is called unit of X. A BCK- algebra with
unit is called to be bounded.

Definition 2.2.[9] Let (X, %,0) be a BC' K- algebra and X be a nonempty
subset of X. Then X is called to be a subalgebra of X, if for any

x,y € Xo, x xy € Xg i.e., Xg is closed under the binary operation * of
X.

Definition 2.3.]9] A BCK- algebra (X, *,0) is said to be commuta-
tive , if it satisfies, = x (x xy) = y * (y x x), for all z,y in X.

Definition 2.4.[9] A BCK- algebra (X,x*,0) is called implicative, if
x=uaxx*(yxx), for all z,y in X.

Definition 2.5.[9] A nonempty subset A of BCK- algebra (X, x,0)
is called an ideal of X if it satisfies the following conditions:
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(i) 0 € A,
(i) Ve X)(Vy € A) (xxyc A=z € A).

Definition 2.6.[9] Suppose A is an ideal of BCK- algebra (X, x,0).
For any z,y in X, we denote x ~ y if and only if zxy € A and y*xz € A.
It is easy to see that, ~ is an equivalence relation on X.

Denote the equivalence class containing x by C, and % ={C,:z € X}.
Also we define Cy ¥ Cy = Cyyy, for all z,y in X .

Definition 2.7.[9] Let X be a lower BCK- semilattice and A be a
proper ideal of X. Then A is said to be prime if a Ab=0bx (bxa) € A
implies that a € A or b € A, for any a,b in X.

Lemma 2.8.[9] In a lower BC'K- semilattice (X, *,0) the following are
equivalent:

(i) I is a prime ideal,

(ii) T is an ideal and satisfies that for any A,B € I(X), A C I or
B C I whenever AN B C I.

Definition 2.9.[1] Let (X,*,0) be a BC'K-algebra, M be an abelian

group under + and let (x,m) — x - m be a mapping of X x M — M
such that

(i) (Ay)-m=z-(y-m),

(ii) - (m1 +m2) =2 -mq + - ma,

(iii) 0-m =0,

for all z,y € X,mi,my € M,where Ay = y* (y *xx). Then M is
called a left X-module.

If X is bounded, then the following additional condition holds:

(iv) 1-m =m.

A right X-module can be defined similarly.
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Lemma 2.10.[1] Every bounded implicative BC K-algebra is a mod-
ule.

Example 2.11.[1] Let A be a nonempty set and X = P(A) be the
power set of A. Then X is a bounded commutative BC K-algebra with
Ay =axznNy, forall z,y € X. Define z+y = (zUy) N (zNy), the
symmetric difference. Then M = (X, +) is an abelian group with empty
set () as an identity element and x + x = (). Define x - m = x N'm, for
any x,m € X. Then simple calculations show that :

(i) (@Ay)-m=(zny)nm=zn(ynm)=z-(y-m),
(ii) z - (m1 +ma) =z -mq + - ma,

(i) 0-m=0Nm=0=0,

(iv) 1-m = ANm=m. Thus X itself is an X-module.

Definition 2.12.[1] Let M;, My be X-modules. A mapping f: M; —
Mo is called a BC K- homomorphism, if for any my, mg € M7, we have :

(i) f(m1 +m2) = f(m1) + f(ma),
(ii) f(z-mq) = f(mq), for all x € X.
Ker(f) and Im(f) have usual meaning.

Theorem 2.13.]9] Let X be bounded implicative and M be an X-
module. If S is a A-closed subset of X, then the submodules of M, =
{™:me M,s € S} are on the form Ny where N = {n € M : } € N,}.

Definition 2.14.[10] Let X be a BCK-algebra and M be a group. Then
M is called a multiplication BC K-module if for each BC K-submodule
N of M, there exists a BC K-ideal I of X, such that N = I.M.

Definition 2.15.[1] Let M be a left BCK- module over X and N be a
BCK- submodule of M. Then we define [N : M] ={z € X |z-M C N}.
Also [N : M] is an ideal of X.
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Theorem 2.16.[10] Let X be a BC K-algebra, and M be a group. Then
M is a multiplication BC K-module if and only if for each submodule
Kof M, K=[K:M]|.M.

Definition 2.17.[11] Let M be a left BCK- module over X and N
be a submodule of M. Then N is said to be prime BC K-submodule of
M, if N # M and x -m € N, implies that m € N or x.M C N, for any
z in X and any m in M.

Example 2.18.[11] Let X = P(A = {1,2,...,n}), B; = {1,2,....,n} —
{i}, for i € {1,2,...,n}. Then P(B;) is a prime BCK- submodule of
P(A).

3. PURE BC K- SUBMODULE

The notion of BC K-module was introduced by M. Aslam, H. A. S.
Abujabal and A. B. Thaheem in 1994 [2]. In this section we define pure
BC K-submoduls and we obtain some theorems.

Definition 3.1. Let X be a BCK-algebra. X-submodule N of X-
module M is called pure if I.N = N(I.M, for every ideal I of X.

Example 3.2. Assume A = {1,2} and X = P(A). Simple calculations
and Example 2.11 show that all X-submodules of P(A) and all BCK-
ideals of P(A) are {0}, {0,{1}}, {0,{2}}, {0, {1}, {2},{1,2}}. Definition
3.1 shows the pure BCK-submodules of P(A) in this example are all
X-submodules.

Theorem 3.3. Let X be a BCK-algebra, M a cyclic X-module and N
a prime X-submodule of M. Then N is pure.

Proof: Assume that [ is an ideal of X. As I.LN C N()I.M is triv-
ial, we shall prove the reverse inclusion. Let n € N () I.M. Now since
M is a cyclic X-module, then there exists m € M such that M = X.m.
Therefore for ¢ = 1,2,...,k there exist x; € I and x € X such that
Zi?:l x;.(x.m) = Zle(:vi A x).m. Since z; Az < x; and z; € I we get
x; ANx € 1. Hence (z; Ax).m € I.m =n= Zle(a:i Azx).m € I.m.

So there exists 2’ € I such that n = 2’.m But n = 2/.m € N and N is
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prime, so m € N ( it follows that n = 2’.m € I.N) or 2’ € (N : M),
Hence n = 2/.m = (' A 2/).m = 2/.(a’.m) € I.N.

Lemma 3.4. Let X be bounded implicative, M be a X-module and S
be a A-closed subset of X. Then if J is a pure submodule of M, then
there exists a pure submodule N of M such that J = N;.

Proof: By Theorem 2.13, we get that J = N is a submodule of M.
Now we show that if J = Ng be a pure submodule of M,, then N is
a pure submodule of M. As I.N C N()I.M is trivial, we shall prove
the reverse inclusion. Let n € N () I.M. Then there exist x; € I and

m; € M such that n = Zle xim;. Ifn = Zle x;m; € NOI.M,
then M € Ns((I.M)s. Hence M € (I.N)s (because Ny

is pure). So by Theorem 2.17, we get that Z _,xim; =n € I.N and
the proof is complete.

Theorem 3.5. Let M be a left BCK-module over X. Then P is a
pure BCK-submodule in M containing N if and only if % is a pure

BC K-submodule in %

Proof: Necessity. Assume that I is an ideal of X. As I.L C LN 1.4
. C . . . P M
is trivial, we shall prove the reverse inclusion. Let p + N € (1.5 .
Then there exist z; € I and m; € M such that p+ N = Zl 1 Ti-(my; +
N) = SF (@m) + N = (O (zemy) + N e BM = 1M g,
p € I.M N P. Then by purity of P, we get p € I.P, hence p+ N € I.%.
Sufficiency. Assume that I is an ideal of X. As I.P C P(I.M is
trivial, we shall prove the reverse inclusion. Let p € P()I.M. Then
p+ N € %HI.M, and by purity of %, p+N e I.L sopel.Pandthe
proof is complete.

Theorem 3.6. Let M; and M5 be left BCK- modules over X and
¢ be a BCK- epimorphism from M; to Ms. Also N be a pure BCK-
submodule of M;. Then ¢(N) is a pure BCK- submodule of M.

Proof: Assume that I is an ideal of X. N is pure submodule of Mj,
then I.N = N(I.M;. So ¢(I.N) = ¢(N()I.M;). Hence I.¢(N) =
d(N)(I.6(My). Since ¢ is epimorphism, we get ¢(M1) = Ma. So ¢(N)
is pure submodule of M>.
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Corollary 3.7. Let X be a BC K-algebra, M be a left X-module and
N, be a pure X- submodule of M. Then % is a pure X -submodule of M.

Definition 3.8. We will say that a submodule N of M is idempo-
tent in M if N =[N : M|.N.

Example 3.9. In Example 3.2, by simple calculations we get {(), {1}, {2},
{1,2}} is idempotent in P(A).

Theorem 3.10. Let X be a BCK-algebra, M a X-module and N
be a submodule of M. If N is a pure submodule of M, then N is idem-
potent in M.

Proof: Since N is pure in M, we have that [N : M].N = N[N :
M].M = N, and hence N is idempotent in M.

Theorem 3.11. Let X be a BCK-algebra, M a multiplication X-
module and N a submodule of M. If [N : M] is an idempotent ideal,
then N is idempotent in M.

Proof: Obviously we get N =[N : M].M = [N : M]>.M = [N : M].N.
So N is idempotent in M.
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