PURE SUBMODULES OF BCK- MODULES

NARGES MOTAHARI AND TAHEREH ROUDBARI

Abstract

In this paper by considering the notion of $B C K$-module, we introduce pure $B C K$-submodules and we prove some results by it. In particular, we show that if X is a $B C K$ - algebra, M is a cyclic $B C K$-module and N a prime $B C K$-submodule of M, then N is a pure $B C K$-submodule of M.

Key Words: $B C K$ - algebra, $B C K$ - module, multiplication $B C K$ - module, prime $B C K$ submodule, pure $B C K$ - submodule.
2010 Mathematics Subject Classification: 06D99, 06F35,08A30.

1. Introduction

In 1966, Imai and Iseki [5, 8] introduced $B C K$-algebras. This notion was originated from two different ways: (1) set theory, and (2) classical and no classical propositional calculi. Certain algebraic structures, for example Boolean- algebra, $M V$-algebras, are introduced as $B C K$ algebras [7]. Every module is an action of ring on certain group. This is, indeed, a source of motivation to study the action of certain algebraic structures on groups. $B C K$-module is an action of $B C K$-algebra on commutative group. In 1994, the notion of $B C K$-module was introduced by M. Aslam, H. A. S. Abujabal and A. B. Thaheem [2]. They established isomorphism theorems and studied some properties of $B C K$ modules. The theory of $B C K$-modules was further developed by Z. Perveen and M. Aslam [12]. Now, in this paper we introduce the concept of pure $B C K$ - submodules and we prove some results by it. In particular, we show that if X is a $B C K$ - algebra, M a cyclic $B C K$-module and N

[^0]a prime $B C K$-submodule of M, then N is a pure $B C K$-submodule of M.

2. Preliminaries

Let us to begin this section with the definition of a $B C K$-algebra.
Definition 2.1.[9] Let X be a set with a binary operation $*$ and a constant 0 . Then $(X, *, 0)$ is called a $B C K$ - algebra if it satisfies the following axioms:
$(\mathrm{BCK} 1)((x * y) *(x * z)) *(z * y)=0$,
(BCK2) $(x *(x * y)) * y=0$,
(BCK3) $x * x=0$,
(BCK4) $0 * x=0$,
(BCK5) $x * y=y * x=0$ imply that $x=y$, for all $x, y, z \in X$.
We can define a partial ordering \leq by $x \leq y$ if and only if $x * y=0$.
If there is an element 1 of a $B C K$ - algebra X, satisfying $x * 1=0$, for all $x \in X$, the element 1 is called unit of X. A $B C K$ - algebra with unit is called to be bounded.

Definition 2.2.[9] Let $(X, *, 0)$ be a $B C K$ - algebra and X_{0} be a nonempty subset of X. Then X_{0} is called to be a subalgebra of X, if for any $x, y \in X_{0}, x * y \in X_{0}$ i.e., X_{0} is closed under the binary operation $*$ of X.

Definition 2.3.[9] A $B C K$ - algebra $(X, *, 0)$ is said to be commutative , if it satisfies, $x *(x * y)=y *(y * x)$, for all x, y in X.

Definition 2.4.[9] A $B C K$ - algebra $(X, *, 0)$ is called implicative, if $x=x *(y * x)$, for all x, y in X .

Definition 2.5.[9] A nonempty subset A of $B C K$ - algebra ($X, *, 0$) is called an ideal of X if it satisfies the following conditions:
(i) $0 \in A$,
(ii) $(\forall x \in X)(\forall y \in A)(x * y \in A \Rightarrow x \in A)$.

Definition 2.6.[9] Suppose A is an ideal of $B C K$ - algebra $(X, *, 0)$. For any x, y in X , we denote $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$. It is easy to see that, \sim is an equivalence relation on X .

Denote the equivalence class containing x by C_{x} and $\frac{X}{A}=\left\{C_{x}: x \in X\right\}$. Also we define $C_{x} * C_{y}=C_{x * y}$, for all x, y in X.

Definition 2.7.[9] Let X be a lower $B C K$ - semilattice and A be a proper ideal of X. Then A is said to be prime if $a \wedge b=b *(b * a) \in A$ implies that $a \in A$ or $b \in A$, for any a, b in X .

Lemma 2.8.[9] In a lower $B C K$ - semilattice $(X, *, 0)$ the following are equivalent:
(i) I is a prime ideal,
(ii) I is an ideal and satisfies that for any $A, B \in I(X), A \subseteq I$ or $B \subseteq I$ whenever $A \cap B \subseteq I$.

Definition 2.9.[1] Let $(X, *, 0)$ be a $B C K$-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that
(i) $(x \wedge y) \cdot m=x \cdot(y \cdot m)$,
(ii) $x \cdot\left(m_{1}+m_{2}\right)=x \cdot m_{1}+x \cdot m_{2}$,
(iii) $0 \cdot m=0$,
for all $x, y \in X, m_{1}, m_{2} \in M$, where $x \wedge y=y *(y * x)$. Then M is called a left X-module.
If X is bounded, then the following additional condition holds:
(iv) $1 \cdot m=m$.

A right X-module can be defined similarly.

Lemma 2.10.[1] Every bounded implicative $B C K$-algebra is a module.

Example 2.11.[1] Let A be a nonempty set and $X=P(A)$ be the power set of A. Then X is a bounded commutative $B C K$-algebra with $x \wedge y=x \cap y$, for all $x, y \in X$. Define $x+y=(x \cup y) \cap(x \cap y)^{\prime}$, the symmetric difference. Then $M=(X,+)$ is an abelian group with empty set \emptyset as an identity element and $x+x=\emptyset$. Define $x \cdot m=x \cap m$, for any $x, m \in X$. Then simple calculations show that:
(i) $(x \wedge y) \cdot m=(x \cap y) \cap m=x \cap(y \cap m)=x \cdot(y \cdot m)$,
(ii) $x \cdot\left(m_{1}+m_{2}\right)=x \cdot m_{1}+x \cdot m_{2}$,
(iii) $0 \cdot m=\emptyset \cap m=\emptyset=0$,
(iv) $1 \cdot m=A \cap m=m$. Thus X itself is an X-module.

Definition 2.12.[1] Let M_{1}, M_{2} be X-modules. A mapping $f: M_{1} \longrightarrow$ M_{2} is called a $B C K$ - homomorphism, if for any $m_{1}, m_{2} \in M_{1}$, we have :
(i) $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$,
(ii) $f\left(x \cdot m_{1}\right)=x \cdot f\left(m_{1}\right)$, for all $x \in X$.
$\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ have usual meaning.
Theorem 2.13.[9] Let X be bounded implicative and M be an X module. If S is a \wedge-closed subset of X, then the submodules of $M_{s}=$ $\left\{\frac{m}{s}: m \in M, s \in S\right\}$ are on the form N_{s} where $N=\left\{n \in M: \frac{n}{1} \in N_{s}\right\}$.

Definition 2.14.[10] Let X be a BCK-algebra and M be a group. Then M is called a multiplication $B C K$-module if for each $B C K$-submodule N of M, there exists a $B C K$-ideal I of X, such that $N=I . M$.

Definition 2.15.[1] Let M be a left $B C K$ - module over X and N be a $B C K$ - submodule of M. Then we define $[N: M]=\{x \in X \mid x \cdot M \subseteq N\}$. Also $[N: M]$ is an ideal of X.

Theorem 2.16.[10] Let X be a $B C K$-algebra, and M be a group. Then M is a multiplication $B C K$-module if and only if for each submodule K of $M, K=[K: M] . M$.

Definition 2.17.[11] Let M be a left $B C K$ - module over X and N be a submodule of M. Then N is said to be prime $B C K$-submodule of M, if $N \neq M$ and $x \cdot m \in N$, implies that $m \in N$ or $x . M \subseteq N$, for any x in X and any m in M.

Example 2.18.[11] Let $X=P(A=\{1,2, \ldots, n\}), B_{i}=\{1,2, \ldots, n\}-$ $\{i\}$, for $i \in\{1,2, \ldots, n\}$. Then $P\left(B_{i}\right)$ is a prime $B C K$ - submodule of $P(A)$.

3. Pure $B C K$ - submodule

The notion of BCK-module was introduced by M. Aslam, H. A. S. Abujabal and A. B. Thaheem in 1994 [2]. In this section we define pure $B C K$-submoduls and we obtain some theorems.

Definition 3.1. Let X be a $B C K$-algebra. X-submodule N of X module M is called pure if $I . N=N \bigcap I . M$, for every ideal I of X.

Example 3.2. Assume $A=\{1,2\}$ and $X=P(A)$. Simple calculations and Example 2.11 show that all X-submodules of $P(A)$ and all $B C K$ ideals of $P(A)$ are $\{\emptyset\},\{\emptyset,\{1\}\},\{\emptyset,\{2\}\},\{\emptyset,\{1\},\{2\},\{1,2\}\}$. Definition 3.1 shows the pure $B C K$-submodules of $P(A)$ in this example are all X-submodules.

Theorem 3.3. Let X be a $B C K$-algebra, M a cyclic X-module and N a prime X-submodule of M. Then N is pure.

Proof: Assume that I is an ideal of X. As $I . N \subseteq N \bigcap I . M$ is trivial, we shall prove the reverse inclusion. Let $n \in N \bigcap I . M$. Now since M is a cyclic X-module, then there exists $m \in M$ such that $M=X . m$. Therefore for $i=1,2, \ldots, k$ there exist $x_{i} \in I$ and $x \in X$ such that $\sum_{i=1}^{k} x_{i} .(x . m)=\sum_{i=1}^{k}\left(x_{i} \wedge x\right) . m$. Since $x_{i} \wedge x \leq x_{i}$ and $x_{i} \in I$ we get $x_{i} \wedge x \in I$. Hence $\left(x_{i} \wedge x\right) . m \in I . m \Rightarrow n=\sum_{i=1}^{k}\left(x_{i} \wedge x\right) . m \in I . m$.
So there exists $x^{\prime} \in I$ such that $n=x^{\prime} . m$ But $n=x^{\prime} . m \in N$ and N is
prime, so $m \in N$ (it follows that $\left.n=x^{\prime} . m \in I . N\right)$ or $x^{\prime} \in(N: M)$, Hence $n=x^{\prime} . m=\left(x^{\prime} \wedge x^{\prime}\right) \cdot m=x^{\prime} .\left(x^{\prime} . m\right) \in I . N$.

Lemma 3.4. Let X be bounded implicative, M be a X-module and S be a \wedge-closed subset of X. Then if J is a pure submodule of M_{s}, then there exists a pure submodule N of M such that $J=N_{s}$.

Proof: By Theorem 2.13, we get that $J=N_{s}$ is a submodule of M_{s}. Now we show that if $J=N_{s}$ be a pure submodule of M_{s}, then N is a pure submodule of M. As $I . N \subseteq N \bigcap I . M$ is trivial, we shall prove the reverse inclusion. Let $n \in N \bigcap I . M$. Then there exist $x_{i} \in I$ and $m_{i} \in M$ such that $n=\sum_{i=1}^{k} x_{i} \cdot m_{i}$. If $n=\sum_{i=1}^{k} x_{i} \cdot m_{i} \in N \bigcap I . M$, then $\frac{\sum_{i=1}^{k} x_{i} \cdot m_{i}}{1} \in N_{s} \bigcap(I . M)_{s}$. Hence $\frac{\sum_{i=1}^{k} x_{i} \cdot m_{i}}{1} \in(I . N)_{s}$ (because N_{s} is pure). So by Theorem 2.17, we get that $\sum_{i=1}^{k} x_{i} \cdot m_{i}=n \in I . N$ and the proof is complete.

Theorem 3.5. Let M be a left $B C K$-module over X. Then P is a pure $B C K$-submodule in M containing N if and only if $\frac{P}{N}$ is a pure $B C K$-submodule in $\frac{M}{N}$.

Proof: Necessity. Assume that I is an ideal of X. As $I \cdot \frac{P}{N} \subseteq \frac{P}{N} \bigcap I \cdot \frac{M}{N}$ is trivial, we shall prove the reverse inclusion. Let $p+N \in \frac{P}{N} \bigcap I \cdot \frac{M}{N}$. Then there exist $x_{i} \in I$ and $m_{i} \in M$ such that $p+N=\sum_{i=1}^{k} x_{i} .\left(m_{i}+\right.$ $N)=\sum_{i=1}^{k}\left(x_{i} \cdot m_{i}\right)+N=\left(\sum_{i=1}^{k}\left(x_{i} \cdot m_{i}\right)\right)+N \in \frac{I \cdot M}{N}=I \cdot \frac{M}{N}$. So $p \in I . M \cap P$. Then by purity of P, we get $p \in I . P$, hence $p+N \in I \cdot \frac{P}{N}$. Sufficiency. Assume that I is an ideal of X. As $I . P \subseteq P \bigcap I . M$ is trivial, we shall prove the reverse inclusion. Let $p \in P \bigcap I . M$. Then $p+N \in \frac{P}{N} \bigcap I \cdot \frac{M}{N}$, and by purity of $\frac{P}{N}, p+N \in I \cdot \frac{P}{N}$, so $p \in I . P$ and the proof is complete.

Theorem 3.6. Let M_{1} and M_{2} be left $B C K$ - modules over X and ϕ be a $B C K$ - epimorphism from M_{1} to M_{2}. Also N be a pure $B C K$ submodule of M_{1}. Then $\phi(N)$ is a pure $B C K$ - submodule of M_{2}.

Proof: Assume that I is an ideal of $X . N$ is pure submodule of M_{1}, then $I . N=N \bigcap I . M_{1}$. So $\phi(I . N)=\phi\left(N \bigcap I . M_{1}\right)$. Hence $I . \phi(N)=$ $\phi(N) \bigcap I \cdot \phi\left(M_{1}\right)$. Since ϕ is epimorphism, we get $\phi\left(M_{1}\right)=M_{2}$. So $\phi(N)$ is pure submodule of M_{2}.

Corollary 3.7. Let X be a $B C K$-algebra, M be a left X-module and N, be a pure X-submodule of M. Then $\frac{M}{N}$ is a pure X-submodule of M.

Definition 3.8. We will say that a submodule N of M is idempotent in M if $N=[N: M] . N$.

Example 3.9. In Example 3.2, by simple calculations we get $\{\emptyset,\{1\},\{2\}$, $\{1,2\}\}$ is idempotent in $P(A)$.

Theorem 3.10. Let X be a $B C K$-algebra, M a X-module and N be a submodule of M. If N is a pure submodule of M, then N is idempotent in M.

Proof: Since N is pure in M, we have that $[N: M] . N=N \bigcap[N$: $M] . M=N$, and hence N is idempotent in M.

Theorem 3.11. Let X be a $B C K$-algebra, M a multiplication X module and N a submodule of M. If $[N: M]$ is an idempotent ideal, then N is idempotent in M.

Proof: Obviously we get $N=[N: M] . M=[N: M]^{2} \cdot M=[N: M] . N$. So N is idempotent in M.

Acknowledgments

The authors are extremely grateful to the referees for giving them many valuable comments and helpful suggestions which helps to improve the presentation of this paper.

References

[1] H .A .S. Abujabal, M. Aslam and A. B. Thaheem, On actions of BCK- algebras on groups, Panamerican Mathematical Journal, 4 (1994), 43-48.
[2] H. A. S. Abujabal, M. A. obaid and A. B. Thaheem, On annihilators of BCKalgebras, Czechoslovak Mathematical Journal, 45 (1995) 727-735.
[3] M. Bakhshi, M. M. Zahedi and R. A. Borzooei, Fuzzy (positive, weak implicative) Hyper BCK-ideal. Iranian Journal of fuzzy system , 1 (2004), 63-79.
[4] R. A. Borzooei, J. Shohani and M. Jafari, Extended BCK-module, World Applied Sciences Journal, 14 (2011), 1843-1850.
[5] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV, Proc. Japan Academy, 42 (1996), 19-22.
[6] B. Imran and M. Aslam, On certain BCK-modules, Southest Asian Bulletin of Mathematics, 34 (2010), 1-10.
[7] A. Iorgulescu, Algebras of logic as BCK-algebras, Bucharest: Editura ASE (2008).
[8] K. Iseki, An algebraic related with a propositional calculus, Proc. Japan Acad, 42 (1966), 26-29.
[9] J. Meng and Y. B. Jun, BCK-algebras, Korea: Kyungmoon Sa Co (1994).
[10] N. Motahari nad T. Roudbari, Topics on multiplication BCK-modules, Proceeding of the 22th Algebra seminar, Tarbiat Moallem University, Sabzevar,Iran,
[11] N. Motahari and T. Roudbari, Prime BCK-sub modules of BCK-modules, to appear in AUA Journal,
[12] Z. Perveen, M. Aslam and A. B. Thaheem, On BCK- modules, Southeast Asian Bulletin of Mathematics, 30 (2006), 317-329.

N. Motahari

Department of Mathematics, Islamic Azad University, Kahnooj Branch, Kerman, Iran
Email: narges.motahari@yahoo.com

T. Roudbari Lor

Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran
Email: T.roodbarylor@yahoo.com

[^0]: Received: 21 August 2013 , Accepted: 12 April 2014. Communicated by Jianming Zhan;
 *Address correspondence to N.Motahari; E-mail:narges.motahari@yahoo.com
 (C) 2014 University of Mohaghegh Ardabili.

