Journal of Hyperstructures 2 (2) (2018), 185-200.
ISSN: 2251-8436 print/2322-1666 online

BAYES AND EMPIRICAL BAYES ESTIMATION OF
PARAMETER k IN NEGATIVE BINOMIAL
DISTRIBUTION

MASOUD GANJI*, NASRIN EGHBALI AND MASOUD AZIMIAN

ABSTRACT. In this paper, the problem of estimating the number
of successes, k, in a negative binomial distribution for both known
and unknown probability p of success are examined by a Bayesian
point of view. Also, we introduce two estimations for the parameter
of negative bionomial distribution.
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1. INTRODUCTION

Let X1, X5,..., X,, be a random Variables of size n from a negative
binomial distribution N B(K, P), where K and P are independent. The
probability density function (briefly, pdf) of X; is

(1.1) f(zilk, p) = (xﬁkf_ 1)pk(1—p)'"“,

;i =0,1,2,..., ke {1,2,3,..}, pe(0,1).

The negative binomial distribution is an univariate discrete proba-
bility model with one variable, that has many applications in different
fields such as ecology, biology and genetics. Also for modeling count
data with over dispersion (that is sample variance exceeds the mean
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sample), a popular and convenient model is the negative binomial dis-
tribution (see [1], [2], [3]). The usual problem in the negative binomial
situation is to estimate the probability of success p. However, in other
instances, the number of success k& may be the unknown parameter.
There are different ways to estimate this parameter, for example the
method of moments estimation (MME), maximum likelihood estima-
tion (MLE) and the Bayes method. Many researchers in each turn, have
obtained estimations for parameters of negative binomial distribution.
For example, Piegorsch [9] used the maximum likelihood estimation for
parameter k in this distribution; Clark and Perry [3] used the moment
and maximum extended quasi-likelihood estimators for estimation k£ and
Adamids [1], used the EM algorithm for the parameters of the negative
binomial distribution. These methods are classical methods. Ganji [6],
in a more general case, investigated Bayes estimation of parameters of
generalized negative binomial distribution and it’s applications; he has
fixed the parameter k and then estimated the parameter p (probability
of success). In this research, we are going to estimate the parameter k.
We are interested in Bayes and Empirical Bayes estimations of param-
eter k in two cases of known and unknown parameter p. We consider a
left-truncated prior distribution for &£ and a beta prior distribution for p
and suggest choosing values for the hyper parameters of the prior distri-
bution. In Section 2, we describe the probability models that are needed
in this work. Bayes estimations for k are proposed in section 3. Empiri-
cal Bayes estimations for k are investigeted in section 4. We provide an
example in section 5. In section 6 simulation study are presented.

2. THE MODELS

Let X1, Xo, ..., X, ~ NB(k,p) and the pdf of X is given in (1.1). The
likelihood function of {x1,x2,...,x,} given k > 1 and p, is given by:

"
>

2 v, +k—1 nk
( 4 )pk(l—p)“

(2.1) L(w1, @9, wnlk,p) = [ |

T
i=1 v

Since K is the number of success in the negative binomial experiment,
so k > 1. We consider a left-truncated distribution for K for which the
probability density function, is given by:

e~ \k

(2:2) g(k) = m7

ke{1,2,3,..},
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where the hyper parameter A is a preselected integer that is chosen to re-
flect our beliefs about the expected value of &k, because the expected value
of k equals approximately A. In order to construct the Bayes estimation
for k, the posterior pdf of K given the observations {z1,z2,...,z,} is
derived in this section under the assumption of known and unknown p,
separately.

2.1. Case 1: p is unknown. Assume that p is an unknown parameter.
A suitable prior distribution for p is the beta distribution with hyper
parameters alpha and beta, that is P ~ beta(c, 3). The prior pdf of P

is given by:
(2.3) w(p) = mzﬂ“l(l -p)’ pe(0,1)

where the hyper parameters o and [ are preselected positive numbers
that should be chosen according to our beliefs about the expected value
of the true p, because the expected value of p equals o%rﬂ If we believe
that the actual value of the p is small, less than 0.5 then, let o%rﬂ <1/2
, therefore, it is recommended to set 8 > «. If the actual value of the p
is moderate, around 0.5, then o%ﬁ = 1/2, therefore, it is recommended
to set f = «, and if the the actual value of the p is large, greater than
0.5, then aiﬁ > 1/2, therefore it is recommended to set f < a.

It is mentioned that in Bayesian Statistics we use the Bayes rule to
obtain posterior distribution. Here we introduce this rule in the following

theorem.

Theorem 2.1. (Bayes rule) Let Ay, Ao, ... be a partition of the sample
space, and let B be any set. Then for each i =1,2, ...,
p(B|Ai)p(A:)

o0

p(Ai|B) = .
;p(B!Aj)P(Aj)

Now for a parameter 6, if we denote the prior distribution by 7(6)
and the sampling distribution by f(z|#), then the posterior distribution
of 6 for the given sample x is:

f(]0)(6)

m(f|z) = m(@)

I

where m(x) is the marginal distribution of X, that is

m(z) = / F(x]0)m(6)db.
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In this case, the parameter p is unknown, so we have two parameters
k and p in the probability density function of X;. Now to obtain the
Bayes point estimation for this parameters, we have to first find the joint
posterior pdf of K and P:

Lemma 2.2. The joint posterior pdf of K and P given observations

{z1,22, - ,2n}, is given by:
(2.4)
- [ v+ k-1
h(k,p’m‘l,...,wn):cilpnk+a 1(1_p)Tn+ﬁ 1)];!1—[1< i . )
1=

n

where T, = > x; and C1 is normalizing constant:
i=1

= N I(T, k . _
(25) C’lf (T, + B)T(nk + «) H(xl—kk 1)
1=1

k" (T, + 8+ a + nk)
Proof. Using theorem 2.1 we have:

L(x1,x9, ..., xn|k, p)g(k)w(p)
Jo 32 L,z zalle g ()w(p)dp

_ ipoﬁrknfl(l B p)TkJrB—lLk T kta—1 .
Cl k! 1 Xy

1=

h(k,p|l’1,$2, >$n) =

Lemma 2.3. The marginal posterior pdf of K given observations

{$1,$2, o 7:1:71};

is given by:

k D(nk+a)D(T, zi+k—1
(2.6) hmmhwmzé%&@wmﬁn< )

Ty

where k > 1.
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Proof. By taking the integral of h(k, p|x1, x2, ..., x,) over p, the marginal
density function of K is obtained:

1
hK(k|l'1,$2,...,fEn) :/ h(kap|xlax27"‘7'xn)dp
0

1 /\7’“ " (k-i-l’z‘—l >F(kn+a)F(Tn+ﬂ)

“ Gkl i T(a+B+T, +kn)
]
Lemma 2.4. The marginal posterior pdf of P given observations
{.’L’l,fEQ, e 7xn}7
s given by:
C! — _
(2.7) hp(plet, ..., 2n) = #pa (1 7p)Tn+/3 L
n J—

where k > 1, p € (0,1) and Ca(p ): <$z+x/f ! >
Proof. The proof is similar to the proof of the Lemma 2.3, but here we
have to replace the integral by sum. O

Since the likelihood function L(xi,xg,--- ,x,|k,p) is less than one
and, also the prior g(k) and w(p) are proper, so the denominator of
h(k,plz1,x2,...,z,) which equals C1, is less than 1. So the normalizing

constant C7 is convergent. Similarly, the convergence of Cy(p) can be
obtained. As a result C1 and Ca(p) can be approximated by the finite
sums:

(2.8) Cr=> S(k)
k=1

and
(2.9) Calp) = SV (h),

k=1

_ N Db+ o)D(TutB) 17 (wi+k—1
where S(k) = FW}I( J;Z )’ Y(k) =

k

n

H xl+k 1
g (%)
z is the first integer that satisfies the inequality |S(z+ 1) S(z)| < eand
q is the first integer that satisfies in the inequality |Y (¢+1) =Y (q)| < €

where € is a very small positive number, for instance 1076.
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2.2. Case 2: p is known: Suppose that p is known. In this case the
posterior pdf of K is given in the following Lemma:

Lemma 2.5. The posterior pdf of K given observations {x1,x2, - ,xn}
and p, is given by:

1 N mtk—1
(210) hK(k?|!I71a ..-,l'rwp) — Ca(p) K @1;[1 ( T )

where k > 1 and Ca(p) is the normalizing constant defined in Lemma
2.4.

Proof. Using Theorem 2.1, the posterior density function of K is ob-
tained:

L(l’l, . xn‘kvp)g(k)
=1

- Czl(p) (p:j)k i < T )

i=1

hi(k|lxi,...;xn,p) =

O

2.3. Case 2: p is known: Suppose that p is known. In this case the
posterior pdf of K is given in the following Lemma:

Lemma 2.6. The posterior pdf of K given observations {x1,z2, - ,zp}
and p, is given by:

1 N mtk—d
(2.11) hi(k|lxi,...;xn,p) = Ca(p) &I zl;ll < i )

where k > 1 and Cy(p) is the normalizing constant defined in Lemma
2.4.

Proof. Using Theorem 2.1, the posterior density function of K is ob-
tained:

L(l'l, ceey xn‘kvp)g(k)
kz L(x1, ..., zak, p)g (k)
=1

_ C;(p) (p:;)!\)k 12[ ( 2 +xlj -1 >

hK(k|.’IJ1, seey xn,p) =
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3. Bayes Point Estimation of &

In this section, Bayes estimation for k are proposed under the squared
error loss function, that is the mean of the posterior density function.
Both cases, known and unknown p are considered, separately.

3.1. Case 1: p is Unknown. Assume that p is an unknown parameter.

Lemma 3.1. The Bayes point estimation (/2:1) of k is:

- r(an) kta) [ wetke
(3.1) fey = Zk Tn+nﬁ+a+nk)n< z; )

Proof. As it is mentioned, the Bayes point estimation of k under the
squared error loss function is the the mean of the marginal posterior pdf
of k in (2.6). So we have:

ki = Ep, (K)

= Z th(k‘xb 7xn)

Ook)\k L(nk + «) ﬁ z, +k—1
o P k' T(T, + B + o + nk) paler T;

Bayes point estimation of p is given in the following results:

Lemma 3.2. The Bayes point estimation (p1) of p is:

A F(Tn'i‘ﬁ) I'(nk+a+1) n i+k—1
(3'2> p1= Z L(Tn+B+a+nk+1) H (x z; )
1

Proof. Bayes point estimation of p under the squared error loss function
is the mean of the marginal posterior pdf of p in (2.7). So we have:

p1 = Enp(P)
1
:/O phy(plei, ..., n)dp
DT+ B) = AF I(nk +a+1) ﬁ(z,Jrk—l)

Gt =K D(Th+f+a+nk+1)

=1
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3.2. Case 2: p is known: Assume that p is a known parameter.

Lemma 3.3. The Bayes point estimation (1232) of k is:

~

0 ny\k T z; _
(33) kQ == 021(p) kzl k(pk)l\) ]._[1 ( z";’j 1).

1=

Proof. Bayes point estimation of k£ under the squared error loss function
is the mean of the marginal posterior pdf of k£ in (2.10). So we have:

ko = Ex (k)

= kK(k|x1,~-;xn7p)

0

It should be mentioned that the proposed Bayes estimations 1%1, ko
and pp are finite because the priors of k and p are proper with the finite
mean, and the likelihood is bounded by one. Wald [7] showed that,
Bayesian posterior mean estimations that arise from proper priors, are
always admissible. So 12:1, I;Q and p; are admissible estimators.

4. Empirical Bayes Estimation of &

In this section, a procedure for constructing empirical Bayes estima-
tions for k is provided in both cases: known and unknown p, separately.
M M FE technique is used to estimate the hyper parameters A, a and £.

4.1. Case 1: p is unknown. By evaluating

1 00
where f(z|k,p), g(k) and w(p) are defined in (1.1), (2.2) and (2.3) re-
spectively, the marginal pdf of X, is:

1
Fx(z) = /
k=
N

+ B)
T(a)T(B)

o0

f(x|k, p)w(p)g(k)dp

(r+k—1 e\ Dla+ kT3 +2)
Z( x >Xk!<

P l—eMT(x+B8+a+k)
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It is difficult to calculate the moments by using the pdf of X, so in the
following Lemma we obtain it:

Lemma 4.1. First, second and third moment of X are:

A p
E(X)=
(X) 1—e?)(a—1)

pxh = —2 eyl

(4.1) (1 —)\e ) (ag 1) ((ZB— 21)
3\ +
E(X?°) = =y (a—l)[1+(6+3>\)(a—2)
2 (B+2)(B+1)
+(A°+ 06X+ 6)m].

Proof. Using the well-known identity Ex(X) = Ex p[E(X|k,p)], first,
second, and third moment of X are obtained. O

In order to construct the empirical Bayes estimation for k, it is neces-
sary to estimate the hyper parameters A\, « and 5. The M M E values for
A, a and S can be obtained by solving the following system of nonlinear
equations:

> X
B(X) ==,
> X2
(42> E(XQ) — v.'=1n ,
> X3
E(X3) — i=1

The empirical Bayes estimation El(emp) is same as Bayes estimation k;
in (3.1), but here, hyper parameters A\, @ and (3 are replaced by M M E
values.

4.2. Case 2: p is known: By evaluating > oo f(z|k,p)g(k), where
f(z|k,p) and g(k) are defined in (1.1) and (2.2) respectively, the mar-
ginal pdf of X is:

(r+k—1 . e
(1.3 =3 (" e ey
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In this case in order to obtain the empirical bayes estimation of k, we
have to estimate the hyper parameter A, so the M MFE of X is obtained
in the following lemma.

Lemma 4.2. The MME of X\ is:

__pTnp
—pT), (1—-p)n
pTn + (1 _P)nQ(%)

(4.4) A=

(1-p)n ’

n

where T,, = > X; and Q(A) is the product log function A, which is
i=1

defined as the value of x that satisfies the equation xe® = A.

Proof. Using the well-known identity Ex(X) = Ex, p[E(X|k,p)], first
moment of X is obtained and the M M E of X is obtained by solving the
following equation:

(1-p) A _ i
p 1l—e?

n
X;
=1
n

O

The empirical Bayes point estimation ka(emp) is ko, defined in (3.3)
with X instead of .
It should be mentioned that, since k is an integer, the nearest integer
for the proposed estimations ki, ki(emp), ks, and ks(emp) is taken as
the estimator of k.

5. Illustrative Example

Ezample 5.1. Let {23,29,47,25,54} be a random sample of size n = 5
that was generated using Mathematica7 from N B(20,0.4). Suppose that
a = =1and A is assumed to be 23. The marginal posterior pdf of k
given the sample {23,29,47,25,54}, is given by:

hic(k|23,29,47,25, 54)

= i Ty (50 (5% (5% (39 (449),
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F1GURE 1. Plot of S(k) in 2.8 for the Example 5.1

where
& z 2. 93k D(5k4+1)T(179) (k-+22y k-+28Y (k+46
Cr = kzl S(k) = kz;l S(k) = kzl S (F(Sk-&)-lé(io) )( 35 ) (759) (M)

40
(52 (57) = 2 Sy (537 (507) (%) (732 (44°)

k=1

= 1.66.

Hence, the marginal posterior pdf of K is:

_ 1 23k T(5k+1)I'(179) k+22\ (k+28Y (k+46
hic(K[23,29,47,25,54) = 145 5 —tsReiso) - ("5 (300 ("4)

("33 (507

so when p is unknown, the Bayes estimation of k is given by the following
sum:
40

byow L S 238 DEAHDIATY) (F422) (128 (k149
1= 166 = F T(5k+180) 23 29 47

("33 ("347%) = 22.0264,

In order to choose z for notice after equation 2.8 and 2.9 had expressed,
we design the plot of S(k) in figure 1 and we see after point 40 plot
is flat, so we choose 40 that satisfy |S(41) — S(40)| < 1075. Also for
calculating k1 for notice Figure 2 that shows the values of hg (k) when
p is unknown we see that after point 40 this values are almost 0 so in
calculating k1 we choose the point 40. The posterior distribution for &
is given in the table 1.
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FIGURE 2. plot of posterior pdf hx (k) when p is un-
known for Example 5.1
k 1 6 10 11 12 13
hi(k) | 7.72¢ — 11 0.000021 0.0017 0.0035 0.0068 0.012
k 14 15 16 17 18 19 20 21
hi (k) 0.02 0.03 0.04 0.053  0.065 0.075 0.082 0.086
k 22 23 24 25 26 27 28 29
hi(k)| o089 0082 0075 0065  0.053 0.04 0.03 0.02
k 30 35 40 45 50 60 > 60
hi(k) | 0.0068 0.0035  0.0017 0.000021 7.72¢ —11 7.02¢ —11 (0.0000

when p is unknown

TABLE 1. Values of marginal posterior of example 1

When p is known, the marginal posterior pdf of K given sample

{23,29,47, 25,54}, is given by:

where
e d 4. (23x0.45)k
Calp) = 3. Y(k) =2 30 Y (k) = > QAR (R122) (h28)
k=1 k:io k=1
5

(70 (3 (C30)

= 3.4292 x 10%0.

S (23%0.45)k (k+22) (k+28) (k+46) (k+24) (k+53)

23 29 47 25

1 (PPN (k+22) (k+28) (k+46) (k+24) (k;rf:a)’
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F1GURE 3. Plot of Y(k) in 2.9 for the Example 5.1
hi2

0.15 | i

0.10 - | \

0.05 | [ L

L = P ] k
10 0 30 40

FIGURE 4. plot of posterior pdf hx (k) when p is known
for Example 5.1

So when p is known, the Bayes estimator of k (12:2) is given by the
following sum:

40 51k
b = b - KR () () (R (42 (4F)

= 23.32.

Note that choosing ¢ is similar to choosing z in case of unknown p. The
values of posterior distribution for k£, when p is known are given in the
table 2.
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k 1 6 10 11 12
hi (k) | 6.86c — a2 35¢—-19 -+  1.18¢—10 6.38¢—9 1.43e—7
k 13 14 15 16 17 18 19
hi (k) | 216e—6 0000023 000017  0.00094  0.0039 0.01279 0.03254
k 20 21 22 23 24 25 26
hr(k) | oo06614  0.1089 0.1474 0.1656  0.1563 0.1250 0.08549
k 27 28 29 30 31 32 33
hi(k) | 005038 002577 001152  0.0045  0.00157 0.00048 0.000135
k 34 35 e 40 50 60 > 60
hi (k) | 0000033 7.47¢—6 1.0092¢ —9 4.89¢ —20 5.058¢—33  0.0000

TABLE 2. Values of marginal posterior of example 1
when p is known

When p is unknown, the empirical Bayes estimation ki(emp) can’t
be calculated, because solving the system of nonlinear equation in (4.3)
gives bad estimation for the hyperparameters «, 5 and A, so we omitted
this estimator. X
When p is known, as we said, the empirical Bayes estimation ks(emp)
is obtained by replacing \ in (4.5) with X in ko; that is, A = 23.73. So:

N 40 k
ka(emp) = 7.127&“040 kgl ]{;(23.73;!0.45) (k;??Q) (k;rg%) (k;m) (k;g)zz;) (k;rfg)

= 23.505.

6. SIMULATION STUDY

In this section, the performance of the proposed estimators of k is
investigated through a simulation study. The simulation study is carried
out for different values of the combinations (n, k, p). In this study, in the

case of known p, we suggested the A= IXT[; to calculating the estimator
1272, that we choose this value for hyperparameter A, since if 100(1 —
p) percent of the number of trials is failure, so 100p leaving of trials
are the number of success(k). Hence by a simple proportion we have
A = 1{—’; and by using this value for A we obtained good estimator
similar of that in empirical estimator. It has to mentioned that, in this

proportion we replace the k by A\, because in prior distribution its mean is
equal to A approximately. In these cases we have generated 500 random
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k| n 0
0.2 0.5 0.8
10 | 5(0.6) 5(1.01) 5(2.62)
5120 5(0.32) 5(.43) 5(1.37)
30 | 5(.197)  5(0.33) 5(0.85)
10| 20(2.32) 20(3.97) 20(10.013)
20 [ 20 | 20(1.34) 20(1.8)  20(4.92)
30 | 20(0.75) 20(1.25)  20(3.28)
10 | 48(4.61) 46(18.43) 47(16.32)
50 | 20 | 49(2.30)  48(8.8) 47(9.8)
30 | 49(1.56) 48(6.67)  48(5.73)
TABLE 3. expected and MSE valuses of the stimator

ko(emp) for k when p is known

k| n 0
0.2 0.5 0.8
10| 5(0.63) 5(1.00) 5(2.23)
5120 5(0.23)  5(45)  5(1.14)
30| 5(0.2) 5(0.27)  5(0.85)
10| 20(2.48) 20(3.89) 20(9.68)
20 | 20 | 20(1.25) 20(1.66) 20(5.27)
30 | 20(0.85) 20(1.37) 20(3.26)
10 | 48(4.43) 48(7.2) 47(16.47)
50| 20| 49(2.6) 48(3.87) 47(9.1)
30 | 49(1.57) 49(2.66) 48(6.2)

TABLE 4. expected and MSE valuses of the estimator ko

for k£ when p is known

199

sample of size n(= 10,20 and 30) from a negative binomial distribution
5,20 and 50) by using the
mathematica 7. In order to see how the estimators of k perform with

with parameters p(=

respect to sample size, the average value of estimators l%g(emp) and ko

0.2,0.5and0.8) and k(=

along with MSE in parentheses are reported in Table 3 and Table 4,
respectively. From tables 3 and 4, we see that when 6 increases, the
MSE also increases. For each k, when the size of sample is increased,
then the MSE decreases.
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