Journal of Hyperstructures 11 (2) (2022), 214-224. ISSN: 2322-1666 print/2251-8436 online

ON VAGUE IDEALS IN NEAR-RINGS

PRITAM VIJAYSIGH PATIL, JANARDHAN D. YADAV*

ABSTRACT. Using Vague ideals of near-ring R, authors introduce the concepts of normal vague ideals, complete vague ideals and maximal vague ideals of near-ring R with few properties.

Key Words: Vague Ideals, Normal Vague Ideals, Maximal Vague Ideals, Complete Vague Ideal.

2010 Mathematics Subject Classification: Primary: 03E72; Secondary: 06F35, 03G25.

1. INTRODUCTION

The concept of fuzzy sets is introduced by L. A. Zadeh [3], W. Liu [13] wrote on ideals of Fuzzy sets and some authors have extended that work further. D. L. Prince Williams [1] introduced fuzzy ideals in Near-subtraction Semigroups in 2008. Concepts of fuzzy ideals are extended to vague sets by different authors [4,6,7,11]. W. L. Gau and D. J. Buehrer [12] introduced vague sets with truth membership and false membership function. R. Biswas [7] introduced Vague groups and then S. Zaid [8] studied fuzzy sub near-ring and fuzzy ideals of near-ring. In 2017 L. Bhasker [4] extended that part of fuzzy ideals in the near-ring to the Vague ideal of a near-ring. There are some required definitions are given below:

Definition 1.1. [2] A non-empty set R with two binary operations "+" and "." satisfying the following axioms: (1) (R,+) is a group,

(1) (10, 1) is a group;

© 2022 University of Mohaghegh Ardabili.

Received: 11 August 2021, Accepted: 20 December 2022. Communicated by Mirela Stefanescu;

^{*}Address correspondence to Pritam Vijaysigh Patil; E-mail: mailme.prit@rediffmail.com.

(2) (R,.) is a semigroup,

(3) x.(y+z) = x.y + x.z for all $x, y, z \in R$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use "near-ring", instead of "left near-ring". We denote xy instead of x.y. Note that x0 = 0 and x(-y) = -xy but in general $0x \neq 0$ for some $x, y \in R$. Let R and S be near-rings. A map $f: R \to S$ is called a (near-ring) homomorphism if f(x+y) = f(x)+f(y)and f(xy) = f(x)f(y) for any $x, y \in R$. An ideal I of a near-ring R is a subset of R such that

(4)(I,+) is a normal subgroup of (R,+),

(5)
$$RI \subseteq I$$
,

(6) $(r+i)s - rs \in I$ for any $r, s \in R$

Note that I is a left ideal of R if I satisfies (4) and (5), and I is a right ideal of R if I satisfies (4) and (6).

Throughout this paper let $I = (I, +, -, \lor, \land, 0, 1)$ be a dually residuated lattice ordered semigroup satisfying 1 - (1 - a) = a for all $a \in I$.

Definition 1.2. [12] A vague set A on a non-empty set X is characterized by two membership function given by:

1. A true membership function

$$t_A: X \to [0,1]$$

2. A false membership function

 $f_A: X \to [0,1]$

where $t_A(x)$ is a lower bound on the grade of membership of x derived from the "evidence for x", $f_A(x)$ is a lower bound on the negation of x derived from the "evidence against x" and $t_A(x) \leq 1 - f_A(x)$ for all $x \in X$.

Definition 1.3. [12] The interval $[t_A(x), 1 - f_A(x)]$ is called the vague value of $x \in X$ and is denoted by $V_A(x)$.

Definition 1.4. [4] Let A be a vague set of a near-ring R. Then A is called vague sub near-ring of R if for all $x, y \in R$, it satisfies (i) $V_A(x+y) \ge \min\{V_A(x), V_A(y)\}$

(ii)
$$V_A(x + y) = V_A(x)$$

(iii) $V_A(-x) = V_A(x)$

(iii)
$$V_A(xy) \ge \min\{V_A(x), V_A(y)\}.$$

Definition 1.5. [4] Let A be a vague set of near-ring R, then A is said to be a Vague ideal of R if for all $x, y, z, i \in R$, it satisfies (i) $V_A(x+y) \ge \min\{V_A(x), V_A(y)\}$ Pritam Vijaysigh Patil, Janardhan D. Yadav

(ii) $V_A(-x) = V_A(x)$ (iii) $V_A(z + x - z) \ge V_A(x)$ (iv) $V_A(xy) \ge V_A(x)$ (v) $V_A[(x + y)z - xz] \ge V_A(y)$ or $V_A(xz - xy) \ge V_A(z - y)$. *A* is said to be vague right ideal if it satisfies (i), (ii), (iii) and (iv). And *A* is said to be vague left ideal if it satisfies (i), (ii), (iii) and (v).

2. VAGUE IDEALS OF NEAR-RINGS

Definition 2.1. Let $\{A_i/i \in I\}$ (here *I* is index set) be a family of vague ideals in near-ring *R*, then the intersection $\bigcap_{i \in \Lambda} A_i$ of $\{A_i/i \in I\}$ is defined by $V_{(\bigcap_{i \in \Lambda} A_i)}(x) = min\{V_{A_i}(x)/i \in I\}$

Theorem 2.2. Intersection of a family of left (resp. right) vague ideals of near-ring R is left (resp. right) vague ideal of near-ring R. Proof. Let Let $\{A_i/i \in I\}$ be a family of left (resp. right) vague ideals in near-ring R.

Let $A = \bigcap_{i \in \Lambda} A_i$ and $\forall x, y, z, \in R$,

$$\begin{split} V_A(x-y) &= \min\{V_{A_i}(x-y)/i \in I\} \\ &\geq \min\{\min[V_{A_i}(x), V_{A_i}(y)]/i \in I\} \\ &= \min\{\min[V_{A_i}(x)/i \in I], \min[V_{A_i}(y)/i \in I]\} \\ &= \min\{V_A(x), V_A(y)\}. \\ V_A(xy) &= \min\{V_{A_i}(xy)/i \in I\} \\ &\geq \min\{\min[V_{A_i}(x), V_{A_i}(y)]/i \in I\} \\ &= \min\{\min[V_A(x), V_A(y)]. \\ V_A(y+x-y) &= \min\{V_{A_i}(y+x-y)/i \in I\} \\ &\geq \min\{V_{A_i}(x)/i \in I\} \\ &\geq \min\{V_{A_i}(x)/i \in I\} \\ &= V_A(x). \\ V_A(xy) &= \min\{V_{A_i}(xy)/i \in I\} \\ &\geq \min\{V_{A_i}(y)/i \in I\} \\ &\geq \min\{V_{A_i}(y)/i \in I\} \\ &\geq \min\{V_{A_i}(y)/i \in I\} \\ &\equiv V_A(y). \end{split}$$

216

$$egin{aligned} V_A[(x+y)z-xz] &= min\{V_{A_i}[(x+y)z-xz]/i \in I\}\ &\geq min\{V_{A_i}(y)/i \in I\}\ &= V_A(y). \end{aligned}$$

Hence the proof.

Definition 2.3. Any vague ideal of near-ring R is said to be normal if $\exists a \in R$ such that $V_A(a) = 1$.

Remark 2.4. Any vague ideal is normal if and only if $V_A(0) = 1$.

Remark 2.5. Here $F_N(R)$ denotes the set of normal vague ideals of nearring R.

Theorem 2.6. If A^+ be a vague set in near-ring R defined by $V_{A^+}(x) = V_A(x) + 1 - V_A(0), \forall x \in R$ for any vague left (resp. right) ideal A of near-ring R, then A^+ is a normal vague ideal containing A.

Proof. Proof. we have, $V_{A^+}(x) = V_A(x) + 1 - V_A(0), \forall x \in R$ Now, $\forall x, y, z \in R$

$$\begin{split} V_{A^+}(x-y) &= V_A(x-y) + 1 - V_A(0) \\ &\geq \min\{V_A(x), V_A(y)\} + 1 - V_A(0) \\ &= \min\{V_A(x) + 1 - V_A(0), V_A(y) + 1 - V_A(0)\} \\ &= \min\{V_A^+(x), V_A^+(y)\} \\ V_{A^+}(xy) &= V_A(xy) + 1 - V_A(0) \\ &\geq \min\{V_A(x), V_A(y)\} + 1 - V_A(0) \\ &= \min\{V_A(x) + 1 - V_A(0), V_A(y) + 1 - V_A(0)\} \\ &= \min\{V_A^+(x), V_A^+(y)\} \\ V_{A^+}(y+x-y) &= V_A(y+x-y) + 1 - V_A(0) \\ &\geq V_A(x) + 1 - V_A(0) \\ &\geq V_A(x) + 1 - V_A(0) \\ &= V_{A^+}(x) \end{split}$$

$$V_{A^{+}}(xy) = V_{A}(xy) + 1 - V_{A}(0)$$

$$\geq V_{A}(y) + 1 - V_{A}(0)$$

$$= V_{A^{+}}(y). \quad (Similarly \quad V_{A^{+}}(xy) \geq V_{A^{+}}(x))$$

$$V_{A^{+}}[(x+y)z - xz] = V_{A}[(x+y)z - xz] + 1 - V_{A}(0)$$

$$\geq V_{A}(y) + 1 - V_{A}(0)$$

$$= V_{A^{+}}(y)$$

It shows A^+ is a vague left (resp. right) ideal of near-ring R. Now, we have $V_{A^+(x)} = V_A(x) + 1 - V_A(0), \forall x \in R$ Put x = 0 we get, $V_{A^+}(0) = V_A(0) + 1 - V_A(0) = 1$ It shows A^+ is normal that is, $A^+ \in F_N(R)$ Also as, $V_{A^+}(x) = V_A(x) + 1 - V_A(0), \forall x \in R$ shows, $V_{A^+}(x) \ge V_A(x), \forall x \in R$ $\implies A \subseteq A^+$. Hence the proof. \Box

Corollary 2.7. Let us consider a vague left (resp. right) ideal A of near-ring R satisfying $V_{A^+}(a) = 0$ for some $a \in R$ then $V_A(a) = 0$.

Proof. Let A be vague left (resp. right) ideal of R. On contrary let us consider that $\exists a \in R$ such that $V_{A^+}(a) = 0$ & $V_A(a) \neq 0$ Now, we have $V_{A^+(x)} = V_A(x) + 1 - V_A(0), \forall x \in R$ Put x = a we get, $V_{A^+(a)} = V_A(a) + 1 - V_A(0) \implies 0 = V_A(a) + 1 - V_A(0)$ $\implies V_A(0) = V_A(a) + 1 \geq 1$ which is contradiction, $\implies V_A(a) = 0$. \Box

Theorem 2.8. If ϕ be an increasing function defined on $[0, V_A(0)]$ to [0,1] where A is an vague left (resp. right) ideal of near-ring R. Also A_{ϕ} be a vague set in near-ring R such that $V_{A_{\phi}}(x) = \phi[V_A(x)], \forall x \in R$, then A_{ϕ} is a vague left (resp. right)ideal of near-ring R. Moreover if $\phi[V_A(0)] = 1$ then, A_{ϕ} is normal vague left (resp. right) ideal of near-ring R and if $\phi(x) \ge t, \forall t \in [0, V_A(0)]$ then $A \subseteq A_{\phi}$

Proof. Let $x, y, z \in R$ then,

$$\begin{split} V_{A_{\phi}}(x-y) &= \phi[V_A(x-y)] \\ &\geq \phi[\min\{V_A(x), V_A(y)\}] \\ &= \min[\phi\{V_A(x)\}, \phi\{V_A(y)\}] \\ &= \min[\phi\{V_A(x)\}, \phi\{V_A(y)\}] \\ &= \min\{V_{A_{\phi}}(xy) = \phi[V_A(xy)] \\ &\geq \phi[\min\{V_A(x), V_A(y)\}] \\ &= \min[\phi\{V_A(x)\}, \phi\{V_A(y)\}] \\ &= \min\{V_{A_{\phi}}(x), V_{A_{\phi}}(y)\} \\ V_{A_{\phi}}(y+x-y) &= \phi[V_A(y+x-y)] \\ &\geq \phi[V_A(x)] \\ &= V_{A_{\phi}}(x). \\ V_{A_{\phi}}(xy) &= \phi[V_A(xy)] \\ &\geq \phi[V_A(y)] \\ &= V_{A_{\phi}}(y). \\ V_{A_{\phi}}[(x+y)z-xz] &= \phi[V_A\{(x+y)z-xz\}] \\ &\geq \phi[V_A(y)] \\ &= V_{A_{\phi}}(y) \end{split}$$

So
$$A_{\phi}$$
 is vague left (resp. right) ideal of R .
If $\phi[V_A(0)] = 1$ then Obivously $A_{\phi} \in F_N(R)$.
Let $\phi(x) \ge t, \forall t \in [0, V_A(0)]$, then $V_{A_{\phi}}(x) = \phi[V_A(x)] \ge V_A(x)$
 $\implies A \subseteq A_{\phi}, \forall a \in R$. Hence the proof.

Theorem 2.9. Let A be non- constant and maximal element of poset $(F_N(R) \subseteq)$ then either $V_A(x) = 0$ or $V_A(x) = 1 \quad \forall x \in R$.

Proof. As $A \in F_N(R)$ implies A is normal vague left (resp. right) ideal of near-ring R. $\implies V_A(0) = 1$. Let $V_A(x) \neq 1$ for some $x \in R$. Claim- $V_A(x) = 0$ On contrary if not, $\exists x_0 \in R$ such that $1 > V_A(x_0) > 0$. Let us define vague set B on R such that $V_B(x) = \frac{V_A(x) + V_A(x_0)}{2}, \forall x \in R$. Clearly it is well defined. Now $\forall x, y, z \in R$. $V_B(x-y) = \frac{V_A(x-y) + V_A(x_0)}{2}$ $\geq \frac{\min\{V_A(x), V_A(y)\} + V_A(x_0)}{2}$ $=\frac{\min\{V_A(x)+V_A(x_0),V_A(y)+V_A(x_0)\}}{2}$ $= min\{\frac{V_A(x) + V_A(x_0)}{2}, \frac{V_A(y) + V_A(x_0)}{2}\}$ $= min\{V_B(x), V_B(y)\}$ $V_B(xy) = \frac{V_A(xy) + V_A(x_0)}{2}$ $\geq \frac{\min\{V_A(x), V_A(y)\} + V_A(x_0)}{2}$ $=\frac{\min\{V_A(x)+V_A(x_0),V_A(y)+V_A(x_0)\}}{2}$ $= min\{\frac{V_A(x) + V_A(x_0)}{2}, \frac{V_A(y) + V_A(x_0)}{2}\}$ $= min\{V_B(x), V_B(y)\}.$ $V_B(y + x - y) = \frac{V_A(y + x - y) + V_A(x_0)}{2}$ $\geq \frac{V_A(x) + V_A(x_0)}{2}$ $= V_B(x).$ $V_B(xy) = \frac{V_A(xy) + V_A(x_0)}{2}$ $\geq \frac{V_A(y) + V_A(x_0)}{2}$ $= V_B(y).$ (Similarly $V_B(xy) \ge V_B(x)$). $V_B[(x+y)z - xz] = \frac{V_A[(x+y)z - xz] + V_A(x_0)}{2}$ $\geq \frac{V_A(y) + V_A(x_0)}{2}$ $= V_B(y).$

220

So B is vague left (resp. right) ideal of R. Now by theorem 3.8 B^+ is maximal element of $R. \implies B^+ \in F_N(R)$. Now,

$$\begin{split} V_{B^+}(x_0) &= V_B(x_0) + 1 - V_B(0) \\ &= \frac{V_A(x_0) + V_A(x_0)}{2} + 1 - \frac{V_A(0) + V_A(x_0)}{2} \\ &= V_A(x_0) + 1 - \frac{1}{2} - \frac{V_A(x_0)}{2} \\ &= \frac{V_A(x_0) + 1}{2} \\ &< 1 \\ &= V_{B^+}(0) \end{split}$$

 $\implies B^+$ is non-constant maximal element of $F_N(R)$. Which is contradiction. So A is maximal element of poset such that either $V_A(x) = 0$ or $V_A(x) = 1 \quad \forall x \in R$. Hence the proof.

Definition 2.10. Any vague left (resp. right) ideal A of near-ring R is said to be maximal vague left (resp. right) ideal of near-ring R if it satisfies,

i) A is non-constant.

ii) A^+ is a maximal element of $(F_N(R), \subseteq)$.

Theorem 2.11. If R has a vague ideal which is maximal, then i) A is normal vague ideal of near-ring R. ii) $V_A(x) = 0$ or $V_A(x) = 1 \quad \forall x \in R$ iii) A^0 is a maximal vague left (resp. right) ideal of near-ring R, where $A^0 = \{x \in R/V_A(0) = 1\}.$

Proof. Let A is maximal vague ideal of R. $\implies A^+$ is a non-constant maximal element of poset $(F_N(R), \subseteq)$.

By theorem 2.9, A^+ takes only two values 0 and 1, $\forall x \in R$.

Also note that $V_{A^+}(x) = 1$ if and only if $V_A(x) = V_A(0)$ and $V_{A^+}(x) = 0$ if and only if $V_A(x) = V_A(0) - 1$.

By corollary 2.7 $V_A(x) = 0 \implies V_A(0) - 1$

It implies that A is normal vague left (resp. right) ideal of near-ring R and $A^+ = A$.

It proves i) and ii).

iii) Clearly A^0 is proper ideal of R as it takes only two values 0 and 1. Let $A^0 \supseteq B$ be an ideal of near-ring R. $\implies A = A^0 \supseteq B \text{ as } A \text{ is normal.}$ *B* is also normal and it takes only two values 0 and 1, but by assumption *A* is maximal $\implies A = B \text{ or } A = \phi$, where $V_A(x) = 1 \quad \forall x \in R$. In case if $A^0 = R$ which is not possible. So A = B, that is $\chi_A(x) = V_A(x), \quad x \in R$. $\implies A^0 = B$.

Definition 2.12. Let A be a vague left (resp. right) ideal of near-ring R, then it is said to be complete if it satisfies i) A is normal vague left (resp. right) ideal of near-ring R.

ii) $\exists y \in R$ such that $V_A(y) = 0$.

Theorem 2.13. Let A any vague left (resp. right) ideal of near-ring R and a be a fixed element of R. Let us define a vague set of R such that $V_{A^*}(x) = \frac{V_A(x) - V_A(a)}{V_A(1) - V_A(a)}, \quad \forall x \in R.$ Then A^* is a complete vague left (resp. right) ideal of R.

Proof. . $\forall x, y, z \in R$,

$$\begin{split} V_{A^*}(x-y) &= \frac{V_A(x-y) - V_A(a)}{V_A(1) - V_A(a)} \\ &\geq \frac{\min\{V_A(x), V_A(y)\} - V_A(a)}{V_A(1) - V_A(a)} \\ &= \min\{\frac{V_A(x) - V_A(a)}{V_A(1) - V_A(a)}, \frac{V_A(y) - V_A(a)}{V_A(1) - V_A(a)}\} \\ &= \min\{V_{A^*}(x), V_{A^*}(y)\}. \end{split}$$

$$V_{A^*}(xy) &= \frac{V_A(xy) - V_A(a)}{V_A(1) - V_A(a)} \\ &\geq \frac{\min\{V_A(x), V_A(y)\} - V_A(a)}{V_A(1) - V_A(a)} \\ &= \min\{\frac{V_A(x) - V_A(a)}{V_A(1) - V_A(a)}, \frac{V_A(y) - V_A(a)}{V_A(1) - V_A(a)}\} \\ &= \min\{V_{A^*}(x), V_{A^*}(y)\}. \end{split}$$

222

$$\begin{split} V_{A^*}(y+x-y) &= \frac{V_A(y+x-y) - V_A(a)}{V_A(1) - V_A(a)} \\ &\geq \frac{V_A(x) - V_A(a)}{V_A(1) - V_A(a)} \\ &= V_{A^*}(x) \\ V_{A^*}(xy) &= \frac{V_A(xy) - V_A(a)}{V_A(1) - V_A(a)} \\ &\geq \frac{V_A(y) - V_A(a)}{V_A(1) - V_A(a)} \\ &= V_{A^*}(y). \quad (Similarly \quad V_{A^*}(xy) \ge V_{A^*}(x)). \\ V_{A^*}[(x+y)z - xz] &= \frac{V_A[(x+y)z - xz] - V_A(a)}{V_A(1) - V_A(a)} \\ &\geq \frac{V_A(y) - V_A(a)}{V_A(1) - V_A(a)} \\ &\geq \frac{V_A(y) - V_A(a)}{V_A(1) - V_A(a)} \\ &= V_{A^*}(y). \end{split}$$

⇒ A^* is vague left (resp. right) ideal of near-ring R. Now at x = 1, $V_{A^*}(1) = \frac{V_A(1) - V_A(a)}{V_A(1) - V_A(a)} = 1$ and at $x = a, V_{A^*}(a) = 0$. So $A^* \in F_N(R)$ and A^* is complete vague left (resp. right) ideal of near-ring R. \Box

3. Conclusions

In this paper, authors have introduced the concepts of normal vague ideals, complete vague ideals and maximal vague ideals of near-ring R with few properties.

Acknowledgments

The authors wish to thank reviewer of this paper, for the valuable inputs and suggestions.

References

[1] D. R Prince Williams, *Fuzzy Ideals in Near-subtraction semigroups*, International Journal of Computational and Mathematical Sciences, **2** (2008), 39–46.

- [2] J. D. P. Meldrum, Near-rings and their links with groups, Pitman, Boston (1985).
- [3] L. A. Zadeh, *Fuzzy set*, information and control, 8 (1965), 338–353.
- [4] L. Bhaskar, Vague ideals of a near-rings, International Journal of Pure and Applied Mathematics, 117 (20) (2017), 219–227.
- [5] P. N. Swamy, A note on fuzzy ideal of near-ring, International Journal of Mathematical Sciences and Engineering Applications, 4(4) (2010), 423–435.
- [6] Pritam Vijaysigh Patil & Janardhan D. Yadav, I- Vague ideals in near-rings, Journal of Hyperstructures, vol. 10(1) (2020) 13–21.
- [7] R. Biswas, Vague groups, International Journal of Computational Cognition, 4(2) (2006), 20–23.
- [8] S. Abou-Zaid, On fuzzy sub near-rings and ideals, Fuzzy Sets and Systems, 44 (1991) 139–146.
- S. Abou-Zaid, On fuzzy ideals and fuzzy quotient rings of a ring, Fuzzy Sets and Systems, 59 (1993), 205–210.
- [10] S. M. Hong., Y. B. Jun & H. S. kim, *Fuzzy ideals in near-rings*, Bulletin of the Korean Mathematical Society, **35(3)** (1998), 455–464.
- [11] T. Eswarlal and N. Ramakrishna, Vague fields and Vague vector spaces, International Journal of pure and applied Mathematics, 94(3)(2014), 295–305.
- [12] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics, 23 (1993), 610–614.
- [13] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139.

Pritam Vijaysigh Patil

1. Department of Mathematics, Shivaji University, Kolhapur, P.O.Box 416004, Kolhapur, India,

2. Sanjay Ghodawat University, Kolhapur, P.O.Box 416118, Atigre, India Email: mailme.prit@rediffmail.com

Janardhan D. Yadav

Department of Mathematics, Sadguru Ghadage Maharaj College, Karad, P.O.Box 415124, Karad, India,

Email: jdy1560@yahoo.co.in