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SOFT CATEGORY THEORY - AN INTRODUCTION

SUJIT KUMAR SARDAR ∗ AND SUGATO GUPTA

Abstract. The soft category theory offers a way to study soft
theories developed so far more generally. The main purpose of
this paper is to introduce the basic notions of the theory of soft
categories, to present some introductory results of the theory. Also
we compare soft category with fuzzy category.
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1. Introduction

To deal with the complicated problems involving uncertainties in eco-
nomics, engineering, environmental science, medical science and social
science, methods of classical mathematics can not be successfully used.
Alternatively, mathematical theories such as probability theory, fuzzy
set theory, rough set theory, vague set theory and the interval math-
ematics were established by researchers to deal with uncertainties ap-
pearing in the above fields. These methods also have some inherent
difficulties. To overcome these kinds of difficulties, Molodtsov [21] in-
troduced the concept of soft sets. In soft set theory, the problem of
setting the membership function does not arise, which makes the theory
easily applicable to many different fields. At present, works on soft set
theory are progressing rapidly. Then Maji et al. [18] introduced sev-
eral operations on soft sets. Aktaş and Ca̧ğman [3] defined soft groups
and obtained the main properties of these groups. They also compared
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soft sets with fuzzy sets and rough sets. Besides, Jun [12] defined soft
ideals on BCK/BCI-algebras. Feng et al. [10] defined soft semirings,
soft ideals on soft semirings and idealistic soft semirings. Acar et al. [2]
defined soft rings. Qiu-Mei Sun et al. [28] defined the concept of soft
modules and studied their basic properties. We refer to [14, 9, 7, 5] for
very recent works on soft algebraic structures.

In view of these development of soft algebraic structures and the fact
that category theory unifies and simplifies many properties of mathe-
matical systems, in this paper, we focus on introducing basic notions
of soft category. Soft category is actually a parameterized family of
subcategories of a category. Moreover, the concept of the soft functor
is introduced. We show that soft sets, soft groups, soft rings are just
special types of soft category and soft group homomorphism, soft ring
homomorphism are special types of soft functor. We obtain some in-
teresting properties of them. We also compare soft category with fuzzy
category [26, 27].

2. Preliminaries

We assume that reader is familiar to the notations of category theory
[16, 8, 1, 20, 6, 15, 22]. In this section we recall some basic definitions
of soft set theory, soft group theory, soft ring theory and fuzzy category.

Definition 2.1. [21] Let U be an initial universe set, E a set of param-
eters, P(U) the power set of U , and A ⊆ E. A pair (F,A) is called a
soft set over U , where F is a mapping given by F : A → P(U).

In other words, a soft set over U is a parameterized family of subsets
of the universe U . To illustrate this idea, let us consider the following
example.

Example 2.2. Let us consider a soft set (F,E) which describes the at-
tractiveness of houses that Mr.X is considering for purchase. Suppose
that there are six houses in the universe U = {h1, h2,h3, h4, h5, h6} un-
der consideration, and that E = {e1, e2, e3, e4, e5} is a set of decision
parameters. Let e1 = expensive, e2 = beautiful, e3 = wooden, e4 =
cheap, and e5 = in green surroundings. In this case, to define a soft set
means to point out expensive houses, beautiful houses, and so on.

Definition 2.3. [18] Let (F,A) be a soft set over U . Then (F,A) is
called a soft null set if F (x) = ∅ for all x ∈ A.
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Definition 2.4. [18] Let (F,A) and (G,B) be soft sets over a common
universe U . Then (G,B) is called a soft subset of (F,A) if it satisfies
the following:
(1) B ⊆ A;
(2) For all x ∈ B, F (x) and G(x) are identical approximations.

Definition 2.5. [18] Let (F,A) and (G,B) be two soft sets over U .
Then they are said to be soft equal if (F,A) is a soft subset of (G,B)
and (G,B) is a soft subset of (F,A).

Definition 2.6. [3] Let G be a group and A a set of parameters. Let
(F,A) be a soft set over G. Then (F,A) is said to be a soft group over
G if and only if F (x) is a subgroup of G for all x ∈ A.

Example 2.7. [3] Suppose that G = A = S3 = {e, (12), (13), (23), (123),
(132)} and that we define the set-valued function F (x) = {y ∈ G :
y = xn, n ∈ N}. Then the soft group (F,A) is a parameterized family
{F (x) : x ∈ A} of subsets, which gives us a collection of subgroups of G
given below:
F (e) = {e}, F (12) = {e, (12)}, F (13) = {e, (13)}, F (23) = {e, (23)},
F (123) = F (132) = {e, (123), (132)}.
Definition 2.8. [3] Let (F,A) and (H,B) be soft groups over a common
universe G. Then (H,B) is called a soft subgroup of (F,A) if it satisfies
the following:
(1) B ⊆ A;
(2) For all x ∈ B, H(x) is a subgroup of F (x).

Definition 2.9. [3] Let (F,A) and (H,B) be two soft groups over G
and K respectively, and let f : G → K and g : A → B be two functions.
Then we say that (f, g) is a soft homomorphism, and that (F,A) is soft
homomorphic to (H,B) if the following conditions are satisfied:
(1) f is a group epimorphism from G to K,
(2) g is a surjection, and
(3) f(F (x)) = H(g(x)) for all x ∈ A.
In this definition, if f is an isomorphism from G to K and g is a one-to-
one mapping from A onto B, then we say that (f, g) is a soft isomorphism
and that (F,A) is soft isomorphic to (H,B).

Example 2.10. [3] Consider the groups (Z,+) and (Zm,⊕). We define
a homomorphism from Z onto Zm such that f(k) = k for k ∈ Z, and
a mapping g from Z+ onto Zm such that g(k) = k for k ∈ Z+. Let
F : Z+ → P (Z) such that F (x) = {y ∈ Z : y = 5kx, k ∈ Z} and
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H : Zm → P (Zm) such that H(u) = {y ∈ Zm : y = uk, k ∈ 5Z}.
Then we obtain F (x) = 5xZ and H(u) = {ku : k ∈ 5Z}. It is clear
that (F,Z+) and (H,Zm) are soft groups over Z and Zm, respectively.
Since f(F (x)) = {5xk : k ∈ Z} and H(g(x)) = {xs : s ∈ 5Z}, we get
f(F (x)) = H(g(x)). Hence (f, g) is a soft homomorphism, and (F,Z+)
is soft homomorphic to (H,Zm).

Definition 2.11. [3] Let (F,A) be a soft group over G and (H,B) a soft
subgroup of (F,A). Then we say that (H,B) is a normal soft subgroup
of (F,A), if H(x) is a normal subgroup of F (x) for all x ∈ B.

Definition 2.12. [2] Let (F,A) be a soft set over a ring R. Then (F,A)
is called a soft ring over R if F (x) is a subring of R for all x ∈ A.

Example 2.13. [2] Let R = A = Z6. Consider the set-valued function
F : A → P (R) given by F (x) = {y ∈ R : x.y = 0}. Here we see that
F (x) is a subring of R for all x ∈ A. Hence, (F,A) is a soft ring over R.

Definition 2.14. [2] Let (F,A) and (H,B) be soft rings over R. Then
(H,B) is called a soft subring of (F,A) if it satisfies the following:
(1) B ⊆ A,
(2) H(x) is a subring of F (x), for all x ∈ B.

Definition 2.15. [2] Let (F,A) and (H,B) be soft rings over the rings
R and R′ respectively. Let f : R → R′ and g : A → B be two mappings.
The pair (f, g) is called a soft ring homomorphism if the following con-
ditions are satisfied:
(1) f is a ring epimorphism,
(2) g is surjective, and
(3) f(F (x)) = H(g(x)) for all x ∈ A.
In this definition, if f is an isomorphism from R to R′ and g is a one-
to-one mapping from A onto B, then we say that (f, g) is a soft ring
isomorphism and that (F,A) is soft isomorphic to (H,B).

Example 2.16. [2] Consider the rings R = Z and R′ = {0} × Z. Let
A = 2Z and B = {0} × 6Z. We see that (F,A) is a soft ring over
R and (H,B) is a soft ring over R′ if F (x) = x18Z and G((0, y)) =
{0} × 6yZ. Then the function f : R → R′ which is given by f(x) =
(0, x) is a ring isomorphism. Moreover, the function g : A → B which
is defined by g(y) = (0, 3y) is a surjective map. As we see, for all
x ∈ A, we have f(F (x)) = f(18xZ) = {0} × 18xZ = H({0} × 3xZ) =
G(g(x)).Consequently, (f, g) is a soft ring homomorphism.
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Fuzzy category was defined in [26]. Here we recall that definition for
the lattice [0, 1].

Definition 2.17. [27] Let C be a category and

Hom(C) :=
∪

A,B∈Ob(C)

Hom(A,B).

Then a fuzzy category FC over the base category C is completely de-
scribed by two mappings ω : Ob(C) → [0, 1] and µ : Hom(C) → [0, 1],
satisfying the following properties:
(1) if f : X → Y , then µ(f) ≤ min{ω(x), ω(Y )};
(2) µ(g ◦ f) ≥ min{µ(g), µ(f)}, whenever the composition is possible;
(3) if iX : X → X is the identity map on X, then µ(iX) = ω(X).

We observe that, the “potential objects” of FC forms a fuzzy subclass
Ob(FC) = {(X,ω(X)) : X ∈ Ob(C)} of Ob(C) and the “potential
morphisms” of FC forms a fuzzy subclass Hom(FC) = {(f, µ(f)) : f ∈
Hom(C)} of Hom(C).

3. Soft category

In this section we introduce the notion of soft category along with
some other basic definitions and study some of their properties.

Definition 3.1. Let C be a category, P(C) the set of all subcategories
of C and A a set of parameters. Let F : A → P(C) be a mapping. Then
(F,A) is said to be a soft category over C if F (x) is a subcategory of C
[1], i.e. it is nothing but a parameterized family of subcategories of a
category.

Example 3.2. Let SET be the category of all sets where the arrows are
the set mappings and A = N. Let F (n) be the full subcategory [1] of the
category SET consisting of all sets having cardinality n, for all n ∈ N.
Then (F,A) is a soft category over the category SET.

Example 3.3. Let GRP be the category of all groups where the arrows
are the group homomorphisms. Let A = {cyclic, finite, commutative,
free}. Then (F,A) is a soft category over GRP, where F (x) is the
subcategory of all groups with the property x ∈ A.
This soft category identifies cyclic groups or finite groups etc in the
category GRP.
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One may say that, this conception can also be represented by soft set
theory. But here in soft category theory not only we have considered the
groups with certain properties, but also the morphisms between them.
This is the advantage of this theory to the soft set theory, particularly,
while studying algebraic systems.
In a similar manner, we can construct examples with rings, modules,
semirings, semigroups, vector spaces etc.

Now we are going to “softify” some basic definitions known in the
category theory and study some results similar to category theory.

Definition 3.4. Let (F,A) and (H,B) be two soft categories over C.
Then we say that, (H,B) is a soft subcategory of (F,A) if the following
conditions are satisfied:
(1) B ⊆ A,
(2) H(x) is a subcategory of F (x), for all x ∈ B.

Example 3.5. Let (F,A) be the soft category of Example 3.3 and (H,B)
be another soft category over GRP where B = {cyclic} and H(cyclic)
be the subcategory of all finite cyclic groups. Then clearly (H,B) is a
soft subcategory of (F,A).

The following theorem follows easily from the definition.

Theorem 3.6. If (H,B) is a soft subcategory of (F,A) and (G,D) is a
soft subcategory of (H,B), then (G,D) is a soft subcategory of (F,A).

Definition 3.7. Two soft categories (F,A) and (H,B) over same cate-
gory C is said to be soft equal if (H,B) is a soft subcategory of (F,A)
and (F,A) is a soft subcategory of (H,B).

Theorem 3.8. Let (F,A) over C be a soft category and G : C → D
a functor [1] from the category C to the category D. Then G(F,A) =
(GF,A), defined by GF (x) = G(F (x)) for all x ∈ A, is a soft category
over D.

Proof. As F (x) is a subcategory of C and G is a functor from C to D,
G(F (x)) is a subcategory of D. Hence the result follows. □

Definition 3.9. Let (H,B) be a soft subcategory of (F,A) over C. Then
(1) (H,B) is said to be a full soft subcategory of (F,A) if H(x) is a full
subcategory [1] of F (x), for all x ∈ B.
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(2) (H,B) is said to be a lluf soft subcategory of (F,A) if H(x) is a lluf
subcategory [1] of F (x), for all x ∈ B.

Example 3.10. Let (F,A) is the soft category of Example 3.2. Let us
consider (G,B) and (H,C), whereB = C = {1, 2, 3, 4} andG(n) denotes
the full subcategory of the category SET consisting of all subsets of
the set of natural numbers of cardinality n; and H(n) denotes the lluf
subcategory of of SET consisting of all sets of cardinality n, but only
with the bijective mappings. Then both of them are soft categories over
SET . Moreover we see that, (G,B) is a full soft subcategory of (F,A)
and (H,C) is a lluf soft subcategory of (F,A).

Definition 3.11. Let (F,A) be a soft category over C and Cop the dual
category of C (see [1]). Then (F,A)op = (F op, A) is said to be the dual
soft category of (F,A) if F op(x) corresponds to the dual subcategory of
F (x), i.e. F op(x) = (F (x))op, for all x ∈ A. Clearly (F,A)op is a soft
category over Cop.

Then we easily obtain the following result.

Theorem 3.12. ((F,A)op)op = (F,A).

Definition 3.13. Let (F,A) be a soft category over C. Then (F,A) is
said to be a balanced soft category over C if F (x), as a category, is a
balanced category (see [20]), for all x ∈ A.
We observe that, if C is balanced category, then (F,A) is balanced soft
category.

Example 3.14. Let us consider the following category C with three ob-
jects, which are sets:
Ob(C) = {I, J,K}, where I = {1}, J = {2}, K = {3}; and
Hom[I, I] = {iI}, Hom[J, J ] = {iJ}, Hom[K,K] = {iK},(here i de-
notes the identity map on the set); and
Hom[I, J ] = {f12}, Hom[J, I] = ∅, Hom[I,K] = {f13}, Hom[K, I] = ∅,
Hom[J,K] = {f23}, Hom[K,J ] = {f32}, where fij denotes the mapping
fij(i) = j. Then, clearly, C is a category. Moreover we see that, C is not
balanced, as f12, though being a monomorphism and epimorphism, has
no inverse in C, and hence not an isomorphism.
Now consider a soft category, (F,A) over C, where A = {x, y} and F (x)
is the full subcategory consisting objects J and K only and F (y) is the
full subcategory with the object I only. Then, clearly, F (x) and F (y)
are balanced categories. Hence (F,A) is a balanced soft category over
C.
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Definition 3.15. Let (F,A) be a soft category over C. Then (F,A) is
said to be a soft category with limits over C if F (x), as a category, has
limits for all x ∈ A.
Here also we observe, if C is a category with limits, then (F,A) is a soft
category with limits.
Similarly we can define soft category with colimits. We observe that, if
(F,A) is soft category with limits, then (F,A)op is a soft category with
colimits.

As equalizers [20], pullbacks [20], pushouts [20], intersections [20],
unions [20], images [20], inverse images [20], products [20], coproducts
[20], kernels [20], cokernels [20] are nothing but special types of limits or
colimits, so soft category with equalizers, soft category with pullbacks
etc are now defined to us.

Example 3.16. Let us consider the following category C with three ob-
jects, which are sets:
Ob(C) = {I, J,K}, where I = {1}, J = {1, 2}, K = {2, 3}; and
Hom[I, I] = {iI}, Hom[J, J ] = {iJ}, Hom[K,K] = {iK}, (here i de-
notes the identity map on the set); and
Hom[I, J ] = {e}, Hom[J, I] = ∅, Hom[J,K] = {f, g, h}, Hom[K,J ] =
∅, Hom[I,K] = {f ◦ e, g ◦ e, h ◦ e}, Hom[K, I] = ∅, where e(1) = 1,
f(1) = 2, f(2) = 3, g(1) = 2, g(2) = 2, h(1) = 3, h(2) = 3. Then,
clearly, C is a category. Moreover we see that, the diagram of C consist-
ing of objects J and K and arrows g and h, has no limit.
Now consider a soft category, (F,A) over C, where A = {x, y} and F (x)
is the lluf subcategory obtained by removing the arrows h and h ◦ e and
F (y) is the full subcategory with the object I only. Clearly, F (x) and
F (y) both are categories with limits. Hence (F,A) is a soft category
with limits over C.
Definition 3.17. Let (F,A) be a soft category over C. Then (F,A) is
said to be a soft category with initial objects over C if F (x), as a category,
has initial object [1], for all x ∈ A.
We observe that, if C is category with initial object, then (F,A) may
not be a soft category with initial objects.

Definition 3.18. Let (F,A) be a soft category over C. Then (F,A)
is said to be a soft category with terminal objects over C if F (x), as a
category, has terminal object [1], for all x ∈ A.
We observe that, if C is category with terminal object, then (F,A) may
not be a soft category with terminal objects.
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Example 3.19. Let us consider the following category C with three ob-
jects, which are sets:
Ob(C) = {I, J,K}, where I = {1, 2}, J = {1, 2}, K = {2, 3}; and
Hom[I, I] = {iI , eI}, Hom[J, J ] = {iJ , eJ}, Hom[K,K] = {iK , eK},
(here i denotes the identity map on the set); and
Hom[I, J ] = {f1, f2}, Hom[J, I] = {f−1

1 , f−1
2 }, Hom[J,K] = {g1, g2},

Hom[K,J ] = {g−1
1 , g−1

2 }, Hom[I,K] = {h1, h2}, Hom[K, I]

= {h−1
1 , h−1

2 }, where fi, gi, hi are the possible bijections between the
sets and ei are the bijections sending one element to the other element.
Then, clearly, C is a category. Moreover we see that, this category has
no initial or terminal objects.
Now consider a soft category (F,A) over C, where A = {x, y}. Let F (x)
is the subcategory of C consisting of objects I and J and arrows iI , iJ
and f1. Let F (y) is the subcategory of C consisting of objects K and
I and arrows iI , iK and h1. Clearly, F (x) and F (y) are categories with
initial and terminal objects. Hence (F,A) is a soft category with initial
and terminal objects over C.

We know from category theory that, every initial (resp., terminal)
object becomes terminal (resp., initial) in its dual category. Hence we
get the following result.

Theorem 3.20. If (F,A) is a soft category with initial (resp., terminal)
objects over C, then (F,A)op is a soft category with terminal (resp.,
initial) objects over C.

Definition 3.21. Let (F,A) be a soft category over C. Then (F,A) is
said to be a soft category with zero objects over C if F (x), as a category,
has zero object [20], for all x ∈ A.

Definition 3.22. Let (F,A) be a soft category over C. Then (F,A)
is said to be a normal soft category over C if F (x), as a category, is a
normal category [20], for all x ∈ A.
Similarly, we can also define conormal soft category. We observe that, if
(F,A) is normal soft category, then (F,A)op is a conormal soft category.

Example 3.23. Let us consider the following category C with three ob-
jects, which are subgroups of Z4:
Ob(C) = {I, J,K}, where I = {0̄}, J = {0̄, 2̄}, K = Z4; and
Hom[I, I] = {iI}, Hom[J, J ] = {iJ}, Hom[K,K] = {iK},(here i de-
notes the identity morphism on the group); and
Hom[I, J ] = {f}, Hom[J, I] = {e}, Hom[J,K] = {g}, Hom[K,J ] = ∅,
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Hom[I,K] = {h}, Hom[K, I] = ∅, where f , g and h are inclusion mor-
phisms and e is the null morphism. Then, clearly, C is a category. But
it is not normal, as for the monomorphism g there is no arrow such that
g is kernel of that arrow.
Now consider a soft category, (F,A) over C, where A = {x, y} and F (x)
is the full subcategory consisting objects I and J only and F (y) is the
full subcategory with the object K only. Then, clearly, F (x) and F (y)
are normal categories. Hence (F,A) is a normal soft category over C.
Moreover we see that this is also an example of soft category with zero
objects.

Theorem 3.24. If (F,A) is a normal soft category over C, then (F,A)
is a balanced soft category.

Proof. We know from category theory that, every normal category is a
balanced category (see [20]). Now F (x), being a normal category, is a
balanced category, for all x ∈ A. Hence the proof. □
Definition 3.25. Let (F,A) be a normal and conormal soft category
with kernels and cokernels over C. Then (F,A) is said to be an exact
soft category over C if F (x), as a category, is an exact category [20], for
all x ∈ A.

Example 3.26. Let us consider the following category C with four objects,
which are groups.
Ob(C) = {I, J,K,L}, where I = Z4, J = Z2, K = {0̄} = the subgroup
of Z2 and L = Z3; and
Hom[I, I] = {iI}, Hom[J, J ] = {iJ}, Hom[K,K] = {iK}, Hom[L,L] =
{iL},(here i denotes the identity morphism on the group); and
Hom[I, J ] = {f}, Hom[J, I] = ∅, Hom[J,K] = ∅, Hom[K,J ] = {h},
Hom[I,K] = {g}, Hom[K, I] = ∅, Hom[I, L] = {e}, Hom[L, I] = ∅,
where f , g and e are null morphisms and h is the inclusion morphism.
Then, clearly, C is a category. But it is not exact, as the morphism e
does not split into composition of epimorphism and monomorphism.
Now consider a soft category, (F,A) over C, where A = {x, y} and F (x)
is the full subcategory consisting objects I, J and K only and F (y) is
the full subcategory with the object L only. Then, clearly, F (x) and
F (y) both are exact categories. Hence (F,A) is an exact soft category
over C.

Theorem 3.27. A normal and conormal soft category with cokernels
and equalizers is an exact soft category.
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Proof. Let (F,A) is a normal and conormal soft category with cokernels
and equalizers over C. Then for all x ∈ A, F (x) is a normal and conormal
category with cokernels and equalizers. Hence F (x) is exact (see [20]).
Thus we get the desired result. □

Theorem 3.28. If (F,A) is an exact soft category over C, then (F,A)op

is an exact soft category over Cop.

Proof. As we know, dual of an exact category is again exact (see [20]),
the result follows. □

Theorem 3.29. If (F,A) is an exact soft category over C, then it has
finite unions.

Proof. To prove this it is sufficient to state that, an exact category has
finite unions [20]. □

We know in category theory that, a category has finite intersection
and finite product if and only if it has equalizers and finite products.
Moreover, as a terminal object is the product of empty family and pull-
backs are nothing but a kind of finite product, the above two equivalent
statements together imply that the category has pullbacks and terminal
object. Hence the following proposition follows.

Theorem 3.30. Let (F,A) be a soft category over C. Then the following
statements are equivalent.
(1) (F,A) has finite intersections and finite products.
(2) (F,A) has equalizers and finite products.
The above statements imply
(3) (F,A) has pullbacks and terminal objects.

Definition 3.31. Let (F,A) be a soft category over C. Then (F,A) is
said to be an additive (resp., semiadditive) soft category over C if F (x),
as a category, is an additive (resp., semiadditive) category (see [20]), for
all x ∈ A.
We observe that, a soft category over an additive category may not be
an additive soft category.

Theorem 3.32. An additive soft category has kernels if and only if it
has equalizers.

Proof. As an additive category has kernels if and only if it has equalizers
(see [20]), the result follows. □
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Theorem 3.33. An exact soft category with biproducts of the form A⊕B
is additive soft category.

Proof. Let (F,A) be an exact soft category with biproducts of the above
form over C. Then for all x ∈ A, F (x) is exact category with biproducts
of the above form. So, F (x) is additive category (see [20]). Hence (F,A)
is an additive soft category. □
Definition 3.34. An exact additive soft category with finite products
is said to be an abelian soft category.

Theorem 3.35. Let (F,A) be a soft category over C. Then the follow-
ing statements are equivalent.
(1) (F,A) is an abelian soft category.
(2) (F,A) is a normal and conormal soft category with kernels, coker-
nels, finite products, finite coproducts.
(3) (F,A) is a normal and conormal soft category with pushouts and
pullbacks.

Proof. We skip the proof, as it is easily derivable from the corresponding
result of abelian category in the category theory (see [20]). □
Definition 3.36. Let (F,A) be a soft category over C. Then (F,A) is
said to be a soft category with exponentials over C if F (x), as a category,
has exponentials [6], for all x ∈ A.

Definition 3.37. A soft category with terminal objects and products
is said to be a Cartesian soft category or CSC. Moreover, if it has ex-
ponentials, then it is defined to be Cartesian closed soft category or
CCSC.

Example 3.38. Consider the category SET. Let A = N. Also let F (n) =
{A ∈ Ob(SET) : A has cardinality n}∪{1} , for all n ∈ N . Hence (F,A)
is a soft category over SET. This soft category is a CCSC.

Definition 3.39. Let (F,A) be a soft category over C. Then (F,A) is
said to be a soft category with subobject classifiers over C if F (x), as a
category, has a subobject classifier [6], for all x ∈ A.

Definition 3.40. A soft category with terminal objects, subobject clas-
sifiers, pullbacks and exponentials is defined to be a soft topos.

The following result follows from category theory (see [6]) as we shown
previously.

Theorem 3.41. A soft topos is always a CCSC.



130 S. K. Sardar and S. Gupta

4. Soft functor

In this section soft functor will be defined with some other basic def-
initions. Also we present some results parallel to category theory.

Definition 4.1. Let (F,A) over C and (H,B) over D be two soft cate-
gories. Also suppose that g : A → B is a set mapping and K : C → D
is a functor [20]. Then (K, g) is said to be a soft functor from (F,A) to
(H,B) if:
(1) K is full, i.e. image of C under K is all of D,
(2) g is a surjection from A onto B, and
(3) K(F (x)) = H(g(x)) for all x ∈ A.

Example 4.2. Let us consider two categories C and D defined as follows:
Ob(C) = {I, J,K,L}, Ob(D) = {I ′, J ′,K ′}; and
Hom[I, I] = {iI}, Hom[J, J ] = {iJ}, Hom[K,K] = {iK}, Hom[L,L] =
{iL}, Hom[I ′, I ′] = {iI′}, Hom[J ′, J ′] = {iJ ′}, Hom[K ′,K ′] = {iK′},
(here i denotes the identity morphism on the group); and
Hom[I, J ] = {f}, Hom[J, I] = ∅, Hom[J,K] = {g}, Hom[K,J ] =
∅, Hom[I,K] = {h} = {g ◦ f}, Hom[K, I] = ∅, Hom[I, L] = {e},
Hom[L, I] = ∅; and
Hom[I ′, J ′] = {f ′},Hom[J ′, I ′] = ∅,Hom[J ′,K ′] = {g′},Hom[K ′, J ′] =
∅, Hom[I ′,K ′] = {h′} = {g′ ◦ f ′}, Hom[K ′, I ′] = ∅. Clearly, C and D
are categories.
Now consider the functor H : C → D such that H(I) = H(L) = I ′,
H(J) = J ′, H(K) = K ′; H(iI) = H(iL) = H(e) = iI′ , H(iJ) = iJ ′ ,
H(iK) = K ′, H(f) = f ′, H(g) = g′, H(h) = h′.
Now consider two soft categories (F,A) over C and (G,B) over D, where
A = {x, y}, B = {z}. Let F (x) is the full subcategory of C consisting
the objects I, K and L and F (y) is the full subcategory of C consisting
the objects I and K and G(z) is the full subcategory of D consisting
the objects I ′ and K ′. Let m : A → B where m(x) = m(y) = z. Then
H(F (x)) = G(m(x)) and H(F (y)) = G(m(y)). Hence (H,m) is a soft
functor from (F,A) to (G,B).

Definition 4.3. Let (F,A) over C and (H,B) over D be two soft cat-
egories and (K, g) a soft functor from (F,A) to (H,B). Then we say
that (K, g) is a soft functor with a certain property P , if the functor K
has property P when it is restricted to the subcategory F (x) of C for all
x ∈ A.
We observe that when a functor K has a property P , then the soft
functor (K, g) also has that property.
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Now, terms like additive soft functor, limit preserving soft functor,
faithful soft functor etc are now defined to us.

Now we assert some results similar to category theory.

We know from category theory that, a functor from a category with
products to an arbitrary category preserves limits if and only if it pre-
serves products and finite intersections if and only if it preserves product
and equalizers (see [20]). Hence the following result is clear from the
Definition 4.3.

Theorem 4.4. Let (F,A) over C and (H,B) over D be two soft cate-
gories and (K, g) a soft functor from (F,A) to (H,B). Also let (F,A)
be with products. Then the following statements are equivalent.
(1) (K, g) is limit preserving.
(2) (K, g) preserves products and finite intersections.
(3) (K, g) preserves products and equalizers.

Theorem 4.5. Let (F,A) over C and (H,B) over D be two soft cate-
gories and (K, g) a soft functor from (F,A) to (H,B). Also let (F,A)
be a normal soft category with products. Then (K, g) preserves limits if
and only if it preserves products and kernels.

Proof. By definition, for all x ∈ A, F (x) is a normal category and
K,when restricted on F (x), preserves limits. Then by category the-
ory, it preserves products and kernels on F (x) (see [20]). Other part of
the proposition can be deduced similarly. □

We skip the proofs of the followings as they can be derived, similarly,
using the corresponding results of category theory [20].

Theorem 4.6. Let (F,A) over C and (H,B) over D be two additive
soft categories and (K, g) a soft functor from (F,A) to (H,B). Also let
(F,A) be a category with finite products. Then (K, g) preserves limits if
and only if it preserves products and kernels.

Theorem 4.7. If (F,A) is an abelian soft category over C and (H,B)
is an exact and additive soft category over D, then a soft functor (K, g)
from (F,A) to (H,B) preserves limits of finite diagrams if and only if
it is kernel preserving.
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5. Soft category as a generalization

In this section, in the following remarks we show that soft set, soft
group and soft ring are just special cases of soft category. We also
show that soft homomorphisms of soft groups and soft rings are nothing
but a type of soft functor. Again we compare soft category with fuzzy
category.

Remark 5.1 (Soft set). Let (F,D) over U be a soft set. Then the set U
can be considered as a category C by defining Ob(C) = U , Hom(A,A) =
IA and otherwise Hom(A,B) = ∅, for all A,B ∈ Ob(C). As (F,D) is a
soft set over U , F (x) is a subset of U , for each x ∈ D. Now if we consider
F (x) with its identity arrows, it becomes a subcategory of the category
C. Hence we find that (F,D) can be considered as a soft category over
C.

Remark 5.2 (Soft group). Let (F,D) be a soft group over G. Then the
group G can be considered as a category C with one object, say A, where
the arrows are the elements of the group and the composition of arrows
are nothing but the binary operation of the group (see [20]). As (F,D)
is a soft group over G, F (x) is a subgroup of G, for each x ∈ D. Hence
F (x) can be considered as a subcategory of C, as it, being a subgroup, is
closed under binary composition and has the identity element. Clearly
(F,D) can be considered as a soft category over C.

Remark 5.3 (Soft ring). Let (F,D) be a soft ring over R with identity.
Then the ring R can be considered as an additive category C with one
object, say A, where the arrows are the elements of the ring and the
composition of arrows are nothing but the multiplication operation of
the ring and the addition of arrows are the addition of elements of the
ring (see [20]). As (F,D) is a soft ring over R, F (x) is a subring of R, for
each x ∈ D. Hence F (x) can be considered as an additive subcategory
of C, as it, being a subring, is closed under addition and multiplication
and has the multiplicative identity. Clearly (F,D) can be considered as
a soft category over C.

Remark 5.4 (Soft homomorphism of soft groups). Let (f, g) be a soft
homomorphism from soft group (F,A) over G to (H,B) over K. Then
(1) f is a homomorphism from G onto K,
(2) g is a mapping from A onto B, and
(3) f(F (x)) = H(g(x)) for all x ∈ A.
Now, considering a group as a category as in the Remark 5.2 and f being



Soft Category Theory - An Introduction 133

a group homomorphism, f can be considered as a functor from category
G to category K. So by (1),(2),(3), (f, g) become a soft functor from
soft category (F,A) over G to (H,B) over K.

Remark 5.5 (Soft homomorphism of soft rings). Let (f, g) be a soft
homomorphism from soft ring (F,A) over R to (H,B) over R′, where
both rings rings have multiplicative identity and f a ring homomorphism
sending 1R to 1R′ . Then
(1) f is a ring epimorphism,
(2) g is surjective, and
(3) f(F (x)) = H(g(x)) for all x ∈ A.
Now, considering a ring as an additive category as in the Remark 5.3 and
f being a ring homomorphism sending 1R to 1R′ , f can be considered
as an additive soft functor from additive soft category (F,A) over R to
(H,B) over R′.

Remark 5.6 (Fuzzy category). Let FC be a fuzzy category as defined
in Definition 2.17. For each α ∈ [0, 1], we define G(α) = (Ob(G(α)),
Hom(G(α)), where

Ob(G(α)) := {X ∈ Ob(C) : ω(X) ≥ α} and

Hom(G(α)) := {f ∈ Hom(C) : µ(f) ≥ α}.
Then each G(α) is a subcategory of the base category C, since

X ∈ Ob(G(α)) ⇒ ω(X) ≥ α
⇒ µ(iX) = ω(X) ≥ α
⇒ iX ∈ Hom(G(α)) and

f, g ∈ Hom(G(α)) ⇒ µ(f) ≥ αandµ(g) ≥ α
⇒ µ(g ◦ f) ≥ min{µ(g), µ(f)} ≥ min{α, α} = α
⇒ g ◦ f ∈ Hom(G(α)).

Hence for any fuzzy category FC, (G, [0, 1]) becomes a soft category over
the category C.

6. Conclusion

In this paper we have introduced the notion of soft category with a
motivation to unify and simplify all the soft algebraic structures. Then
we have defined different types of soft categories. We also have deduced,
some elementary results in soft category theory. After that we have
given the notion of soft functor and stated some propositions about soft
functor. Some other soft notions are shown as soft category or soft
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functor. Now one may ask that: “What are the benefits of having soft
category? Do we really need it?” The answers will certainly be positive.
There are several benefits of having soft category theory. In comparison
to the soft set theory, soft category is capable to parameterize not only
the objects but also the morphisms, which is far more rich than the soft
set theory. Again, as the soft category is a generalized version of fuzzy
category, we may supplement fuzzy category theory by soft category
theory. Also, as the days are passing by, more and more soft algebraic
structures are being introduced. And we think that there should exist
such a structure like soft category to observe all the soft structures from
a generalized point of view. In the light of this paper one can try to
“softify” more results of category theory and it may be possible to deduce
some results of category theory itself from these results. Also, one can
study properties of algebraic structures of soft category.
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