ON THE 2-ABSORBING IDEALS AND ZERO DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

SHIROYEH PAYROVI AND SAKINEH BABAEI

Abstract

Let R be a commutative ring, I be a 2 -absorbing ideal of R and let $I=Q_{1} \cap \cdots \cap Q_{n} \quad(n \geq 2)$ with $\sqrt{Q}_{i}=P_{i}$ for $i=$ $1, \cdots, n$, be a minimal primary decomposition of I. Let $\Gamma_{E}(R / I)$ denote the graph of equivalence classes of zero divisors of R / I. It is shown that $Q_{1} \cap \cdots \cap Q_{n-1}, Q_{1} \cap \cdots \cap Q_{n-2}, \cdots, Q_{1}, P_{1}, P_{2} \cdots, P_{n}$ are all vertices of $\Gamma_{E}(R / I)$ and also the degrees of all vertices are determined.

Key Words: 2-absorbing ideal, zero divisor graph.
2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 05Cxx.

1. Introduction

The concept of 2-absorbing ideals was introduced and investigated in 1]. A proper ideal I of a commutative ring R is called a 2 -absorbing ideal if whenever $a b c \in I$ for $a, b, c \in R$, then $a b \in I$ or $b c \in I$ or $a c \in I$. The reader is referred to [1, 3, ,5] for more results and examples about 2 -absorbing ideals. Let I be a 2 -absorbing ideal of a commutative ring R and let x be an arbitrary element of R. The basic properties of the ideals $\operatorname{ann}_{R}(x+I)$ are studied in [3, [5]. It is shown that $\operatorname{ann}_{R}(x+I)$ is a prime or is a 2 -absorbing ideal of R, and $\left\{\operatorname{ann}_{R}(x+I) \mid x \in R\right\}$ is a totally ordered set or is union of two totally ordered set.

The graph of equivalence classes of zero divisors of a ring R, which is constructed from classes of zero divisors determined by annihilator

[^0]ideals, was introduced and investigated in [6, 8. It will be denoted by $\Gamma_{E}(R)$. This graph has some advantages over zero divisor graph which introduced and studied in [2, 4]. In many cases zero divisor graph of equivalence classes of zero divisors in a commutative ring R is finite when the zero divisor graph is infinite. Another important aspect of zero divisor graph of equivalence classes of zero divisors is the connection to associated primes of R.

Let R be a commutative ring, I be a 2 -absorbing decomposable ideal of R. Let $I=Q_{1} \cap \cdots \cap Q_{n}$ with $\sqrt{Q}_{i}=P_{i}$ for $i=1, \cdots, n$, be a minimal primary decomposition of I. In this article, we study the graph of equivalence classes of zero divisors of the ring R / I. For this reason, first in section 2 we study the associated prime ideals of I and then in section 3, we show that $Q_{1} \cap \cdots \cap Q_{n-1}, Q_{1} \cap \cdots \cap Q_{n-2}, \cdots, Q_{1}, P_{1}, P_{2} \cdots, P_{n}$ are all vertices of the zero divisor graph of equivalence classes of zero divisors of R / I.

Throughout, R will denote a commutative ring with non-zero identity and I is an ideal of R. For notations and terminologies not given in this article, the reader is referred to [7].

2. Primary decomposition of 2-absorbing ideals

In this section we study 2 -absorbing ideals which has primary decomposition. However, before going on to this study we should like to establish that 2 -absorbing ideals with primary decomposition with at least two primary components do exist. Suppose that k is a field and $R=k[x, y]$ is the ring of polynomials over k in indeterminates x, y. Assume that $P=(x), M=(x, y)$ and $I=\left(x^{2}, x y\right)$. It is easy to see that I is a 2-absorbing ideal of $R, I=P \cap M^{2}$ is a primary decomposition of $I, \sqrt{I}=P$ and $\operatorname{ass}(I)=\{M, P\}$.

In rest of this paper, we assume that I is a decomposable ideal of R, and $I=Q_{1} \cap \cdots \cap Q_{n}$ with $\sqrt{Q}_{i}=P_{i}$ for $i=1, \cdots, n$, is a minimal primary decomposition of I.

Theorem 2.1. Let I be a 2-absorbing ideal of R such that $\sqrt{I}=P$ is a prime ideal of R. Then the following statements are true.
(i) $P=P_{k}$ for some k with $1 \leq k \leq n$.
(ii) $P_{k}=I:_{R} x$ for some $x \in R$.
(iii) There exists $x_{i} \in R$ such that $P_{i}=I:_{R} x_{i}$ for each $i=1, \cdots, n$. Furthermore, either $P_{i} \subseteq P_{j}$ or $P_{j} \subseteq P_{i}$ for each $i, j=1, \cdots, n$.

Proof. (i) By assumption $P=\cap_{i=1}^{n} P_{i}$. Hence, $P=P_{k}$ for some k with $1 \leq k \leq n$ see Corollary 3.35 in [7].
(ii) First note that if $Q_{k}=P_{k}$, then $I:_{R} x=Q_{k}:_{R} x=Q_{k}$ for each $x \in \cap_{i=1, i \neq k}^{n} Q_{i} \backslash Q_{k}$ in view of [7, Lemma 4.14(iii)]. Now, suppose that $Q_{k} \subset P_{k}$. First of all, we show that $\cap_{i=1, i \neq k}^{n} Q_{i} \cap P_{k} \nsubseteq Q_{k}$. Assume that $a \in \cap_{i=1, i \neq k}^{n} Q_{i} \backslash Q_{k}$. If $a \in P_{k}$, then we have an element of the desired form. We therefore assume henceforth in this proof $a \notin P_{k}$. By assumption there exists $b \in P_{k} \backslash Q_{k}$. Now define $c=a b$ and note that $c \in \cap_{i=1, i \neq k}^{n} Q_{i} \cap P_{k}$ but $c \notin Q_{k}$. Suppose that $x \in \cap_{i=1, i \neq k}^{n} Q_{i} \cap P_{k} \backslash Q_{k}$. Thus $I:_{R} x=Q_{k}:_{R} x$ is a prime ideal of R containing $P=P_{k}$ by [3, Theorem 2.5]. On the other hand, in view of [7, Lemma 4.14(ii)] $Q_{k}:_{R} x$ is a P_{k}-primary ideal of R so that $P_{k}=I:_{R} x=Q_{k}:_{R} x$.
(iii) Assume that $1 \leq i, j \leq n$ and $i \neq k$ and $j \neq k$. There exists $x_{i} \in \cap_{s=1, s \neq i}^{n} Q_{s} \backslash Q_{i}$ by definition of primary decomposition. Thus $x_{i} \in P_{k}$ and with a similar argument to that of (ii) one can see that $I:_{R} x_{i}=Q_{i}:_{R} x_{i}=P_{i}$. In addition it is easy to see that $P_{j}=I:_{R} x_{j}$ for some $x_{j} \in R$. Now, we have $P_{i} \subseteq P_{j}$ or $P_{j} \subseteq P_{i}$ in view of [3, Theorem 2.5]. There is nothing to prove for $i=k$ or $j=k$, by (i) and (ii).

Corollary 2.2. Let I be a 2-absorbing ideal of R such that $\sqrt{I}=P$ is a prime ideal of R. Then ass $(I)=\left\{P_{1}, \cdots, P_{n}\right\}$ is a totally ordered set.

Proof. This is immediate from Theorem 2.1
Remark 2.3. Let I be a 2 -absorbing ideal of R such that $\sqrt{I}=P$ is a prime ideal of R. In the rest of this paper, we suppose that P_{1}, \cdots, P_{n} have been numbered (renumbered if necessary) such that $P=P_{1}$ and $P_{1} \subset P_{2} \subset \cdots \subset P_{n}$.

Theorem 2.4. Let the situation be as in Remark 2.3. Then
(i) $\cap_{i=j+1}^{n} Q_{i} \nsubseteq P_{j}$ for each j with $1 \leq j \leq n-1$.
(ii) There exists $a_{j} \in R$ such that $\cap_{i=1}^{j} Q_{i}=I:_{R} a_{j}$ for each j with $1 \leq j \leq n-1$.
(iii) For each $x \in R$ either $I:_{R} x=P_{j}$ or $I:_{R} x=\cap_{i=1}^{j} Q_{i}$ for some j with $1 \leq j \leq n$.
(iv) There exist a_{1}, \cdots, a_{n} and x_{1}, \cdots, x_{n} in R such that

$$
\begin{aligned}
I:_{R} a_{n}=\cap_{i=1}^{n} Q_{i} & \subset I:_{R} a_{n-1}=\cap_{i=1}^{n-1} Q_{i} \subset \cdots \subset I:_{R} a_{1}=Q_{1} \\
& \subseteq P_{1}=I:_{R} x_{1} \subset P_{2}=I:_{R} x_{2} \subset \cdots \subset P_{n}=I:_{R} x_{n} .
\end{aligned}
$$

Proof. (i) It is obvious by arrangements that we made in Remark 2.3.
(ii) Let $1 \leq j \leq n-1$ and $a_{j} \in \cap_{i=j+1}^{n} Q_{i} \backslash P_{j}$. Then $a_{j} \notin P_{i}$ for all $i=1, \cdots, j$. Thus Lemma 4.14(ii) in [7] shows that

$$
I:_{R} a_{j}=\cap_{i=1}^{n} Q_{i}:_{R} a_{j}=\cap_{i=1}^{j}\left(Q_{i}:_{R} a_{j}\right)=\cap_{i=1}^{j} Q_{i}
$$

(iii) Let $x \in P_{1}$. Then in view of [3, Theorem 2.5], $I:_{R} x$ is a prime ideal of R, furthermore $I:_{R} x$ is an associated prime ideal of I so that there is $1 \leq j \leq n$ such that $I:_{R} x=P_{j}$. Now, suppose that $x \in R \backslash P_{1}$ and suppose that x lies in all P_{k+1}, \cdots, P_{n} but in none of P_{1}, \cdots, P_{k}. If $k=n$, then $I:_{R} x=\cap_{i=1}^{n}\left(Q_{i}:_{R} x\right)=\cap_{i=1}^{n} Q_{i}=I$, see Lemma 4.14 in [7]. We therefore assume henceforth in this proof that $k<n$. In this case, there exists $t \in \mathbb{N}$ such that $x^{t} \in \cap_{i=k+1}^{n} Q_{i}$. Thus $I:_{R} x^{t}=\cap_{i=1}^{n}\left(Q_{i}:_{R} x^{t}\right)=\cap_{i=1}^{k}\left(Q_{i}:_{R} x^{t}\right)=\cap_{i=1}^{k} Q_{i}$. To complete the proof, it is enough to show that $I:_{R} x=I:_{R} x^{t}$. It is obvious that $I:_{R} x \subseteq I:_{R} x^{t}$. Assume that $a \in I:_{R} x^{t}$. Thus $a x^{t} \in I$ which implies that $a x \in I$ or $x^{2} \in I$ since I is a 2 -absorbing ideal. If $a x \in I$ we are done. Otherwise, $x^{2} \in I$ which shows that $x \in P_{1}$ and this is a contradiction.
(iv) It is obvious by (ii) and Theorem 2.1(iii).

Theorem 2.5. Let I be a 2-absorbing ideal of R such that $\sqrt{I}=P \cap P^{\prime}$, where P, P^{\prime} are the only distinct prime ideals of R that are minimal over I. Then the following statements are true:
(i) $P=P_{k}$ and $P^{\prime}=P_{s}$ for some k, s with $1 \leq k, s \leq n$ and $k \neq s$.
(ii) $Q_{k}=P_{k}$ and $Q_{k}=I:_{R}$ a for each $a \in \cap_{i=1, i \neq k}^{n} Q_{i} \backslash Q_{k}$.
(iii) $Q_{s}=P_{s}$ and $Q_{s}=I:_{R}$ a for each $a \in \cap_{i=1, i \neq s}^{n} Q_{i} \backslash Q_{s}$.
(iv) If $I \neq \sqrt{I}$, then any primary decomposition of I has at least three components.
(v) There exists $x_{i} \in R$ such that $P_{i}=I:_{R} x_{i}$ for each $i=1, \cdots, n$. Furthermore, either $P_{i} \subseteq P_{j}$ or $P_{j} \subseteq P_{i}$ for each $i, j=1, \cdots, n$ with $i \neq k, s$ and $j \neq k, s$.

Proof. (i) By assumptions $P \cap P^{\prime}=\cap_{i=1}^{n} P_{i}$ thus there is $1 \leq k \leq n$ such that $P=P_{k}$ since P is a minimal prime ideal of I. By a same argument there is $1 \leq s \leq n$ with $k \neq s$ such that $P^{\prime}=P_{s}$.
(ii) Assume that $a \in \cap_{i=1, i \neq k}^{n} Q_{i} \backslash Q_{k}$. Then $I:_{R} a=Q_{k}:_{R} a$. If $a \in P_{k}$, then $a \in \sqrt{I}$ and so by [3, Theorem 2.6], $I:_{R} a$ is a prime ideal of R containing $P=P_{k}$ and $P^{\prime}=P_{s}$. On the other hand, $Q_{k}:_{R} a$ is a $P_{k^{-}}$ primary ideal of R so that $P_{k}=I:_{R} a=Q_{k}:_{R} a$ thus $P^{\prime}=P_{s} \subseteq P=P_{k}$ which is a contradiction. Hence, $a \notin P_{k}$ and so $a \notin \sqrt{I}$. Now, in
view of [5, Theorem 2.1(iii)] and [7, Lemma 4.14(iii)], it follows that $P_{k}=I:_{R} a=Q_{k}:_{R} a=Q_{k}$.
(iii) The proof is similar to that of (ii).
(iv) Assume that I has a primary decomposition with only two components. Then by (ii) and (iii) it follows that $I=\sqrt{I}$ which is a contradiction.
(v) Assume that $1 \leq i, j \leq n$ are such that $i \neq k, s$ and $j \neq k, s$ and assume that $a \in \cap_{t=1, t \neq i}^{n} Q_{t} \backslash Q_{i}$. Thus $I:_{R} a=Q_{i}:_{R} a$ also $i \neq k, s$ implies that $a \in P_{k} \cap P_{s}$ which means that $I:_{R} a=Q_{i}:_{R} a$ is a prime ideal of R containing P_{k} and P_{s}, see [3, Theorem 2.6]. On the other hand, $Q_{i}:_{R} a$ is a P_{i}-primary ideal of R so that $P_{i}=I:_{R} a=Q_{i}:_{R} a$. With a similar argument one can show that $I:_{R} a=Q_{j}:_{R} a=P_{j}$ for $a \in \cap_{t=1, t \neq j}^{n} Q_{t} \backslash Q_{j}$. Hence, using [3, Theorem 2.6] again shows that $P_{i} \subseteq P_{j}$ or $P_{j} \subseteq P_{i}$ that is claimed.
Corollary 2.6. Let I be a 2-absorbing ideal of R such that $\sqrt{I}=$ $P \cap P^{\prime}$, where P, P^{\prime} are the only distinct prime ideals of R that are minimal over I. Then ass (I) is union of two totally ordered sets such as $\operatorname{ass}(I)=\left\{P_{k}\right\} \cup\left\{P_{1}, \cdots, P_{k-1}, P_{k+1}, \cdots, P_{n}\right\}$ or $\operatorname{ass}(I)=\left\{P_{s}\right\} \cup$ $\left\{P_{1}, \cdots, P_{s-1}, P_{s+1}, \cdots, P_{n}\right\}$.

Proof. This is immediate from Theorem 2.5.
Remark 2.7. Let I be a 2-absorbing ideal of R such that $\sqrt{I}=P \cap P^{\prime}$, where P, P^{\prime} are the only distinct prime ideals of R that are minimal over I. In the rest of this paper, we suppose that P_{1}, \cdots, P_{n} have been numbered (renumbered if necessary) such that $P=P_{1}, P^{\prime}=P_{2}$ and $P_{1} \subset P_{3} \subset \cdots \subset P_{n}, P_{2} \subset P_{3} \subset \cdots \subset P_{n}$.

Theorem 2.8. Let the situation be as in Remark 2.7. Then the following statements are true.
(i) $\cap_{i=j+1}^{n} Q_{i} \nsubseteq P_{j}$ for each j with $1 \leq j \leq n-1$ also $\cap_{i=3}^{n} Q_{i} \nsubseteq$ $P_{1} \cup P_{2}$.
(ii) There exists $a_{j} \in R$ such that $\cap_{i=1}^{j} Q_{i}=I:_{R} a_{j}$ for each j with $1 \leq j \leq n-1$.
(iii) For each $x \in R$ either $I:_{R} x=P_{j}$ or $I:_{R} x=\cap_{i=1}^{j} Q_{i}$ for some j with $1 \leq j \leq n$.
(iv) There exist a_{2}, \cdots, a_{n} and x_{1}, \cdots, x_{n} in R such that
$I:_{R} a_{n}=\cap_{i=1}^{n} Q_{i} \subset I:_{R} a_{n-1}=\cap_{i=1}^{n-1} Q_{i} \subset \cdots \subset I:_{R} a_{2}=Q_{1} \cap Q_{2}$

$$
\subset P_{1}=I:_{R} x_{1} \subset P_{3}=I:_{R} x_{3} \subset \cdots \subset P_{n}=I:_{R} x_{n} .
$$

Proof. (i) It is obvious by arrangements that we made in Remark 2.7 .
(ii) For $j=1$ it is immediate by Theorem 2.5 (ii). Assume that $a_{2} \in \cap_{i=3}^{n} Q_{i} \backslash P_{1} \cup P_{2}$. Thus $I:_{R} a_{2}=\cap_{i=1}^{n} Q_{i}:_{R} a_{2}=\cap_{i=1}^{2}\left(Q_{i}:_{R} a_{j}\right)=$ $\cap_{i=1}^{2} Q_{i}$. Now, assume that $a_{j} \in \cap_{i=j+1}^{n} Q_{i} \backslash P_{j}$ and $3 \leq j \leq n-1$. In this case $a_{j} \notin P_{i}$ for all $i=1, \cdots, j$. Thus Lemma 4.14(ii) in [7] shows that

$$
I:_{R} a_{j}=\cap_{i=1}^{n} Q_{i}:_{R} a_{j}=\cap_{i=1}^{j}\left(Q_{i}:_{R} a_{j}\right)=\cap_{i=1}^{j} Q_{i}
$$

(iii) If $x \in P_{1} \cap P_{2}$, then $I:_{R} x$ is a prime ideal of R by Theorem 2.6 in [3] also $I:_{R} x$ is an associated prime ideal of I so that $I:_{R} x=P_{j}$ for some $1 \leq j \leq n$. Now, suppose that $x \in P_{1} \backslash P_{2}$. Then Theorem 2.1(iii) in 5] shows that $I:_{R} x=P_{2}$ also $I:_{R} x=P_{1}$ for $x \in P_{2} \backslash P_{1}$. By a similar argument to that of Theorem 2.4 (iii) we reach the desired conclusion for each $x \notin P_{1} \cup P_{2}$.
(iv) It is obvious by (ii).

3. ZERO DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

Recall that R is a commutative ring. The following are some basic facts about zero divisor graph of equivalence classes of zero divisors in a commutative ring R. Let $Z^{*}(R)$ denote the zero divisors of R and $Z(R)=Z^{*}(R) \cup\{0\}$. For $x, y \in Z^{*}(R)$ we say that $x \sim y$ if and only if $\operatorname{ann}(x)=\operatorname{ann}(y)$. As noted in [8], \sim is an equivalence relation. Furthermore, if $x_{1} \sim x_{2}$ and $x_{1} y=0$, then $y \in \operatorname{ann}\left(x_{1}\right)=\operatorname{ann}\left(x_{2}\right)$ and hence, $x_{2} y=0$. It follows that multiplication is well defined on the equivalence classes of \sim; that is if $[x]$ denotes the class of x, then the product $[x][y]=[x y]$ makes sense. Note that $[0]=\{0\}$ and $[1]=$ $R \backslash Z(R)$; the other equivalence classes form a partition of $Z^{*}(R)$.

Definition 3.1. The graph of equivalence classes of zero divisors of a ring R, denoted $\Gamma_{E}(R)$, is the graph associated to R whose vertices are the classes of elements in $Z^{*}(R)$, and with each pair of distinct classes $[x],[y]$ joined by an edge if and only if $[x][y]=[0]$.
Lemma 3.2. [8, Lemma 1.2] Let R be a commutative Noetherian ring. Then any two distinct elements of $\operatorname{Ass}(R)$ are connected by an edge. Furthermore, every vertex $[v]$ of $\Gamma_{E}(R)$ is either an associated prime or adjacent to an associated prime maximal in $\{\operatorname{ann}(x): 0 \neq x \in R\}$.

The degree of a vertex v in a graph, denoted $\operatorname{deg} v$, is the number of edges incident to v. By a graph we mean that a simple graph in the sense that there are no loops or double edges.

Proposition 3.3. [8, Proposition 3.4] Let R be a commutative Noetherian ring. Let x_{1}, \cdots, x_{r} be elements of R, with $r \geq 2$, and suppose $\operatorname{ann}\left(x_{1}\right) \subset \cdots \subset \operatorname{ann}\left(x_{r}\right)$ is a chain in $\operatorname{Ass}(R)$. If $3 \leq\left|\Gamma_{E}(R)\right|<\infty$, then $\operatorname{deg}\left[x_{1}\right]<\cdots<\operatorname{deg}\left[x_{r}\right]$.

Recall that I is a decomposable ideal of R, and $I=Q_{1} \cap \cdots \cap$ Q_{n} with $\sqrt{Q}_{i}=P_{i}$ for $i=1, \cdots, n$ is a minimal primary decomposition of I.
Corollary 3.4. If I is a 2-absorbing ideal of R, then the vertices set of $\Gamma_{E}(R / I)$ has at most $2 n-1$ elements. Moreover, $Q_{1} \cap \cdots \cap Q_{n-1}, Q_{1} \cap$ $\cdots \cap Q_{n-2}, \cdots, Q_{1}, P_{1}, \cdots, P_{n}$ are all vertices of $\Gamma_{E}(R / I)$.

Proof. It is clear by Theorems 2.4 and 2.8 .
We will slightly abuse terminology and refer to $\left[a_{i}+I\right]$ as $Q_{1} \cap \cdots \cap Q_{i}$ for all i, with $1 \leq i \leq n-1$ and refer to $\left[x_{i}+I\right]$ as P_{i} for all i, with $1 \leq i \leq n$, where a_{i} and x_{i} are elements of R such as chosen in the proofs of Theorems 2.1|2.4, 2.5 and 2.8.
Theorem 3.5. Let the situations be as in Remark 2.3, $Q_{1} \neq P_{1}$ and $n \geq 2$. Then the following statements are true.
(i) $\left[a_{i}+I\right]\left[x_{1}+I\right] \neq[0]$ for all $i=1, \cdots, n-1$, so that $\operatorname{deg}\left[x_{1}+I\right]=$ $n-1$.
(ii) $\left[a_{n-1}+I\right]\left[x_{i}+I\right]=[0]$ if and only if $i=n$ so that $\operatorname{deg}\left[x_{n}+I\right]=$ $2 n-2$.
(iii) $\operatorname{deg}\left[x_{i}+I\right]=n+i-2$ for all $i=1, \cdots, n$, and $\operatorname{deg}\left[a_{i}+I\right]=n-i$ for all $i=1, \cdots, n-1$.

Proof. (i) It is enough to show that $\left[a_{1}+I\right]\left[x_{1}+I\right] \neq 0$ by Theorem 2.4(iv). In view of Theorems 2.1 and 2.4 there are $x_{1} \in \cap_{i=2}^{n} Q_{i} \backslash Q_{1}$ and $a_{1} \in \cap_{i=2}^{n} Q_{i} \backslash P_{1}$ such that $Q_{1}=\operatorname{ann}\left(a_{1}+I\right)$ and $P_{1}=\operatorname{ann}\left(x_{1}+I\right)$. If $a_{1} x_{1}+I=0$, then $a_{1} x_{1} \in I$ and so $a_{1} x_{1} \in Q_{1}$ which is a contradiction since neither $x_{1} \in Q_{1}$ nor $a_{1} \in P_{1}$. Thus $a_{1} x_{1}+I \neq 0$ therefore $\left[a_{i}+\right.$ $I]\left[x_{1}+I\right] \neq[0]$ for all $i=1, \cdots, n-1$. The last assertion follows by Lemma 3.2.
(ii) (\Rightarrow) The vertex $\left[a_{n-1}+I\right]$ is adjacent to $\left[x_{n}+I\right]$ in view of Lemma 3.2 so that $\left[a_{n-1}+I\right]\left[x_{n}+I\right]=[0]$.
(\Leftarrow) Assume that $\left[a_{n-1}+I\right]\left[x_{i}+I\right]=[0]$ for some i with $1 \leq i \leq n$. Then $a_{j} x_{i}+I=0$ and also $x_{j} x_{i}+I=0$ for all $j \geq 1$, see Theorem 2.4(iv). Thus $\operatorname{deg}\left[x_{i}+I\right] \geq 2 n-2$. Now, Proposition 3.3 implies that $i=n$.
(iii) We have $\operatorname{deg}\left[x_{1}+I\right]=n-1$ and $\operatorname{deg}\left[x_{n}+I\right]=2 n-2$ by (i) and (ii). Thus Proposition 3.3 shows that $\operatorname{deg}\left[x_{i}+I\right]=n+i-2$. Using (i) again the last assertion follows.

Corollary 3.6. If $Q_{1}=P_{1}$, then any primary decomposition of I has at most two components, so that $n=2$.

Proof. We have $\operatorname{deg}\left[x_{1}+I\right]=n-1$ and $\operatorname{deg}\left[x_{n}+I\right]=2 n-3$ in view of Theorem 3.5 (i) and Lemma 3.2. On the other hand, if $n \geq 3$, then Proposition 3.3 shows that $\operatorname{deg}\left[x_{n}+I\right] \geq 2 n-2$ which is a contradiction. So that $n \leq 2$ and any primary decomposition of I has at most two components.

Theorem 3.7. Let the situations be as in Remark 2.7. Then the following statements are true.
(i) $\left[a_{i}+I\right]\left[x_{1}+I\right] \neq[0]$ and $\left[a_{i}+I\right]\left[x_{2}+I\right] \neq[0]$ for each $i=$ $2, \cdots, n-1$, so that $\operatorname{deg}\left[x_{1}+I\right]=\operatorname{deg}\left[x_{2}+I\right]=n-1$
(ii) $\left[a_{n-1}+I\right]\left[x_{i}+I\right]=[0]$ if and only if $i=n$. So that $\operatorname{deg}\left[x_{n}+I\right]=$ $2 n-3$.
(iii) $\operatorname{deg}\left[x_{i}+I\right]=n+i-3$ for each $i=3, \cdots, n$, so that $\operatorname{deg}\left[a_{i}+I\right]=$ $n-i$ for all $i=2, \cdots, n-1$.

Proof. (i) It is enough to show that $\left[a_{2}+I\right]\left[x_{1}+I\right] \neq 0$, see Theorem 2.8(iv). In view of Theorems 2.5 and 2.8 there are $x_{1} \in \cap_{i=2}^{n} Q_{i} \backslash Q_{1}$ and $a_{2} \in \cap_{i=2}^{n} Q_{i} \backslash P_{1} \cup P_{2}$ such that $Q_{1} \cap Q_{2}=\operatorname{ann}\left(a_{2}+I\right)$ and $P_{1}=$ $\operatorname{ann}\left(x_{1}+I\right)$. If $a_{2} x_{1}+I=0$, then $a_{2} x_{1} \in I$ and so $a_{2} x_{1} \in Q_{1}$ which is a contradiction since neither $x_{1} \in Q_{1}$ nor $a_{2} \in P_{1}$. Thus $a_{2} x_{1}+I \neq 0$ therefore $\left[a_{i}+I\right]\left[x_{1}+I\right] \neq[0]$ for all $i=2, \cdots, n-1$. By a similar argument one can show that $\left[a_{i}+I\right]\left[x_{2}+I\right] \neq[0]$ for all $i=2, \cdots, n-1$. The last assertion follows by Lemma 3.2.
(ii) It is similar to that of (ii) in Theorem 3.3
(iii) We have $\operatorname{deg}\left[x_{1}+I\right]=\operatorname{deg}\left[x_{2}+I\right]=n-1$ and $\operatorname{deg}\left[x_{n}+I\right]=2 n-3$ by (i) and (ii). Now, Proposition 3.3 implies that $\operatorname{deg}\left[x_{i}+I\right]=n+i-3$, for all $i=3, \cdots, n$. Using (i) again the last assertion follows.

Acknowledgments

We would like to thank the referee for a careful reading of our article.

References

[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutavie rings, Comm. Algebra, 39 (2011), 1646-1672.
[2] D. F. Anderson and P. S. Livingston, The zero divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[3] A. Badawi, On 2-absorbing ideals of commutavie rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[4] I. Beck, Coloring of commutavie rings, J. Algebra, 116 (1988), 208-226.
[5] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals in comutative rings, Bull. Malaysian Math. Sci. Soc. 23 (2013), , 1511-1526
[6] Shane P. Redmond, An Ideal-Based Zero-Divisor Graph of a Commutative Ring, Comm. Algebra, 31 (2003), 4425-4443.
[7] R.Y. Sharp, Steps in commutative algebra, Cambridge: Cambridge University Press.
[8] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra, 39 (2011), 2338-2348.

Sh. Payrovi
Department of Mathematics, Imam Khomeini International University , P.O.Box 34149-1-6818, Qazvin, Iran
Email: shpayrovi@sci.ikiu.ac.ir

S. Babaei

Department of Mathematics, Imam Khomeini International University , P.O.Box 34149-1-6818, Qazvin, Iran
Email: sbabaei@edu.ikiu.ac.ir

[^0]: Received: 29 October 2013, Accepted: 15 May 2014. Communicated by Yuming Feng;
 *Address correspondence to S. Babaei; E-mail: sbabaei@edu.ikiu.ac.ir
 (c) 2014 University of Mohaghegh Ardabili.

