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ON THE 2-ABSORBING IDEALS AND ZERO DIVISOR

GRAPH OF EQUIVALENCE CLASSES OF ZERO

DIVISORS

SHIROYEH PAYROVI AND SAKINEH BABAEI

Abstract. Let R be a commutative ring, I be a 2-absorbing ideal
of R and let I = Q1 ∩ · · · ∩Qn (n ≥ 2) with

√
Qi = Pi for i =

1, · · · , n, be a minimal primary decomposition of I. Let ΓE(R/I)
denote the graph of equivalence classes of zero divisors of R/I. It is
shown that Q1 ∩ · · · ∩Qn−1, Q1 ∩ · · · ∩Qn−2, · · · , Q1, P1, P2 · · · , Pn

are all vertices of ΓE(R/I) and also the degrees of all vertices are
determined.
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1. Introduction

The concept of 2-absorbing ideals was introduced and investigated in
[1]. A proper ideal I of a commutative ring R is called a 2-absorbing
ideal if whenever abc ∈ I for a, b, c ∈ R, then ab ∈ I or bc ∈ I or ac ∈ I.
The reader is referred to [1, 3, 5] for more results and examples about
2-absorbing ideals. Let I be a 2-absorbing ideal of a commutative ring
R and let x be an arbitrary element of R. The basic properties of the
ideals annR(x + I) are studied in [3, 5]. It is shown that annR(x + I) is
a prime or is a 2-absorbing ideal of R, and {annR(x + I) | x ∈ R} is a
totally ordered set or is union of two totally ordered set.

The graph of equivalence classes of zero divisors of a ring R, which
is constructed from classes of zero divisors determined by annihilator
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ideals, was introduced and investigated in [6, 8]. It will be denoted
by ΓE(R). This graph has some advantages over zero divisor graph
which introduced and studied in [2, 4]. In many cases zero divisor graph
of equivalence classes of zero divisors in a commutative ring R is finite
when the zero divisor graph is infinite. Another important aspect of zero
divisor graph of equivalence classes of zero divisors is the connection to
associated primes of R.

Let R be a commutative ring, I be a 2-absorbing decomposable ideal
of R. Let I = Q1∩· · ·∩Qn with

√
Qi = Pi for i = 1, · · · , n, be a min-

imal primary decomposition of I. In this article, we study the graph of
equivalence classes of zero divisors of the ring R/I. For this reason, first
in section 2 we study the associated prime ideals of I and then in section
3, we show that Q1 ∩ · · · ∩Qn−1, Q1 ∩ · · · ∩Qn−2, · · · , Q1, P1, P2 · · · , Pn

are all vertices of the zero divisor graph of equivalence classes of zero
divisors of R/I.

Throughout, R will denote a commutative ring with non-zero identity
and I is an ideal of R. For notations and terminologies not given in this
article, the reader is referred to [7].

2. Primary decomposition of 2-absorbing ideals

In this section we study 2-absorbing ideals which has primary de-
composition. However, before going on to this study we should like to
establish that 2-absorbing ideals with primary decomposition with at
least two primary components do exist. Suppose that k is a field and
R = k[x, y] is the ring of polynomials over k in indeterminates x, y. As-
sume that P = (x), M = (x, y) and I = (x2, xy). It is easy to see that I
is a 2-absorbing ideal of R, I = P ∩M2 is a primary decomposition of
I,
√
I = P and ass(I) = {M,P}.

In rest of this paper, we assume that I is a decomposable ideal of R,
and I = Q1 ∩ · · · ∩Qn with

√
Qi = Pi for i = 1, · · · , n, is a minimal

primary decomposition of I.

Theorem 2.1. Let I be a 2-absorbing ideal of R such that
√
I = P is a

prime ideal of R. Then the following statements are true.

(i) P = Pk for some k with 1 ≤ k ≤ n.
(ii) Pk = I :R x for some x ∈ R.
(iii) There exists xi ∈ R such that Pi = I :R xi for each i = 1, · · · , n.

Furthermore, either Pi ⊆ Pj or Pj ⊆ Pi for each i, j = 1, · · · , n.
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Proof. (i) By assumption P = ∩ni=1Pi. Hence, P = Pk for some k with
1 ≤ k ≤ n see Corollary 3.35 in [7].

(ii) First note that if Qk = Pk, then I :R x = Qk :R x = Qk for each
x ∈ ∩ni=1,i 6=kQi \Qk in view of [7, Lemma 4.14(iii)]. Now, suppose that
Qk ⊂ Pk. First of all, we show that ∩ni=1,i 6=kQi ∩ Pk 6⊆ Qk. Assume

that a ∈ ∩ni=1,i 6=kQi \ Qk. If a ∈ Pk, then we have an element of the
desired form. We therefore assume henceforth in this proof a 6∈ Pk. By
assumption there exists b ∈ Pk \ Qk. Now define c = ab and note that
c ∈ ∩ni=1,i 6=kQi ∩ Pk but c 6∈ Qk. Suppose that x ∈ ∩ni=1,i 6=kQi ∩ Pk \Qk.

Thus I :R x = Qk :R x is a prime ideal of R containing P = Pk by [3,
Theorem 2.5]. On the other hand, in view of [7, Lemma 4.14(ii)] Qk :R x
is a Pk-primary ideal of R so that Pk = I :R x = Qk :R x.

(iii) Assume that 1 ≤ i, j ≤ n and i 6= k and j 6= k. There exists
xi ∈ ∩ns=1,s 6=iQs \ Qi by definition of primary decomposition. Thus

xi ∈ Pk and with a similar argument to that of (ii) one can see that
I :R xi = Qi :R xi = Pi. In addition it is easy to see that Pj = I :R xj
for some xj ∈ R. Now, we have Pi ⊆ Pj or Pj ⊆ Pi in view of [3,
Theorem 2.5]. There is nothing to prove for i = k or j = k, by (i) and
(ii). �

Corollary 2.2. Let I be a 2-absorbing ideal of R such that
√
I = P is a

prime ideal of R. Then ass(I) = { P1, · · · , Pn} is a totally ordered set.

Proof. This is immediate from Theorem 2.1. �

Remark 2.3. Let I be a 2-absorbing ideal of R such that
√
I = P is a

prime ideal of R. In the rest of this paper, we suppose that P1, · · · , Pn

have been numbered (renumbered if necessary) such that P = P1 and
P1 ⊂ P2 ⊂ · · · ⊂ Pn.

Theorem 2.4. Let the situation be as in Remark 2.3. Then

(i) ∩ni=j+1Qi 6⊆ Pj for each j with 1 ≤ j ≤ n− 1.

(ii) There exists aj ∈ R such that ∩ji=1Qi = I :R aj for each j with
1 ≤ j ≤ n− 1.

(iii) For each x ∈ R either I :R x = Pj or I :R x = ∩ji=1Qi for some
j with 1 ≤ j ≤ n.

(iv) There exist a1, · · · , an and x1, · · · , xn in R such that

I :R an = ∩ni=1Qi ⊂ I :R an−1 = ∩n−1i=1 Qi ⊂ · · · ⊂ I :R a1 = Q1

⊆ P1 = I :R x1 ⊂ P2 = I :R x2 ⊂ · · · ⊂ Pn = I :R xn.
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Proof. (i) It is obvious by arrangements that we made in Remark 2.3.
(ii) Let 1 ≤ j ≤ n − 1 and aj ∈ ∩ni=j+1Qi \ Pj . Then aj 6∈ Pi for all

i = 1, · · · , j. Thus Lemma 4.14(ii) in [7] shows that

I :R aj = ∩ni=1Qi :R aj = ∩ji=1(Qi :R aj) = ∩ji=1Qi.

(iii) Let x ∈ P1. Then in view of [3, Theorem 2.5], I :R x is a
prime ideal of R, furthermore I :R x is an associated prime ideal of I
so that there is 1 ≤ j ≤ n such that I :R x = Pj . Now, suppose that
x ∈ R \ P1 and suppose that x lies in all Pk+1, · · · , Pn but in none of
P1, · · · , Pk. If k = n, then I :R x = ∩ni=1(Qi :R x) = ∩ni=1Qi = I, see
Lemma 4.14 in [7]. We therefore assume henceforth in this proof that
k < n. In this case, there exists t ∈ N such that xt ∈ ∩ni=k+1Qi. Thus

I :R xt = ∩ni=1(Qi :R xt) = ∩ki=1(Qi :R xt) = ∩ki=1Qi. To complete
the proof, it is enough to show that I :R x = I :R xt. It is obvious
that I :R x ⊆ I :R xt. Assume that a ∈ I :R xt. Thus axt ∈ I which
implies that ax ∈ I or x2 ∈ I since I is a 2-absorbing ideal. If ax ∈ I
we are done. Otherwise, x2 ∈ I which shows that x ∈ P1 and this is a
contradiction.

(iv) It is obvious by (ii) and Theorem 2.1(iii). �

Theorem 2.5. Let I be a 2-absorbing ideal of R such that
√
I = P ∩P ′,

where P, P ′ are the only distinct prime ideals of R that are minimal over
I. Then the following statements are true:

(i) P = Pk and P ′ = Ps for some k, s with 1 ≤ k, s ≤ n and k 6= s.
(ii) Qk = Pk and Qk = I :R a for each a ∈ ∩ni=1,i 6=kQi \Qk.

(iii) Qs = Ps and Qs = I :R a for each a ∈ ∩ni=1,i 6=sQi \Qs.

(iv) If I 6=
√
I, then any primary decomposition of I has at least

three components.
(v) There exists xi ∈ R such that Pi = I :R xi for each i = 1, · · · , n.

Furthermore, either Pi ⊆ Pj or Pj ⊆ Pi for each i, j = 1, · · · , n
with i 6= k, s and j 6= k, s.

Proof. (i) By assumptions P ∩P ′ = ∩ni=1Pi thus there is 1 ≤ k ≤ n such
that P = Pk since P is a minimal prime ideal of I. By a same argument
there is 1 ≤ s ≤ n with k 6= s such that P ′ = Ps.

(ii) Assume that a ∈ ∩ni=1,i 6=kQi \ Qk. Then I :R a = Qk :R a. If

a ∈ Pk, then a ∈
√
I and so by [3, Theorem 2.6], I :R a is a prime ideal

of R containing P = Pk and P ′ = Ps. On the other hand, Qk :R a is a Pk-
primary ideal of R so that Pk = I :R a = Qk :R a thus P ′ = Ps ⊆ P = Pk

which is a contradiction. Hence, a 6∈ Pk and so a 6∈
√
I. Now, in
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view of [5, Theorem 2.1(iii)] and [7, Lemma 4.14(iii)], it follows that
Pk = I :R a = Qk :R a = Qk.

(iii) The proof is similar to that of (ii).
(iv) Assume that I has a primary decomposition with only two com-

ponents. Then by (ii) and (iii) it follows that I =
√
I which is a contra-

diction.
(v) Assume that 1 ≤ i, j ≤ n are such that i 6= k, s and j 6= k, s and

assume that a ∈ ∩nt=1,t6=iQt \ Qi. Thus I :R a = Qi :R a also i 6= k, s
implies that a ∈ Pk ∩ Ps which means that I :R a = Qi :R a is a prime
ideal of R containing Pk and Ps, see [3, Theorem 2.6]. On the other
hand, Qi :R a is a Pi-primary ideal of R so that Pi = I :R a = Qi :R a.
With a similar argument one can show that I :R a = Qj :R a = Pj for
a ∈ ∩nt=1,t6=jQt \ Qj . Hence, using [3, Theorem 2.6] again shows that
Pi ⊆ Pj or Pj ⊆ Pi that is claimed. �

Corollary 2.6. Let I be a 2-absorbing ideal of R such that
√
I =

P ∩ P ′, where P, P ′ are the only distinct prime ideals of R that are
minimal over I. Then ass(I) is union of two totally ordered sets such
as ass(I) = {Pk} ∪ {P1, · · · , Pk−1, Pk+1, · · · , Pn} or ass(I) = {Ps} ∪
{P1, · · · , Ps−1, Ps+1, · · · , Pn}.

Proof. This is immediate from Theorem 2.5. �

Remark 2.7. Let I be a 2-absorbing ideal of R such that
√
I = P ∩ P ′,

where P, P ′ are the only distinct prime ideals of R that are minimal
over I. In the rest of this paper, we suppose that P1, · · · , Pn have been
numbered ( renumbered if necessary ) such that P = P1, P

′ = P2 and
P1 ⊂ P3 ⊂ · · · ⊂ Pn, P2 ⊂ P3 ⊂ · · · ⊂ Pn.

Theorem 2.8. Let the situation be as in Remark 2.7. Then the follow-
ing statements are true.

(i) ∩ni=j+1Qi 6⊆ Pj for each j with 1 ≤ j ≤ n − 1 also ∩ni=3Qi 6⊆
P1 ∪ P2.

(ii) There exists aj ∈ R such that ∩ji=1Qi = I :R aj for each j with
1 ≤ j ≤ n− 1.

(iii) For each x ∈ R either I :R x = Pj or I :R x = ∩ji=1Qi for some
j with 1 ≤ j ≤ n.

(iv) There exist a2, · · · , an and x1, · · · , xn in R such that

I :R an = ∩ni=1Qi ⊂ I :R an−1 = ∩n−1i=1 Qi ⊂ · · · ⊂ I :R a2 = Q1 ∩Q2

⊂ P1 = I :R x1 ⊂ P3 = I :R x3 ⊂ · · · ⊂ Pn = I :R xn.
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Proof. (i) It is obvious by arrangements that we made in Remark 2.7.
(ii) For j = 1 it is immediate by Theorem 2.5 (ii). Assume that

a2 ∈ ∩ni=3Qi \ P1 ∪ P2. Thus I :R a2 = ∩ni=1Qi :R a2 = ∩2i=1(Qi :R aj) =
∩2i=1Qi. Now, assume that aj ∈ ∩ni=j+1Qi \Pj and 3 ≤ j ≤ n−1. In this

case aj 6∈ Pi for all i = 1, · · · , j. Thus Lemma 4.14(ii) in [7] shows that

I :R aj = ∩ni=1Qi :R aj = ∩ji=1(Qi :R aj) = ∩ji=1Qi.

(iii) If x ∈ P1 ∩ P2, then I :R x is a prime ideal of R by Theorem 2.6
in [3] also I :R x is an associated prime ideal of I so that I :R x = Pj

for some 1 ≤ j ≤ n. Now, suppose that x ∈ P1 \ P2. Then Theorem
2.1(iii) in [5] shows that I :R x = P2 also I :R x = P1 for x ∈ P2 \ P1.
By a similar argument to that of Theorem 2.4(iii) we reach the desired
conclusion for each x 6∈ P1 ∪ P2.

(iv) It is obvious by (ii). �

3. Zero divisor graph of equivalence classes of zero
divisors

Recall that R is a commutative ring. The following are some basic
facts about zero divisor graph of equivalence classes of zero divisors in
a commutative ring R. Let Z∗(R) denote the zero divisors of R and
Z(R) = Z∗(R) ∪ {0}. For x, y ∈ Z∗(R) we say that x ∼ y if and
only if ann(x) = ann(y). As noted in [8], ∼ is an equivalence relation.
Furthermore, if x1 ∼ x2 and x1y = 0, then y ∈ ann(x1) = ann(x2)
and hence, x2y = 0. It follows that multiplication is well defined on
the equivalence classes of ∼; that is if [x] denotes the class of x, then

the product [x][̇y] = [xy] makes sense. Note that [0] = {0} and [1] =
R \ Z(R); the other equivalence classes form a partition of Z∗(R).

Definition 3.1. The graph of equivalence classes of zero divisors of a
ring R, denoted ΓE(R), is the graph associated to R whose vertices are
the classes of elements in Z∗(R), and with each pair of distinct classes
[x], [y] joined by an edge if and only if [x][y] = [0].

Lemma 3.2. [8, Lemma 1.2] Let R be a commutative Noetherian ring.
Then any two distinct elements of Ass(R) are connected by an edge.
Furthermore, every vertex [v] of ΓE(R) is either an associated prime or
adjacent to an associated prime maximal in {ann(x) : 0 6= x ∈ R}.

The degree of a vertex v in a graph, denoted deg v, is the number of
edges incident to v. By a graph we mean that a simple graph in the
sense that there are no loops or double edges.
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Proposition 3.3. [8, Proposition 3.4] Let R be a commutative Noe-
therian ring. Let x1, · · · , xr be elements of R, with r ≥ 2, and suppose
ann(x1) ⊂ · · · ⊂ ann(xr) is a chain in Ass(R). If 3 ≤ |ΓE(R)| < ∞,
then deg[x1] < · · · < deg[xr].

Recall that I is a decomposable ideal of R, and I = Q1 ∩ · · · ∩
Qn with

√
Qi = Pi for i = 1, · · · , n is a minimal primary decom-

position of I.

Corollary 3.4. If I is a 2-absorbing ideal of R, then the vertices set of
ΓE(R/I) has at most 2n− 1 elements. Moreover, Q1 ∩ · · · ∩Qn−1, Q1 ∩
· · · ∩Qn−2, · · · , Q1, P1, · · · , Pn are all vertices of ΓE(R/I).

Proof. It is clear by Theorems 2.4 and 2.8. �

We will slightly abuse terminology and refer to [ai+I] as Q1∩· · ·∩Qi

for all i, with 1 ≤ i ≤ n − 1 and refer to [xi + I] as Pi for all i, with
1 ≤ i ≤ n, where ai and xi are elements of R such as chosen in the
proofs of Theorems 2.1,2.4, 2.5 and 2.8.

Theorem 3.5. Let the situations be as in Remark 2.3, Q1 6= P1 and
n ≥ 2. Then the following statements are true.

(i) [ai +I][x1 +I] 6= [0] for all i = 1, · · · , n−1, so that deg[x1 +I] =
n− 1.

(ii) [an−1 + I][xi + I] = [0] if and only if i = n so that deg[xn + I] =
2n− 2.

(iii) deg[xi+I] = n+ i−2 for all i = 1, · · · , n, and deg[ai+I] = n− i
for all i = 1, · · · , n− 1.

Proof. (i) It is enough to show that [a1 + I][x1 + I] 6= 0 by Theorem
2.4(iv). In view of Theorems 2.1 and 2.4 there are x1 ∈ ∩ni=2Qi \Q1 and
a1 ∈ ∩ni=2Qi \ P1 such that Q1 = ann(a1 + I) and P1 = ann(x1 + I). If
a1x1 + I = 0, then a1x1 ∈ I and so a1x1 ∈ Q1 which is a contradiction
since neither x1 ∈ Q1 nor a1 ∈ P1. Thus a1x1 + I 6= 0 therefore [ai +
I][x1 + I] 6= [0] for all i = 1, · · · , n − 1. The last assertion follows by
Lemma 3.2.

(ii) (⇒) The vertex [an−1+I] is adjacent to [xn+I] in view of Lemma
3.2 so that [an−1 + I][xn + I] = [0].

(⇐) Assume that [an−1 + I][xi + I] = [0] for some i with 1 ≤ i ≤ n.
Then ajxi + I = 0 and also xjxi + I = 0 for all j ≥ 1, see Theorem
2.4(iv). Thus deg[xi + I] ≥ 2n − 2. Now, Proposition 3.3 implies that
i = n.
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(iii) We have deg[x1 + I] = n− 1 and deg[xn + I] = 2n− 2 by (i) and
(ii). Thus Proposition 3.3 shows that deg[xi + I] = n + i− 2. Using (i)
again the last assertion follows. �

Corollary 3.6. If Q1 = P1, then any primary decomposition of I has
at most two components, so that n = 2.

Proof. We have deg[x1 + I] = n − 1 and deg[xn + I] = 2n − 3 in view
of Theorem 3.5(i) and Lemma 3.2. On the other hand, if n ≥ 3, then
Proposition 3.3 shows that deg[xn+I] ≥ 2n−2 which is a contradiction.
So that n ≤ 2 and any primary decomposition of I has at most two
components. �

Theorem 3.7. Let the situations be as in Remark 2.7. Then the fol-
lowing statements are true.

(i) [ai + I][x1 + I] 6= [0] and [ai + I][x2 + I] 6= [0] for each i =
2, · · · , n− 1, so that deg[x1 + I] = deg[x2 + I] = n− 1

(ii) [an−1 +I][xi +I] = [0] if and only if i = n. So that deg[xn +I] =
2n− 3.

(iii) deg[xi +I] = n+ i−3 for each i = 3, · · · , n, so that deg[ai +I] =
n− i for all i = 2, · · · , n− 1.

Proof. (i) It is enough to show that [a2 + I][x1 + I] 6= 0, see Theorem
2.8(iv). In view of Theorems 2.5 and 2.8 there are x1 ∈ ∩ni=2Qi \ Q1

and a2 ∈ ∩ni=2Qi \ P1 ∪ P2 such that Q1 ∩ Q2 = ann(a2 + I) and P1 =
ann(x1 + I). If a2x1 + I = 0, then a2x1 ∈ I and so a2x1 ∈ Q1 which is
a contradiction since neither x1 ∈ Q1 nor a2 ∈ P1. Thus a2x1 + I 6= 0
therefore [ai + I][x1 + I] 6= [0] for all i = 2, · · · , n − 1. By a similar
argument one can show that [ai + I][x2 + I] 6= [0] for all i = 2, · · · , n−1.
The last assertion follows by Lemma 3.2.

(ii) It is similar to that of (ii) in Theorem 3.3
(iii) We have deg[x1+I] = deg[x2+I] = n−1 and deg[xn+I] = 2n−3

by (i) and (ii). Now, Proposition 3.3 implies that deg[xi + I] = n+ i−3,
for all i = 3, · · · , n. Using (i) again the last assertion follows. �
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