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USING FEED-BACK NEURAL NETWORK METHOD

FOR SOLVING LINEAR FREDHOLM INTEGRAL

EQUATIONS OF THE SECOND KIND

AHMAD JAFARIAN AND SAFA MEASOOMY NIA

Abstract. In this paper a new method for finding the solution of
Fredholm integral equation based on hybrid neural networks have
presented. The proposed neural net can get a real input vector
and calculates its corresponding output vector. Next a learning
algorithm based on the gradient descent method has been defined
for adjusting the connection weights. Eventually, we have showed
this method in comparison with some numerical methods provides
solutions with good generalization and high accuracy. The method
is illustrated by several examples with computer simulations.
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1. Introduction

Since many mathematical formulations of physical phenomena contain
integral equations and these equations are very useful for solving many
problems in several applied fields like mathematical physics and engi-
neering, therefore various approaches for solving these problems have
been proposed. First time, Taylor expansion approach was presented
for solution of integral equations by Kanwal and Liu in [6] and then has
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been extended in [5, 15, 16, 18, 17]. Also variational iteration method
[7] and Adomian decomposition method [1] are effective and convenient
for solving integral equations. The homotopy analysis method (HAM)
was proposed by Liao [8, 9, 10, 11] and then has been applied in [1, 3, 4].
In this method, the solution is considered as the summation of an infi-
nite series, which usually converges rapidly to the exact solution. Also
some theoretical aspects in existence of solutions for linear and nonlinear
integral equations have been studied in [12, 13, 14]. Moreover, some dif-
ferent valid methods for solving integral equation have been developed
in the last years. For example, artificial neural network approach has
been applied for finding the solution of this kind of problems. Effati and
Buzhabadi [2] used multilayer perceptron neural networks for solving
Fredholm integral equations of the second kind.
In this paper we want to propose a new numerical approach to approx-
imate solution of a Fredholm integral equation. For this aim, we apply
an architecture of hybrid neural nets. At first we substitute N -th trun-
cation of the Taylor expansion for unknown function F (t) instead of un-
known function in the given integral equation. Then we use a two-layer
feed-back neural network with (N + 1) input units and (N + 1) output
units, where it can get an input vector and calculates its corresponding
output vector. The outputs from this neural network are numerically
compared with target outputs. Next a cost function is defined that mea-
sures the difference between the target output and corresponding actual
output. Then the suggested neural net by using a learning algorithm
which is based on the gradient descent method adjusts the real connec-
tion weights to any desired degree of accuracy.
Here is an outline of the paper. In section 2, the basic notations and def-
initions of integral equation and Taylor polynomial method are briefly
presented. Section 3 describes how to find an approximate solution of
the given Fredholm integral equation by using neural network (NN). Fi-
nally, the reliability of the Feed-back neural networks (FNN) method
versus trapezoidal quadrature rule and the proposed iterative method
in [13], is checked to the integral equations in Section 4.

2. Preliminaries

In this section we give a detailed study of integral equations and
Taylor expansion which are used in the next sections.
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2.1. Integral equation. The basic definition of integral equation is
given in [2].

Definition 1. The Fredholm integral equation of the second kind is

(2.1) F (t) = f(t) + λ(ku)(t),

where

(ku)(t) =

∫ b

a

K(s, t)F (s)ds.

In Eq. (2.1), K(s, t) is an arbitrary kernel function over the square
a ≤ s, t ≤ b and f(t) is a function of t where a ≤ t ≤ b. If the kernel
function satisfies K(s, t) = 0, s > t, we obtain the Volterra integral
equation

(2.2) F (t) = f(t) + λ

∫ t

a

K(s, t)F (s)ds.

2.2. Taylor series. Let us first recall the basic principles of the Taylor
polynomial method for solving Fredholm integral equations [6]. Since
these results are the key for our problems therefore we explain them.
Let us first write the Eq. (2.1) in this form

(2.3) F (t) = f(t) + λ

∫ b

a

K(s, t)F (s)ds,

where the function f(t) and the kernel K(s, t) have been given and F (t)
has to be evaluated. To obtain the solution of the given problem in the
form of

(2.4) FN (t) =
N
∑

i=0

1

i!
F (i)(c)(t − c)i, a ≤ t, c ≤ b,

which is the Taylor polynomial of degree N at t = c, we first differentiate
equation (2.1) N times with respect to t and get

(2.5) F (i)(t) = f (i)(t) + λ

∫ b

a

∂(i)K(s, t)

∂ti
F (s)ds, i = 0, ..., N.

The aim of this paper is determining of the coefficients F (i)(c), (for i =
0, ..., N) in Eq. (2.4). For this aim, we expanded F (s) in Taylor series
at s = 0 and substituted it’s N -th truncation in (2.5). Without loss
generality we assume that in Eq. (2.3), a = 0. Because in the otherwise
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with doing change variable x = s − a the lower bound of the integral
equation (2.3) transformed to 0. Now we can write:

(2.6) F (i)(0) = f (i)(0) +

N
∑

j=0

TijF
(j)(0), i = 0, ..., N,

where

Tij =
λ

j!

∫ b

a

∂(i)K(s, t)

∂ti
|t=0 s

jds, j = 0, ..., N.

The applied approach for determining the coefficient F (i)(0) in Eq. (2.6)
will be described in section 3.

3. Learning of neural network

This section, first gives a short review on hybrid feed-back neural
networks and then will suggest a learning algorithm to obtain an ap-
proximate solution of the integral equation.

Definition 2. A hybrid neural net is a neural network with real in-
put signals, connection weights and activation function f . However,

i) we can combine input signals and connection weights using a
t-norm, t-conorm or some other continuous operation.

ii) f can be any continuous function from input to output.

We know that hybrid neural nets are universal approximators. In other
words, they can approximate any continuous function on a compact set
to arbitrary accuracy. Since the unknown function F (s) in Eq. (2.1)
must be integrable on interval [a, b], therefore we can approximate it
with this neural network.
As applications of hybrid neural nets in this paper, we employ multipli-
cation and addition to combine input signals and connection weights.

3.1. Input-output relations of each unit. Now consider a two-layer
hybrid FNN with (N + 1) input units and (N + 1) output units such
that all input-output signals and connection weights be real numbers.
Suppose an input vector A = (A0, A1, ..., AN ) is presented to our FNN,
then the input-output relation of each unit can be written as follows:

Input units:
The input neurons make no change in their inputs, so:

(3.1) oi = Ai, i = 0, 2, ..., N.
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Output units:

yj = f(netj),

netj =

N
∑

i=0

wji.oi, j = 0, 2, ..., N.

where Ai is a real number. In above equation wji denotes the connection
weight from the i-th input unit to the j-th output unit and f(x) is
identical activation function corresponding to output nodes (see Fig.
1).

Fig. 1. The proposed FNN

3.2. Cost function. Let us define the parameters Ai, wji and target
vector B = (B0, ..., BN ) as following:

Ai = F (i)(0), wji =

{

Ti,j , j 6= i,

Ti,j − 1 , j = i,
Bj = −f (j)(0), j, i = 0, ...., N.

Suppose that Y = (Y0, ..., YN ) be the output vector corresponding to
the input vector A = (A0, ..., AN ). Now we want to introduce how
to deduce the learning algorithm from the training set {A;B}. To do
this, we defined a cost function between the jth output unit Yj and
corresponding target output Bj as follows:

(3.2) ej =
(Bj − Yj)

2

2
, j = 0, ..., N.
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In general, the cost function for the input-output pair {A;B} is obtained
as:

(3.3) e =

N
∑

j=0

ej .

3.3. Learning algorithm of the FNN. The present algorithm intends
to acquire the minimum of the cost function in weight space using the
method of gradient descent. The combination of the connection weights
which minimizes the error function is considered to be a solution of the
learning problem. Let real quantities Ai (for i = 0, ..., N) are initialized
at random values for input signals. We want to update the crisp param-
eter Ai such that Ai = F (i)(0). At first we calculate the parameters wji,
Tji and Yj (for j, i = 0, ..., N) by using of relations that were described
at the begining of this section. For crisp parameter Ai adjustment rule
can be written as follows:

(3.4) Ai(r + 1) = Ai(r) + ∆Ai(r),

(3.5) ∆Ai(r) = −η.
∂e

∂Ai
+ α.∆Ai(r − 1), i = 0, ..., N,

where r is the number of adjustments, η is the learning rate and α is
the momentum term constant. Thus our problem is to calculate the
derivative ∂e

∂Ai
in (3.5). The derivative ∂e

∂Ai
can be calculated from the

cost function e in (3.3). We calculated ∂e
∂Ai

as follows:

(3.6)
∂e

∂Ai

=
∂e1

∂Ai

+ · · ·+
∂eN

∂Ai

, i = 0, ..., N.

On the other hand,

∂ej

∂Ai

=
∂ej

∂Yj

.
∂Yj

∂netj
.
∂netj

∂Ai

= (f (j)(0) + Yj) .
∂netj

∂Ai

, j = 0, ..., N,

where

∂netj

∂Ai

=

{

Tij , j 6= i,

T ij − 1 , j = i.

Let us assume input-output pair {A;B} that is given as training data,
is applied for learning of the FNN. Then the learning algorithm can be
summarized as follows:

Learning algorithm
Step 1: η > 0, α > 0 and Emax > 0 are chosen. Then crisp quantities
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Ai (for i = 0, ..., N) are initialized at random values.
Step 2: Let r := 0 where r is the number of iterations of the learning
algorithm. Then the running error E is set to 0.
Step 3: Let r := r + 1. Then,

i): Forward calculation: Calculate the output vector Y by pre-
senting the input vector A.
ii): Back-propagation: Adjust crisp parameter Ai using the cost
function (3.3).

Step 4: Cumulative cycle error is computed by adding the present error
to E.
Step 5: The training cycle is completed. For E < Emax terminate the
training session. If E > Emax then E is set to 0 and we initiate a new
training cycle by going back to Step 3.

4. Numerical examples

This section contains three examples of linear Fredholm integral equa-
tions of second kind. In these examples, we illustrate the use of FNN
technique to approximate the solutions of the given integral equations.
For each example, the computed values of the approximate solution are
calculated over a number of iterations and the cost function is plotted.
Moreover the present method is compared with trapezoidal quadrature
rule and a type of artificial neural networks that has been introduced in
[2]. In the following simulations, we use the specifications as follows:

1. Learning constant η = 0.5.
2. Momentum constant α = 0.5.
3. Stoping conditions Emax < 0.0001.

Example 1. Consider the following Fredholm integral equation

F (t) = sin(t)−
1

4
t+

1

4

∫ π

2

0
tsF (s)ds,

with the exact solution F (t) = sin t. For this case, we used a polynomial
of degree 7. We trained FNN with 8 input units and 8 output units.
We choose an initial approximation polynomial of degree 7 for unknown
function F (t) as follows:

1. Learning constant η = 0.5.
2. Momentum constant α = 0.5.
3. Stoping conditions Emax < 0.0001.
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Example 1. Consider the following Fredholm integral equation

F (t) = sin(t)−
1

4
t+

1

4

∫ π

2

0
tsF (s)ds,

with the exact solution F (t) = sin t. For this case, we used a polynomial
of degree 7. We trained FNN with 8 input units and 8 output units.
We choose an initial approximation polynomial of degree 7 for unknown
function F (t) as follows:

F (t) =
1

2
+

1

2
t−

1

4
t2 −

1

12
t3 +

1

48
t4 +

1

240
t5 −

1

1440
t6 −

1

10080
t7.

From above polynomial, initial input vector can be written as

A = (0.5, 0.5,−0.5,−0.5, 0.5, 0.5,−0.5. − 0.5).

After 14 iterations the approximate function F (t) transformed to fol-
lowing form:

F (t) = −1.9841×10−4 t7+1.8701×10−8 t6+0.0083 t5+9.0953×10−6 t4

−0.1666 t3 + 7.9622 × 10−4 t2 + 0.9986 t+ 0.0026.

Table 1 shows the approximated solution over a number of iterations
and Figs. 2 and 3 show the convergence behaviors for computed values

of the parameter F
(i)
r (0) for different numbers of iterations.

r F
(i)
r (0), i = 0, ..., 7 er

1 ( 0.18 0.65 -0.29 -0.76 0.24 0.74 -0.25 -0.75) 0.97460
2 (-0.10 0.81 -0.06 -1.02 -0.00 0.99 -0.00 -1.00) 0.78816
3 (-0.21 0.92 0.07 -1.14 -0.13 1.12 0.12 -1.12) 0.62220
4 (-0.15 0.97 0.10 -1.13 -0.12 1.12 0.12 -1.12) 0.49024
5 (-0.04 0.98 0.07 -1.05 -0.06 1.06 0.06 -1.06) 0.38664
6 ( 0.03 0.99 0.01 -0.99 0.00 1.00 0.00 -0.99) 0.30538
...

...
...

9 ( 0.00 1.01 -0.01 -0.90 0.01 0.98 -0.01 -0.98) 0.0015990
10 (-0.00 1.01 -0.00 -1.00 -0.00 0.99 -0.00 -1.00) 0.0014420
11 (-0.00 1.01 0.00 -1.00 -0.00 1.00 0.00 -1.00) 0.0013027
12 (-0.00 1.00 0.01 -1.00 -0.00 1.00 0.00 -1.00) 0.0011794
13 ( 0.00 1.00 0.00 -1.00 -0.00 1.00 0.00 -1.00) 0.0010697
14 ( 0.00 0.99 0.00 -0.99 0.00 1.00 0.00 -1.00) 0.0009717

Table 1. The approximated solutions with error analysis for Example 1.
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Fig. 2. The cost function for Example 1.
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Fig. 3. Convergence of the calculated solutions for Example 1.

Trapezoidal rule: Moreover, this example is going to show differ-
ence between the FNN approach and the trapezoidal quadrature rule.
Consider again Example 1, the trapezoidal quadrature procedure is as
follows:
Let the region of integration is subdivided into 4 equal intervals of width

h = π
8 , 5 integration nodes ti =

(i−1)π
8 and fi = f(ti) (for i = 1, ..., 5).

After using the TQR for this integral equation, following relations are
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derived:

F (ti) = sin ti−
1

4
ti

+
π2

64
ti(

1

4
F (

π

8
)+

1

2
F (

π

4
)+

3

4
F (

3π

8
)+

1

2
F (

π

2
)), i = 1, ..., 5.

These relations are transformed to linear system












−1 0 0 0 0
0 −0.9849 0.0303 0.0454 0.0303
0 0.0303 −0.9394 0.0908 0.0606
0 0.0454 0.0908 −0.8637 0.0908
0 0.0606 0.1211 0.1817 −0.8789

























F (0)
F (π8 )
F (π4 )
F (3π8 )
F (π2 )













=













0
−0.2845
−0.5108
−0.6294
−0.6073













.

The solution of above system yields following data points,

{(0, 0), (
π

8
, 0.3846), (

π

4
, 0.7109), (

3π

8
, 0.9296), (

π

2
, 1.0076)}.

For the data in above set, the Lagrange interpolation formula is derived
as

Lp = 0.0287 t4 − 0.2036 t3 + 0.0200 t2 + 1.0012 t.

The approximate to the exact solution of Eq. (2.3) with 7-th truncation
limits of Taylor series and trapezoidal quadrature are compared in Fig.
4 with the exact solution.
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Fig. 4. Comparison the exact and approximated solutions for Example
1.
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Also Table 2 illustrates the absolute values of the errors obtained here
and the absolute errors of [2] for this example. As showing, difference
between the exact solution and the computed solution is dispensable.

Presented method Neural network approach$[2]
t = −−−−−−−−−−−− −−−−−−−−−−−

50 iterations 100 iterations 50 iterations 100 iterations

0 4.08× 10−5 6.35× 10−9 2.11× 10−5 6.35× 10−8

Π

8
4.16× 10−5 5.80× 10−9 2.03× 10−5 5.66× 10−8

Π

4
4.23× 10−5 5.08× 10−9 1.89× 10−5 6.10× 10−8

3Π

8
4.41× 10−5 7.15× 10−9 2.08× 10−5 7.03× 10−9

Π

2
4.68× 10−5 6.24× 10−9 2.05× 10−5 5.21× 10−9

Table 2. Absolute errors with N = 8 for Example 1.

Example 2. Let us consider the integral equation

F (t) = et −
et+1 − 1

t+ 1
+

∫ 1

0
etsF (s)ds,

with the exact solution F (t) = et. We trained the fuzzy neural network
as described in last example. Before starting calculations, we assumed
that F (i)(0) = 0.5, (for i = 0, ..., N). Now we have:

F (t) =
1

2
+

1

2
t+

1

4
t2 +

1

12
t3 +

1

48
t4 +

1

240
t5.

After 30 iterations the approximate function F (t) transformed to the
follow function:

F (t) = 0.0083 t5 + 0.0412 t4+0.1647 t3 +0.4933 t2+0.9849 t+0.9736.

Numerical results can be found in Table 3. Similarly Figs. 5 and 6 show
the accuracy of the solution or the convergence behaviors for computed

values of the parameters F
(i)
r (0) where r is the number of iterations.
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r F
(i)
r (0), i = 0, ..., 5 er

1 (0.47 0.50 0.51 0.52 0.52 0.53) 0.17971
2 (0.45 0.50 0.52 0.54 0.55 0.56) 0.15448
3 (0.44 0.50 0.53 0.56 0.57 0.58) 0.13222
4 (0.42 0.51 0.55 0.57 0.59 0.61) 0.11463
5 (0.41 0.51 0.56 0.59 0.61 0.63) 0.10083
6 (0.40 0.52 0.57 0.60 0.63 0.65) 0.08995
...

...
...

24 (0.94 0.96 0.97 0.97 0.97 0.96) 0.0010974
25 (0.95 0.97 0.97 0.98 0.98 0.97) 0.0010737
27 (0.96 0.97 0.97 0.98 0.98 0.98) 0.0010505
28 (0.96 0.98 0.98 0.98 0.98 0.98) 0.0010278
29 (0.97 0.97 0.97 0.98 0.98 0.99) 0.0010056
30 (0.97 0.98 0.98 0.98 0.98 0.99) 0.0009838

Table 3. The approximated solutions with error analysis for Example 2.
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Fig. 5. The cost function for Example 2.



Neural network method for solving linear Fredholm integral equations 65

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

 

 

F(0)
F’(0)
F’’(0)
F’’’(0)

F(4)(0)

F(5)(0)

Fig. 6. Convergence of the calculated solutions for Example 2.

Trapezoidal rule: For this example the trapezoidal rule with 5 inte-
gration nodes can be written as follows:

F (ti) = eti −
eti+1 − 1

ti + 1

+
1

8
(F (0)+2e

1

4
tiF (

1

4
)+2e

1

2
tiF (

1

2
)+2e

3

4
tiF (

3

4
)+etiF (1)),

where

ti =
i− 1

4
, i = 1, ..., 5.

The solution of the linear system which is caused from above relations,
yields following data points:

{(0, 0.9156), (0.25, 1.1938), (0.5, 1.5538), (0.75, 2.0194), (1, 2.6213)}.

Similarly, the lagrange interpolation formula is came from above inter-
polation pairs as

Lp = 0.0733 t4 + 0.1435 t3 + 0.5150 t2 + 0.9739 t+ 0.9156.
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Fig. 7. Comparison the exact and approximated solutions for Example
2.

In Fig. 7, the differences between 5-th truncation limit of the Taylor
series and the TQR with exact solution are quite noticeable.
Similarly Table 4 illustrates the absolute values of the errors obtained
here and the absolute errors of [2] for example 2.

Presented method Neural network approach [2]
t = −−−−−−−−−−−− −−−−−−−−−−−

50 iterations 100 iterations 50 iterations 100 iterations

0 4.08× 10−4 3.65× 10−10 6.85× 10−5 1.86× 10−8

1

4
8.20× 10−5 1.15× 10−10 4.52× 10−5 2.06× 10−8

1

2
3.17× 10−4 3.46× 10−10 4.41× 10−5 7.84× 10−9

3

4
3.37× 10−4 3.70× 10−10 5.30× 10−5 8.11× 10−9

1 1.09× 10−3 8.05× 10−9 4.08× 10−5 8.86× 10−9

Table 4. Absolute errors with N = 6 for Example 2.

From examples (1) and (2) we can conclude that to get the best approx-
imating solution for unknown function, the truncation limit N must be
chosen large enough.

Example 3. Consider the following integral equation problem

F (t) = 2t+

∫ 1

0
(t+ s)F (s)ds,
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with the exact solution F (t) = −12t−8. Similarly, we applied proposed
scheme for this problem. The learning started by

F (t) = t2 − 10t− 10.

After 313 iterations, the approximate function F (t) is given by

F (t) = −4.1380 × 10−4 t2 − 11.9394 t− 7.9675.

Numerical result can be found in tables 5 and 6. Figs. 8 and 9 show the

convergence behaviors for computed values of the parameters F
(i)
r (0),

where r is number of iterations. Moreover, exact solution and the ap-
proximated solution are compared in Fig. 10.

r F
(i)
r (0), i = 0, 1, 2 er

1 (-1.1312 -0.9347 0.624132) 1.38980
2 (-1.2556 -0.8737 0.138329) 1.13430
3 (-1.3606 -0.8232 -0.232404) 0.92432
4 (-1.4478 -0.7824 -0.352726) 0.77131
5 (-1.5204 -0.7495 -0.244871) 0.66086
6 (-1.5808 -0.7232 -0.051282) 0.58075
...

...
...

308 (-7.9668 -11.9381 -0.000845) 0.00100390
309 (-7.9669 -11.9384 -0.000841) 0.00100290
310 (-7.9670 -11.9386 -0.000838) 0.00100200
311 (-7.9672 -11.9389 -0.000834) 0.00100110
312 (-7.9673 -11.9392 -0.000831) 0.00100020
313 (-7.9675 -11.9394 -0.000827) 0.00099922

Table 5. The approximated solutions with error analysis for Example 3.
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Fig. 8. The cost function for Example 3.
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Fig. 9. Convergence of the calculated solutions for Example 3.

Trapezoidal rule: Similarly, the trapezoidal rule with 5 integration
nodes can be written as follows:

F (ti) = 2ti+

1

8
(tiF (0)+2(ti+0.25)F (

1

4
)+2(ti+0.5)F (

1

2
)+2(ti+0.75)F (

3

4
)+(ti+1)F (1)),

where

ti =
i− 1

4
, i = 1, ..., 5.
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The solution of the linear system which is caused from above relations,
yields following data points:

{(0,−7.3333), (0.25,−10), (0.5,−12.6667), (0.75,−15.3333), (1,−18)}.

Similarly, by using the procedure which has been used for the previous
examples, the Lagrange interpolation formula is derived as

Lp = −
32

3
t−

22

3
.
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Fig. 10. Comparison the exact and approximated solutions for
Example 3.

Presented method Neural network approach [2]
t = −−−−−−−−−−−− −−−−−−−−−−−

50 iterations 100 iterations 50 iterations 100 iterations

0 8.11× 10−3 7.06× 10−5 4.93× 10−2 4.16× 10−4

1

4
2.01× 10−2 8.69× 10−5 3.81× 10−2 2.59× 10−4

1

2
2.86× 10−2 1.90× 10−4 7.07× 10−3 6.72× 10−5

3

4
3.37× 10−2 3.04× 10−4 8.31× 10−3 3.62× 10−4

1 3.70× 10−2 3.73× 10−4 2.18× 10−2 5.04× 10−4

Table 6. Absolute errors with N = 4 for Example 3.

It is clear that using of this method we can find the analytical solution
for these kinds of equations, if the exact solution of given problem be a
polynomial.
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5. Conclusions

In this paper, an architecture of feed-back neural networks has been
proposed to approximate solution of a linear Fredholm integral equation
of the second kind. Presented hybrid FNN in this study was a method for
computing the coefficients in the Taylor expansion of unknown function.
It is clear that to get the best approximate solution of the given equation,
the truncation limit N must be chosen large enough. An interesting
feature of this method is finding the analytical solution for the integral
equation, if the exact solution of the problem be a polynomial of degree
N or less than N . Also, we have compared the purposed method with
trapezoidal quadrature rule and, a structure of artificial neural networks
which have been widely used to solve these kinds of equations. The
analyzed examples illustrate the ability and reliability of the present
method. The obtained solutions, in comparison with the exact solutions
admit a remarkable accuracy. With the availability of this methodology,
now it will be possible to investigate the approximate solution of other
kinds of integral equations.

Acknowledgments

The authors are grateful to the anonymous referees for their comments
which substantially improved the quality of this paper.

References

[1] S. Abbasbandy, Numerical solution of integral equation: Homotopy perturbation

method and Adomians decomposition method, Appl. Math. Comput, 173 (2006),
493–500.

[2] S. Effati and R. Buzhabadi, A neural network approach for solving Fred-

holm integral equations of the second kind, Neural Compt. Appl, (2010), doi:
10.1007/s00521-010-0489-y.339-355.

[3] M. El-Shahed, Application of Hes homotopy perturbation method to Volterras

integro-differential equation, Int. J. Non. Sci. Num. Simul, 6 (2005),163–168.
[4] A. Golbabai and B. Keramati, Modified homotopy perturbation method

for solving Fredholm integral equations, Chaos Soli. Frac, (2006),
doi:10.1016/j.chaos.2006.10.037.

[5] M. Gulsu and M. Sezer, The approximate solution of high order linear difference

equation with variable coefficients in terms of Taylor polynomials, Appl. Math.
Comput, 168 (2005), 76–88.

[6] R. P. Kanwal and K. C. Liu, A Taylor expansion approach for solving integral

equations, Int. J. Math. Educ. Sci. Technol, 20 (1989), 411–414.



Neural network method for solving linear Fredholm integral equations 71

[7] X. Lan, Variational iteration method for solving integral equations, Comp. Math.
with Appl, 54 (2007), 1071–1078.

[8] S. J. Liao, Beyond perturbation: Introduction to the Homotopy analysis method,
Chapman Hall/CRC Press, Boca Raton (2003).

[9] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math.
Comput, 147 (2004), 499–513.

[10] S. J. Liao, Notes on the Homotopy analysis method: some defini-

tions and theorems, Commun. Nonlinear Sci. Numer. Simul, (2008) doi:
10.1016/j.cnsns.2008.04–013.

[11] S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear

differential equations, Stud. Appl. math, 119 (2007), 297–355.
[12] K. Maleknejad and K. Nouri, Nosrati Sahlan M, Convergence of approximate

solution of nonlinear FredholmHammerstein integral equations, Commun. Non-
linear Sci. Numer. Simul, 15(6) (2010), 1432–1443.

[13] K. Maleknejad and K. Nouri, Mollapourasl R, Existence of solutions for some

nonlinear integral equations, Commun. Nonlinear Sci. Numer. Simul, 14 (2009),
2559–2564.

[14] K. Maleknejad, R. Mollapourasl and M. Alizadeh, Convergence analysis for nu-

merical solution of Fredholm integral equation by Sinc approximation, Commun.
Nonlinear Sci. Numer. Simul, 16 (2011), 2478–2485.

[15] S. Nas, S. Yalcynbas and M. Sezer, A Taylor polynomial approach for solving

high-order linear Fredholm integrodifferential equations, Int. J. Math. Educ. Sci.
Technol, 31 (2000), 213–225.

[16] N. Sezer, Taylor polynomial solution of Volterra integral equations, Int. J. Math.
Educ. Sci. Technol, 25 (1994), 625–633.

[17] M. Sezer and M. Gulsu, A new polynomial approach for solving difference and

Fredholm integro-difference equations with mixed argument, Appl. Math. Com-
put, 171 (2004), 332–344.

[18] M. Sezer, A method for approximate solution of the second order linear differen-

tial equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol,
27 (1996), 821–834.

Ahamad Jafarian
Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran
Email: jafarian5594@yahoo.com

Safa Measoomy Nia
Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran
Email: measoomy@yahoo.com


	1. Introduction
	2. Preliminaries
	2.1. Integral equation
	2.2. Taylor series

	3. Learning of neural network
	3.1. Input-output relations of each unit 
	3.2. Cost function
	3.3. Learning algorithm of the FNN

	4. Numerical examples
	5. Conclusions
	References

