MULTIPLICATION IDEALS IN Γ-RINGS

ALI AKBAR ESTAJI, ALI SAGHAFI KHORASANI
AND SAMANEH BAGHDARI

Abstract

In this paper we introduce the notion of multiplication ideals in Γ-rings and we obtain some characterizations for multiplication ideals in Γ-rings.

Key Words: Γ-ring, multiplication ideal, prime ideal, semi-prime ideal, faithful ideal.
2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 16D25, 16N60.

1. Introduction

We shall call an R-module M a multiplication module if every submodule of M is of the form $I M$, for some ideal I of R. Multiplication modules and ideals have been investigated in A. Barnard (1981), ElBast and Smith (1988), P. F. Smith (1988) and others. For results on multiplication modules, the reader is referred to [1, 2, 5, 8, 12 .

Nobusawa [9] developed the notion of a Γ-ring which is more general than a ring. After his research, Barnes studied Γ-rings in more details in 3. But Barnes approached to Γ-rings in a different way than that of Nobusawa and he defined the concept of Γ-ring and related definitions. After these two papers were published, many mathematicians made good works on Γ-ring in the sense of Barnes and Nobusawa, which are parallel to the results in the ring theory (for example [1, 4, 10, 12). In this paper, we introduce the concepts of multiplication ideals in Γ-rings.

[^0]
2. Preliminaries of Γ-Rings

In the remainder of the paper we use some notation and results from the theory of Γ-rings. We present a few basic definitions here.

Let M and Γ be additive abelian groups. If we have a map from $M \times \Gamma \times M$ to M such that for all $x, y, z \in M, \alpha, \beta \in \Gamma$
(1) $(x+y) \alpha z=x \alpha z+y \alpha z, x(\alpha+\beta) z=x \alpha z+x \beta z, x \alpha(y+z)=$ $x \alpha y+x \alpha z$,
(2) $(x \alpha y) \beta z=x \alpha(y \beta z)$,
then M is called a Γ-ring in the sense of Barnes [3]. Note that any ring R, can be regarded as an R-ring. A Γ-ring M is called commutative, if for any $x, y \in M$ and $\gamma \in \Gamma$, we have $x \gamma y=y \gamma x$. M is called a Γ-ring with unit, if there exist elements $1 \in M$ and $\gamma_{0} \in \Gamma$ such that for any $m \in M, 1 \gamma_{0} m=m=m \gamma_{0} 1$. Throughout this paper, M stands for a nonempty commutative Γ-ring with unit. If A and B are subsets of the Γ-ring M and $\Theta \subseteq \Gamma$, we denote by $A \Theta B$ the subset of M consisting of all finite sums of the form $\sum a_{i} \gamma_{i} b_{i}$ where $\left(a_{i}, \gamma_{i}, b_{i}\right) \in A \times \Theta \times B$. For singletone subsets we abbreviate this notation for example, $\{a\} \Theta B=a \Theta B$. An ideal of a Γ-ring M is an additive subgroup I of M such that $I \Gamma M=M \Gamma I \subseteq I$. We denote an ideal I in M by $I \unlhd M$. An ideal $I \unlhd M$ is called a proper ideal, if $I \varsubsetneqq M$. For each subset S of the Γ-ring M, the smallest ideal containing S is denoted by $<S>$ and is called the ideal generated by S. If S is finite, $<S>$ is called finitely generated.

A proper ideal P in the Γ-ring M is called a prime ideal, if for any ideals $A, B \unlhd M, A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A proper ideal N in the Γ-ring M is called maximal ideal, if for any ideals J in M such that $N \subseteq J \subseteq M$, we have $N=J$ or $J=M$. It is easy to show that any maximal ideal is prime. We denote by $\operatorname{Max}(M)$, the set of all maximal ideals in the Γ-ring M.

A subset S of the Γ-ring M is an m-system in M, if $S=\emptyset$ or if $a, b \in S$ implies that $<a>\Gamma\cap S \neq \emptyset$. An ideal P in M is prime if and only if its complement P^{c} is an m-system, see [3]. The prime radical $P(A)$ of the ideal A in the Γ-ring M, is the set consisting of those elements r of M with the property that every m-system in M which contains r meet A (that is, has nonempty intersection with A). An ideal Q in the Γ-ring M is said to be semi-prime ideal if and only if it has the following property: if A is an ideal in M such that $A \Gamma A \subseteq Q$, then $A \subseteq Q$. It is clear that a prime ideal is semi-prime. More over the
intersection of any set of semi-prime ideals is a semi-prime ideal, see [6]. It follows easy by induction that if Q is a semi-prime ideal, A is an ideal and $(A \Gamma)^{n} A \subseteq Q$ for an arbitrary positive integer n, then $A \subseteq Q$, see [6].
Theorem 2.1. If Q is an ideal in the Γ-ring M, the following conditions are equivalent.
(1) Q is a semi-prime ideal.
(2) if $a \in M$ such that $\langle a\rangle \Gamma\langle a\rangle \subseteq Q$, then $a \in Q$.

Proof. See Theorem 3.2 in [7].
Proposition 2.2. If Q is an ideal in the Γ-ring M, then $P(Q)$ is the smallest semi-prime ideal in M which contains Q, i.e.

$$
P(Q)=\bigcap P
$$

where P runs over all semi-prime ideals of M such that $Q \subseteq P$.
Proof. See Corollary 3.5 in [7].
The reader is referred to [6, 7, 8] for undefined terms and notations.

3. Multiplication ideals

In this section we give some important properties of multiplication ideals, starting with the following definition.
Definition 3.1. An ideal I in the Γ-ring M is called multiplication ideal, if for every ideal J contained in I, there exists ideal G in M such that $J=G \Gamma I$.

Let I and J be ideals in the Γ-ring $M .[I: J]$ is the set of all $m \in M$ such that $m \Gamma J \subseteq I .[I: J]$ is called the residual of I by J. The annihilator of I is denoted by $\operatorname{ann}(I)$ and equals to $[0: I]$. An ideal I in M is called faithful if $\operatorname{ann}(I)=0$. We say that I divides J, denoted by $I \mid J$, if there exists an ideal G in M such that $I \Gamma G=J$.
Proposition 3.2. Let I be a multiplication ideal in the Γ-ring M and J be an arbitrary ideal in $M . I \mid J$ if and only if $J \subseteq I$.
Proof. The proof is evident.
Definition 3.3. Let M be a Γ-ring and N an ideal in M and $P \in$ $\operatorname{Max}(M) . N$ is called P-cyclic if there exist $p \in P$ and $n \in N$ such that $(1-p) \gamma_{0} N \subseteq M \Gamma n$ and also, it is clear that $(1-p) \gamma_{0} N=(1-p) \Gamma N$. Define $T_{P} N$ as the set of all $n \in N$ such that $(1-p) \gamma_{0} n=0$ for some $p \in P$.

Lemma 3.4. Let M be $a \Gamma$-ring and N an ideal in M and $P \in \operatorname{Max}(M)$. Then $T_{P} N$ is an ideal in M.

Proof. It is straightforward.
Proposition 3.5. Let N be an ideal in the Γ-ring $M . N$ is multiplication ideal if and only if for any ideal $P \in \operatorname{Max}(M)$, either $N=T_{P} N$ or N is P-cyclic.

Proof. Let N be a multiplication ideal and $P \in \operatorname{Max}(M)$. First suppose that $N=P \Gamma N$. Since N is multiplication ideal, we conclude that for every $n \in N$, there exists an ideal A in M such that $\langle n\rangle=A \Gamma N$. Hence $\langle n\rangle=P \Gamma<n>$. So there exists $p \in P$ such that $(1-p) \gamma_{0} n=$ 0 , it follows that $n \in T_{P} N$ and then $N=T_{P} N$.

Now suppose that $N \neq P \Gamma N$ and $x \in N \backslash P \Gamma N$. Then there exists an ideal B in M such that $\langle x\rangle=B \Gamma N$ and $P+B=M$. Obviously, if we assume that $p \in P$, then $(1-p) \gamma_{0} N \subseteq M \Gamma x$. Therefore N is P-cyclic.

Conversely, suppose that J is an ideal in M and $J \subseteq N$. Define I as the set of all $m \in M$, where $m \gamma_{0} n \in J$ for any $n \in N$. Clearly I is an ideal in M and $I \Gamma N \subseteq J$. Let $y \in J$. Define K as the set of all $m \in M$, where $m \gamma_{0} y \in I \Gamma N$. We claim $K=M$. Assume that $K \varsubsetneqq M$. Then, by Zorn's Lemma, there exists $Q \in \operatorname{Max}(M)$ such that $K \subseteq Q \subset M$. By hypothesis $N=T_{Q} N$ or N is Q-cyclic. If $N=T_{Q} N$, then there exists $s \in Q$ such that $(1-s) \gamma_{0} y=0$. Hence $(1-s) \in K \subseteq Q$, it follows that $1 \in Q$, a contradiction. If N is Q-cyclic then there exist $t \in Q$ and $z \in N$ such that $(1-t) \gamma_{0} N \subseteq M \Gamma z=\langle z\rangle$. Define L as the set of all $m \in M$ such that $m \gamma_{0} z \in(1-t) \gamma_{0} J$. Clearly L is an ideal in M and $L \gamma_{0} z \subseteq(1-t) \gamma_{0} J$. Since $J \subseteq N$, we conclude that $(1-t) \gamma_{0} J \subseteq<z>$. Hence $(1-t) \gamma_{0} J \subseteq L \gamma_{0} z$. So $(1-t) \gamma_{0} J=L \gamma_{0} z$, it follows that $(1-t) \gamma_{0} L \gamma_{0} N \subseteq(1-t) \gamma_{0} J \subseteq J$ and $(1-t) \gamma_{0} L \subseteq I$. Therefore $(1-t) \gamma_{0}(1-t) \gamma_{0} J \subseteq I \Gamma M$. Hence $(1-t) \gamma_{0}(1-t) \in K \subseteq Q$. Thus $(1-t) \in Q$, it follows that $1 \in Q$, a contradiction. Hence $K=M$ and $y \in I \Gamma N$. Thus N is a multiplication ideal.

Proposition 3.6. Let N be a faithful ideal in the Γ-ring $M . N$ is multiplication ideal if and only if
(1) For any nonempty collection $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals in M,

$$
\bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma N\right)=\left(\bigcap_{\lambda \in \Lambda} I_{\lambda}\right) \Gamma N
$$

(2) For any ideal K in M which $K \subseteq N$ and any ideal A in M with $K \subset A \Gamma N$, there exists ideal B in M such that $B \subset A$ and $K \subseteq B \Gamma N$.

Proof. Suppose (1) and (2) hold. Let K be an ideal in M contained in N and

$$
\mathcal{S}=\{I: I \text { is an ideal of } M \text { and } K \subseteq I \Gamma N\}
$$

Clearly $M \in \mathcal{S}$. Since the statement (1) is correct, by Zorn's Lemma, \mathcal{S} has a minimal member, A say. Since $K \subseteq A \Gamma N$ and A is minimal element of \mathcal{S}, we can then conclude from (2) that $K=A \Gamma N$. It follows that N is a multiplication ideal.

Conversely, suppose that N is a multiplication ideal in M. Let $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ be a nonempty collection of ideals in M and $I=\left(\bigcap_{\lambda \in \Lambda} I_{\lambda}\right)$. Clearly $I \Gamma N \subseteq \bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma N\right)$. Let $x \in \bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \Gamma N\right) \subseteq N$ and we put $L=\{m \in$ $\left.M: m \gamma_{0} x \in I \Gamma N\right\}$. We claim $L=M$. Assume that $L \varsubsetneqq M$. By Zorn's Lemma, there exists $P \in \operatorname{Max}(M)$ such that $L \subseteq P$. It is clear that $x \notin T_{P} N$. Hence $T_{P} N \neq N$ and by Proposition 3.5, N is P-cyclic. Hence there exist $n \in N$ and $p \in P$ such that $(1-p) \gamma_{0} N \subseteq M \Gamma n=<n>$. Thus $(1-p) \gamma_{0} x \in \bigcap_{\lambda \in \Lambda}\left(I_{\lambda} \gamma_{0} n\right)$ and so for any $\lambda \in \Lambda,(1-p) \gamma_{0} x \in I_{\lambda} \gamma_{0} n$. It is clear that $(1-p) \gamma_{0}(1-p) \in L \subseteq P$, in view of the fact that N is faithful. Hence $1 \in P$, a contradiction. Therefore $L=M$, it follows that $x=1 \gamma_{0} x \in I \Gamma N$ and (1) holds. Now suppose K is an ideal in M with $K \subseteq N$ and A is an ideal in M with $K \subset A \Gamma N$. Since N is multiplication ideal, there exists an ideal C in M such that $K=C \Gamma N$. Let $B=A \cap C$. Clearly, $B \subset A$ and by the statement (1), $K \subseteq B \Gamma N$. This proves the statement (2).

Let P be a proper ideal in the Γ-ring M. It is clear that the following conditions are equivallent.
(1) P is semi-prime.
(2) For any $a \in M$, if $a \gamma_{0} a \in P$ then $a \in P$.
(3) For any $a \in M$ and $n \in \mathbb{N}$, if $\left(a \gamma_{0}\right)^{n} a \in P$ then $a \in P$.

Proposition 3.7. Let C be an ideal in Γ-ring M and A be the set of all $x \in M$ such that $\left(x \gamma_{0}\right)^{n} x \in C$ for some $n \in \mathbb{N} \cup\{0\}$, where $\left(x \gamma_{0}\right)^{0} x=x$. Then $A=P(C)$.

Proof. Suppose that $x \in A$. So $\left(x \gamma_{0}\right)^{n} x \in C$ for some $n \in \mathbb{N} \cup\{0\}$. Let P be a semi-prime ideal in M containing C. So $x \in P$. It follows from Proposition 2.2 that $x \in P(C)$. Thus $A \subseteq P(C)$. Now suppose $x \notin A$. Let Σ be the set of all ideals I in M such that $C \subseteq I$ and
$\left(x \gamma_{0}\right)^{n} x \notin I$ for any $n \in \mathbb{N} \cup\{0\}$. By Zorn's Lemma, Σ has maximal element P. Suppose that $z, y \notin P$. Then there exists $m \in \mathbb{N} \cup\{0\}$ such that $\left(x \gamma_{0}\right)^{m} x \in P+<z \gamma_{0} y>$. Hence $P+<z \gamma_{0} y>\notin \Sigma$ and so $z \gamma_{0} y \notin P$. Now if $z=y$, by the above argument $z \notin P$ implies that $z \gamma_{0} z \notin P$. So P is semi-prime and $x \notin P$. Hence, by Proposition 2.2, $x \notin P(C)$. Thus $x \notin A$ implies that $x \notin P(C)$, whence $P(C) \subseteq A$.

Proposition 3.8. Let J be a faithful multiplication ideal in the Γ-ring M and A, B be two ideals in M. Then, $A \Gamma J \subseteq B \Gamma J$ if and only if either $A \subseteq B$ or $J=[B: A] \Gamma J$.

Proof. Let $A \nsubseteq B$. Note that $[B: A]=\bigcap_{a \in X}[B:<a>]$ where X is the set of all elements $a \in A$ with $a \notin B$. By Proposition 3.6,

$$
[B: A] \Gamma J=\bigcap_{a \in X}([B:<a>] \Gamma J)
$$

If for every $a \in X, J=[B:<a>] \Gamma J$, then $J=[B: A] \Gamma J$, which finishes the proof. Let $a \in X$ and $C=[B:<a>]$. It is clear that $C \neq M$. Let Ω denote the collection of all semi-prime ideals P in M containing C. Suppose that there exists $P \in \Omega$ such that $J \neq P \Gamma J$ and $x \in J \backslash P \Gamma J$. Since J is a multiplication ideal in the Γ-ring M, we conclude that there the exists an ideal D in M such that $\langle x\rangle=J \Gamma D$ and $D \nsubseteq P$. Thus $c \Gamma J \subseteq<x>$ for some $c \in D \backslash P$. Now we have $c \Gamma a \Gamma J \subseteq B \Gamma<x>$. It is easily to show that for any $\gamma \in \Gamma$, there exist $\gamma_{1} \in \Gamma$ and $b \in B$ such that $\left(c \gamma a-1 \gamma_{1} b\right) \gamma_{0} x=0$, it follows that $\left(c \gamma a-1 \gamma_{1} b\right) \Gamma c \Gamma J=0$. Hence $c \gamma c \in[B:<a>]=C$. Since P is a semi-prime ideal containing C, we conclude that $c \in P$, a contradiction. Therefore for every $P \in \Omega, J=P \Gamma J$ and, by Propositions 2.2 and 3.6, $J=P(C) \Gamma J$. Let $j \in J$. It is easily to show that $\langle j\rangle=P(C) \Gamma<j\rangle$. Then there exists $s \in P(C)$ such that for every $n \in \mathbb{N}, j=\left(s \gamma_{0}\right)^{n} j$. By Proposition 3.7, there exists $t \in \mathbb{N} \cup\{0\}$ such that $\left(s \gamma_{0}\right)^{t} s \in C$, it follows that $j=\left(s \gamma_{0}\right)^{t} s \gamma_{0} j \in C \Gamma J$, i.e., $J \subseteq C \Gamma J$. Hence $C \Gamma J=J$. The converse is evident.

Let M be a Γ-ring and let $\operatorname{Mat}_{n \times n}(M)$ be the set of all $n \times n$ matrices over M.

Definition 3.9. Let M be a Γ-ring and $A=\left(a_{i j}\right) \in \operatorname{Mat}_{n \times n}(M)$. If σ is a permutation on $\{1,2, \ldots, n\}$, let $\operatorname{sign}(\sigma)=1$ if σ is an even permutation, and $\operatorname{sign}(\sigma)=-1$ if σ is an odd permutation. The determinant
is defined by

$$
\operatorname{det}_{\Gamma}(A)=\sum_{\text {all } \sigma} \operatorname{sign}(\sigma) a_{1, \sigma(1)} \gamma_{0} a_{2, \sigma(2)} \gamma_{0} \cdots \gamma_{0} a_{n, \sigma(n)}
$$

Let $M_{i, j}$ be the determinant of the $(n-1) \times(n-1)$ matrix obtained by removing row i and column j from A. Let $C_{i, j}=(-1)^{i+j} M_{i, j} . M_{i, j}$ and $C_{i, j}$ are called the (i, j) minor and cofactor of A.

Proposition 3.10. For any $1 \leq i \leq n$, $\operatorname{det}_{\Gamma}(A)=a_{i 1} \gamma_{0} C_{i, 1}+a_{i 2} \gamma_{0} C_{i, 2}+$ $\cdots+a_{i n} \gamma_{0} C_{i, n}$. For any $1 \leq j \leq n, \operatorname{det}_{\Gamma}(A)=a_{1 j} \gamma_{0} C_{1, j}+a_{2 j} \gamma_{0} C_{2, j}+$ $\cdots+a_{n j} \gamma_{0} C_{n, j}$.

Let M be a Γ-ring and $\left\{a_{i} \mid i \in \mathbb{N}_{n}\right\} \subseteq M$. It is clear that

$$
<a_{1}, \ldots, a_{n}>=\left\{\sum_{i=1}^{n} m_{i} \gamma_{0} a_{i} \mid \forall i \in \mathbb{N}_{n}\left(m_{i} \in M\right\}\right.
$$

Also, if I is an ideal of the Γ-ring M and $J=<a_{1}, \ldots, a_{n}>$, then

$$
I \Gamma J=\left\{x_{1} \gamma_{0} a_{1}+\ldots+x_{n} \gamma_{0} a_{n} \mid x_{i} \in I, \text { for all } 1 \leq i \leq n\right\}
$$

Proposition 3.11. Let M be a Γ-ring, I an ideal in M, J an ideal generated by n elements, and x an element of M satisfying $x \Gamma J \subseteq I \Gamma J$. Then there exists $y \in I$ such that $\left(\left(x \gamma_{0}\right)^{n-1} x+y\right) \gamma_{0} J=0$.

Proof. If $J=<a_{1}, \ldots, a_{n}>$, then there exist $y_{i 1}, \ldots, y_{i n} \in I$ such that

$$
x \gamma_{0} a_{i}=\sum_{j \in \mathbb{N}_{n}} y_{i j} \gamma_{0} a_{j}
$$

Now we put

$$
B=\left[\begin{array}{cccc}
x-y_{11} & -y_{12} & \cdots & -y_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
-y_{n 1} & -y_{n 2} & \cdots & x-y_{n n}
\end{array}\right]
$$

It is clear that there exists $y \in I$ such that $\left.\operatorname{det}(B)=\left(\left(x \gamma_{0}\right)^{n-1} x\right)+y\right)$ and also, for every $1 \leq i \leq n,(\operatorname{det} B) \gamma_{0} a_{i}=0$. Therefore $\left(\left(x \gamma_{0}\right)^{n-1} x+\right.$ y) $\gamma_{0} J=0$.

We denote by S_{Γ}, the set of all finitely generated faithful multiplication ideals in the Γ-ring M.

Proposition 3.12. Let I be an ideal of the Γ-ring M. If $I \Gamma J=J$ for some $J \in S_{\Gamma}$, then there exists $i \in I$ such that $(1-i) \gamma_{0} J=0$.

Proof. We know that $1 \Gamma J=J$. Now for $x=1$ in Proposition 3.11, there exists $n \in \mathbb{N}$ such that $\left(\left(1 \gamma_{0}\right)^{n} 1+y\right) \gamma_{0} J=0$ and by setting $i=-y$ the proof will be completed.

Corollary 3.13. Let A, B be two ideals of the Γ-ring M and $J \in S_{\Gamma}$. Then $A \subseteq B$ if and only if $A \Gamma J \subseteq B \Gamma J$.

Proof. Assume that $A \Gamma J \subseteq B \Gamma J$, then by Proposition 3.8, $A \subseteq B$ or $J=[B: A] \Gamma J$. Suppose that $J=[B: A] \Gamma J$. By Proposition 3.12 , there exists $r \in[B: A]$ such that $(1-r) \gamma_{0} J=0$. Since $J \in S_{\Gamma}$, we conclude that $r=1$ and so $A=1 \Gamma A \subseteq B$. The converse is evident.

Lemma 3.14. Let I be a multiplication ideal of the Γ-ring M and $I \subseteq J$. Then

$$
J=I \Gamma[J: I] .
$$

Proof. Since I is a multiplication ideal of M, then $J=I \Gamma G$ for some ideal G of M, and $G \subseteq[J: I]$. Therefore $J \subseteq I \Gamma[J: I]$. On the other hand we can see easily that $I \Gamma[J: I] \subseteq J$. So $J=I \Gamma[J: I]$.

Definition 3.15. Let M be a Γ-ring. A left M_{Γ}-module is an additive abelian group A together with a mapping $\cdot: M \times \Gamma \times A \longrightarrow A$ (the image of (m, γ, a) is denoted by $m \gamma a)$, such that for all $a, a_{1}, a_{2} \in A$, $\gamma, \gamma_{1}, \gamma_{2} \in \Gamma$, and $m, m_{1}, m_{2} \in M$ the following hold:
(1) $m \gamma\left(a_{1}+a_{2}\right)=m \gamma a_{1}+m \gamma a_{2}$ and $\left(m_{1}+m_{2}\right) \gamma a=m_{1} \gamma a+m_{2} \gamma a$,
(2) $m_{1} \gamma_{1}\left(m_{2} \gamma_{2} a\right)=\left(m_{1} \gamma_{1} m_{2}\right) \gamma_{2} a$,
(3) $1 \gamma_{0} a=a$.

A right M_{Γ}-module is defined in a similar way.
Definition 3.16. If A is a left M_{Γ}-module and \mathcal{S} is the set of all $M_{\Gamma^{-}}$ submodules B of A such that $B \neq A$, then \mathcal{S} is partially ordered by set-theoretic inclusion. B is a maximal M_{Γ}-submodule if and only if B is a maximal element in the partially ordered set \mathcal{S}.

Proposition 3.17. If A is a non-zero finitely generated left M_{Γ}-module, then the following statements hold.
(1) If K is a proper M_{Γ}-submodule of A, then there exists a maximal M_{Γ}-submodule of A which contains K.
(2) A has a maximal M_{Γ}-submodule.

Proof. (1) Let $A=\left\langle a_{1}, \ldots, a_{n}\right|$ and

$$
\mathcal{S}=\left\{L: K \subseteq L \text { and } L \text { is a proper } M_{\Gamma} \text {-submodule of } A\right\} .
$$

\mathcal{S} is partially ordered by inclusion and note that $\mathcal{S} \neq \emptyset$, since $K \in \mathcal{S}$. If $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain in \mathcal{S}, then $L=\bigcup_{\lambda \in \Lambda} L_{\lambda}$ is a M_{Γ}-submodule of A. We show that $L \neq A$. If $L=A$, then for every $1 \leq i \leq n$, there exists $\lambda_{i} \in \Lambda$ such that $a_{i} \in L_{\lambda_{i}}$. Since $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain in \mathcal{S}, we conclude that there exists $1 \leq j \leq n$ such that $a_{1}, \ldots, a_{n} \in L_{\lambda_{j}}$. Therefore $A=L_{\lambda_{j}} \in \mathcal{S}$ which contradicts the fact that $A \notin \mathcal{S}$. It follows easily that L is an upper bound for $\left\{L_{\lambda}\right\}_{\lambda \in \Lambda}$ in \mathcal{S}. By Zorn's Lemma, there exists a proper M_{Γ}-submodule B of A that is maximal in \mathcal{S}. It is a clear that B a maximal M_{Γ}-submodule of A containing K.
(2) By part (1), it suffices to we put $K=(0)$.

Proposition 3.18. Let J be a finitely generated ideal of the Γ-ring M contained in multiplication ideal I. If $A=\operatorname{ann}(J)$, then $\frac{I}{A \Gamma I}$ is finitely generated.
Proof. Suppse that $B=A+\sum_{x \in I}[<x>: I]$. If $B \neq M$ then, by Proposition 3.17, there exists a maximal ideal P of the Γ-ring M such that $B \subseteq P$. By Lemma $3.14,<x>=[<x>: I] \Gamma I \subseteq P \Gamma I$ for any $x \in I$, it follows that $I \subseteq P \Gamma I$. Since $P \Gamma I \subseteq I$, we conclude that $I=P \Gamma I$. By hypothesis, there exists $m_{1}, \ldots, m_{k} \in J$ such that $J=<m_{1}, \ldots, m_{k}>$. Since I is a multiplication ideal, we can then conclude from Lemma 3.14 that for each $1 \leq i \leq k,<m_{i}>=[<$ $\left.m_{i}>: I\right] \Gamma I=\left[<m_{i}>: I\right] \Gamma P \Gamma I=<m_{i}>\Gamma P$. Therefore, there exists $p_{i} \in P$ such that $\left(1-p_{i}\right) \gamma_{0} m_{i}=0$, for each $1 \leq i \in \leq k$. If we put $p=1-\left(1-p_{1}\right) \gamma_{0} \ldots \gamma_{0}\left(1-p_{k}\right)$, then $p \in P$ and $(1-p) \Gamma J=0$. Hence $(1-p) \in \operatorname{Ann}(J) \subseteq B \subseteq P$, it follows that $1 \in P$, a contradiction. Thus $B=M$ and there exists $x_{1}, x_{2}, \ldots x_{n} \in I$ such that $1 \in\left[<x_{1}\right\rangle$: $I]+\cdots+\left[<x_{n}>: I\right]+A$. Therefore $I=<x_{1}>+\cdots+\left\langle x_{n}\right\rangle+А Г I$. On the other hand, $\frac{I}{A \Gamma I}=<x_{1}+A \Gamma I, \ldots, x_{n}+A \Gamma I>$, then $\frac{I}{A \Gamma I}$ is finitely generated.
Proposition 3.19. Let I be a multiplication ideal of the Γ-ring M. I is finitely generated if and only if ann $(I)=\operatorname{ann}(J)$ for some finitely generated ideal J contained in I.
Proof. Suppose that $\operatorname{ann}(I)=\operatorname{ann}(J)$ for some finitely generated ideal J contained in I. By Proposition $3.18, \frac{I}{\operatorname{ann}(J) \Gamma I}$ is finitely generated. On the other hand $\frac{I}{a n n(J) \Gamma I}=\frac{I}{a n n(I) \Gamma I} \cong I$. Hence I is a finitely generated ideal of M. For the converse it's enough to we put $J=I$.

References

[1] D. D. Anderson, Some remarks on multiplication ideals, Math Japon, 25 (1980), 463-469.
[2] A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174-178.
[3] W. E. Barnes, On the Г-rings of Nobusawa, Pacific J. Math., Vol. 18, no. 3 (1966), 411-422.
[4] M. Dumitru, Gamma-ring: some interpretations used in the study of their radicals, U.P.B. Sci. Bull., Series A, Vol. 71, Iss. 3 (2009), 9-22.
[5] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
[6] S. Kyuno, On the radicals of Γ-rings, Osaka J. Math., 12 (1975), 639-645.
[7] S. Kyuno, On prime gamma rings, Pacific J. Math., Vol. 75, No, 1 (1978), 185-190.
[8] G. H. Low and P. F. Smith, Multification modules and ideals, Comm. Algebra, 18 (1990), 4353-4375.
[9] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
[10] A.C. Paul and Md. Sabur, Decomposition in neotherian Gamma rings, International Archive of Applied Sciences and Technology, Vol. 2 [2] December 2011, 38-42.
[11] Md. S. Uddin and P. Ahmed, Gamma vector spaces and their generalization, International Archive of Applied Sciences and Technology, Vol. 2 [2] December 2011, 77-83.
[12] P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel) 50 (1988), 223-235.
[13] N. N. Suliman and A.-R. H. Majeed, Orthogonal derivations on an ideal of semiprime Γ-rings, International Mathematical Forum, Vol. 7, no. 28 (2012), 1405-1412.

Ali Akbar Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O.Box 397, Sabzevar, Iran
Email: aa_estaji@yahoo.com

Ali Saghafi Khorasani

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O.Box 397, Sabzevar, Iran
Email: saghafiali21@yahoo.com

Samaneh Baghdari

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O.Box 397, Sabzevar, Iran
Email: m.baghdari@yahoo.com

[^0]: Received: 1 October 2012, Accepted: 30 May 2013. Communicated by A. Yousefian Darani *Address correspondence to Ali Saghafi Khorasani; E-mail: saghafiali21@yahoo.com. (C) 2013 University of Mohaghegh Ardabili.

