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MULTIPLICATION IDEALS IN Γ-RINGS
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AND SAMANEH BAGHDARI

Abstract. In this paper we introduce the notion of multiplication
ideals in Γ-rings and we obtain some characterizations for multipli-
cation ideals in Γ-rings.
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1. Introduction

We shall call an R-module M a multiplication module if every sub-
module of M is of the form IM , for some ideal I of R. Multiplication
modules and ideals have been investigated in A. Barnard (1981), El-
Bast and Smith (1988), P. F. Smith (1988) and others. For results on
multiplication modules, the reader is referred to [1, 2, 5, 8, 12].

Nobusawa [9] developed the notion of a Γ-ring which is more general
than a ring. After his research, Barnes studied Γ-rings in more details
in [3]. But Barnes approached to Γ-rings in a different way than that of
Nobusawa and he defined the concept of Γ-ring and related definitions.
After these two papers were published, many mathematicians made good
works on Γ-ring in the sense of Barnes and Nobusawa, which are parallel
to the results in the ring theory (for example [1, 4, 10, 12]). In this paper,
we introduce the concepts of multiplication ideals in Γ-rings.
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2. Preliminaries of Γ-rings

In the remainder of the paper we use some notation and results from
the theory of Γ-rings. We present a few basic definitions here.

Let M and Γ be additive abelian groups. If we have a map from
M × Γ×M to M such that for all x, y, z ∈M , α, β ∈ Γ

(1) (x + y)αz = xαz + yαz, x(α + β)z = xαz + xβz, xα(y + z) =
xαy + xαz,

(2) (xαy)βz = xα(yβz),

then M is called a Γ-ring in the sense of Barnes [3]. Note that any ring
R, can be regarded as an R-ring. A Γ-ring M is called commutative,
if for any x, y ∈ M and γ ∈ Γ, we have xγy = yγx. M is called
a Γ-ring with unit, if there exist elements 1 ∈ M and γ0 ∈ Γ such
that for any m ∈ M , 1γ0m = m = mγ01. Throughout this paper,
M stands for a nonempty commutative Γ-ring with unit. If A and
B are subsets of the Γ-ring M and Θ ⊆ Γ, we denote by AΘB the
subset of M consisting of all finite sums of the form

∑
aiγibi where

(ai, γi, bi) ∈ A×Θ×B. For singletone subsets we abbreviate this notation
for example, {a}ΘB = aΘB. An ideal of a Γ-ring M is an additive
subgroup I of M such that IΓM = MΓI ⊆ I. We denote an ideal I in
M by IEM . An ideal IEM is called a proper ideal, if I $M . For each
subset S of the Γ-ring M , the smallest ideal containing S is denoted by
< S > and is called the ideal generated by S. If S is finite, < S > is
called finitely generated.

A proper ideal P in the Γ-ring M is called a prime ideal, if for any
ideals A,B EM , AΓB ⊆ P implies A ⊆ P or B ⊆ P . A proper ideal N
in the Γ-ring M is called maximal ideal, if for any ideals J in M such
that N ⊆ J ⊆M , we have N = J or J = M . It is easy to show that any
maximal ideal is prime. We denote by Max(M), the set of all maximal
ideals in the Γ-ring M .

A subset S of the Γ-ring M is an m-system in M , if S = ∅ or if
a, b ∈ S implies that < a > Γ < b > ∩S 6= ∅. An ideal P in M is
prime if and only if its complement P c is an m-system, see [3]. The
prime radical P (A) of the ideal A in the Γ-ring M , is the set consisting
of those elements r of M with the property that every m-system in M
which contains r meet A (that is, has nonempty intersection with A).
An ideal Q in the Γ-ring M is said to be semi-prime ideal if and only if
it has the following property: if A is an ideal in M such that AΓA ⊆ Q,
then A ⊆ Q. It is clear that a prime ideal is semi-prime. More over the
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intersection of any set of semi-prime ideals is a semi-prime ideal, see [6].
It follows easy by induction that if Q is a semi-prime ideal, A is an ideal
and (AΓ)nA ⊆ Q for an arbitrary positive integer n, then A ⊆ Q, see
[6].

Theorem 2.1. If Q is an ideal in the Γ-ring M , the following conditions
are equivalent.

(1) Q is a semi-prime ideal.
(2) if a ∈M such that < a > Γ < a >⊆ Q, then a ∈ Q.

Proof. See Theorem 3.2 in [7]. �

Proposition 2.2. If Q is an ideal in the Γ-ring M , then P (Q) is the
smallest semi-prime ideal in M which contains Q, i.e.

P (Q) =
⋂
P

where P runs over all semi-prime ideals of M such that Q ⊆ P .

Proof. See Corollary 3.5 in [7]. �

The reader is referred to [6, 7, 8] for undefined terms and notations.

3. Multiplication ideals

In this section we give some important properties of multiplication
ideals, starting with the following definition.

Definition 3.1. An ideal I in the Γ-ring M is called multiplication
ideal, if for every ideal J contained in I, there exists ideal G in M such
that J = GΓI.

Let I and J be ideals in the Γ-ring M . [I : J ] is the set of all m ∈M
such that mΓJ ⊆ I. [I : J ] is called the residual of I by J . The
annihilator of I is denoted by ann(I) and equals to [0 : I]. An ideal I
in M is called faithful if ann(I) = 0. We say that I divides J , denoted
by I|J , if there exists an ideal G in M such that IΓG = J .

Proposition 3.2. Let I be a multiplication ideal in the Γ-ring M and
J be an arbitrary ideal in M . I|J if and only if J ⊆ I.

Proof. The proof is evident. �

Definition 3.3. Let M be a Γ-ring and N an ideal in M and P ∈
Max(M). N is called P -cyclic if there exist p ∈ P and n ∈ N such that
(1 − p)γ0N ⊆ MΓn and also, it is clear that (1 − p)γ0N = (1 − p)ΓN .
Define TPN as the set of all n ∈ N such that (1 − p)γ0n = 0 for some
p ∈ P .
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Lemma 3.4. Let M be a Γ-ring and N an ideal in M and P ∈Max(M).
Then TPN is an ideal in M .

Proof. It is straightforward. �

Proposition 3.5. Let N be an ideal in the Γ-ring M . N is multiplica-
tion ideal if and only if for any ideal P ∈Max(M), either N = TPN or
N is P -cyclic.

Proof. Let N be a multiplication ideal and P ∈Max(M). First suppose
that N = PΓN . Since N is multiplication ideal, we conclude that for
every n ∈ N , there exists an ideal A in M such that < n >= AΓN .
Hence < n >= PΓ < n >. So there exists p ∈ P such that (1− p)γ0n =
0, it follows that n ∈ TPN and then N = TPN .

Now suppose that N 6= PΓN and x ∈ N \PΓN . Then there exists an
ideal B in M such that < x >= BΓN and P +B = M . Obviously, if we
assume that p ∈ P , then (1− p)γ0N ⊆MΓx. Therefore N is P -cyclic.

Conversely, suppose that J is an ideal in M and J ⊆ N . Define I as
the set of all m ∈ M , where mγ0n ∈ J for any n ∈ N . Clearly I is an
ideal in M and IΓN ⊆ J . Let y ∈ J . Define K as the set of all m ∈M ,
where mγ0y ∈ IΓN . We claim K = M . Assume that K $ M . Then,
by Zorn’s Lemma, there exists Q ∈ Max(M) such that K ⊆ Q ⊂ M .
By hypothesis N = TQN or N is Q-cyclic. If N = TQN , then there
exists s ∈ Q such that (1 − s)γ0y = 0. Hence (1 − s) ∈ K ⊆ Q, it
follows that 1 ∈ Q, a contradiction. If N is Q-cyclic then there exist
t ∈ Q and z ∈ N such that (1 − t)γ0N ⊆ MΓz =< z >. Define L as
the set of all m ∈ M such that mγ0z ∈ (1 − t)γ0J . Clearly L is an
ideal in M and Lγ0z ⊆ (1 − t)γ0J . Since J ⊆ N , we conclude that
(1 − t)γ0J ⊆< z >. Hence (1 − t)γ0J ⊆ Lγ0z. So (1 − t)γ0J = Lγ0z,
it follows that (1 − t)γ0Lγ0N ⊆ (1 − t)γ0J ⊆ J and (1 − t)γ0L ⊆ I.
Therefore (1− t)γ0(1− t)γ0J ⊆ IΓM . Hence (1− t)γ0(1− t) ∈ K ⊆ Q.
Thus (1− t) ∈ Q, it follows that 1 ∈ Q, a contradiction. Hence K = M
and y ∈ IΓN . Thus N is a multiplication ideal. �

Proposition 3.6. Let N be a faithful ideal in the Γ-ring M . N is
multiplication ideal if and only if

(1) For any nonempty collection {Iλ}λ∈Λ of ideals in M ,⋂
λ∈Λ

(IλΓN) = (
⋂
λ∈Λ

Iλ)ΓN
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(2) For any ideal K in M which K ⊆ N and any ideal A in M
with K ⊂ AΓN , there exists ideal B in M such that B ⊂ A and
K ⊆ BΓN .

Proof. Suppose (1) and (2) hold. Let K be an ideal in M contained in
N and

S = {I : I is an ideal of M and K ⊆ IΓN}.
Clearly M ∈ S. Since the statement (1) is correct, by Zorn’s Lemma,
S has a minimal member, A say. Since K ⊆ AΓN and A is minimal
element of S, we can then conclude from (2) that K = AΓN . It follows
that N is a multiplication ideal.

Conversely, suppose thatN is a multiplication ideal inM . Let {Iλ}λ∈Λ

be a nonempty collection of ideals in M and I = (
⋂
λ∈Λ Iλ). Clearly

IΓN ⊆
⋂
λ∈Λ(IλΓN). Let x ∈

⋂
λ∈Λ(IλΓN) ⊆ N and we put L = {m ∈

M : mγ0x ∈ IΓN}. We claim L = M . Assume that L $ M . By Zorn’s
Lemma, there exists P ∈ Max(M) such that L ⊆ P . It is clear that
x 6∈ TPN . Hence TPN 6= N and by Proposition 3.5, N is P -cyclic. Hence
there exist n ∈ N and p ∈ P such that (1 − p)γ0N ⊆ MΓn =< n >.
Thus (1−p)γ0x ∈

⋂
λ∈Λ(Iλγ0n) and so for any λ ∈ Λ, (1−p)γ0x ∈ Iλγ0n.

It is clear that (1 − p)γ0(1 − p) ∈ L ⊆ P , in view of the fact that N
is faithful. Hence 1 ∈ P , a contradiction. Therefore L = M , it follows
that x = 1γ0x ∈ IΓN and (1) holds. Now suppose K is an ideal in
M with K ⊆ N and A is an ideal in M with K ⊂ AΓN . Since N is
multiplication ideal, there exists an ideal C in M such that K = CΓN .
Let B = A ∩ C. Clearly, B ⊂ A and by the statement (1), K ⊆ BΓN .
This proves the statement (2). �

Let P be a proper ideal in the Γ-ring M . It is clear that the following
conditions are equivallent.

(1) P is semi-prime.
(2) For any a ∈M , if aγ0a ∈ P then a ∈ P .
(3) For any a ∈M and n ∈ N, if (aγ0)na ∈ P then a ∈ P .

Proposition 3.7. Let C be an ideal in Γ-ring M and A be the set of all
x ∈M such that (xγ0)nx ∈ C for some n ∈ N∪{0}, where (xγ0)0x = x.
Then A = P (C).

Proof. Suppose that x ∈ A. So (xγ0)nx ∈ C for some n ∈ N ∪ {0}.
Let P be a semi-prime ideal in M containing C. So x ∈ P . It follows
from Proposition 2.2 that x ∈ P (C). Thus A ⊆ P (C). Now suppose
x 6∈ A. Let Σ be the set of all ideals I in M such that C ⊆ I and
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(xγ0)nx 6∈ I for any n ∈ N ∪ {0}. By Zorn’s Lemma, Σ has maximal
element P . Suppose that z, y 6∈ P . Then there exists m ∈ N ∪ {0}
such that (xγ0)mx ∈ P+ < zγ0y >. Hence P+ < zγ0y >6∈ Σ and so
zγ0y 6∈ P . Now if z = y, by the above argument z 6∈ P implies that
zγ0z 6∈ P . So P is semi-prime and x 6∈ P . Hence, by Proposition 2.2,
x 6∈ P (C). Thus x 6∈ A implies that x 6∈ P (C), whence P (C) ⊆ A. �

Proposition 3.8. Let J be a faithful multiplication ideal in the Γ-ring
M and A,B be two ideals in M . Then, AΓJ ⊆ BΓJ if and only if either
A ⊆ B or J = [B : A]ΓJ .

Proof. Let A * B. Note that [B : A] =
⋂
a∈X [B :< a >] where X is the

set of all elements a ∈ A with a 6∈ B. By Proposition 3.6,

[B : A]ΓJ =
⋂
a∈X

([B :< a >]ΓJ)

If for every a ∈ X, J = [B :< a >]ΓJ , then J = [B : A]ΓJ , which
finishes the proof. Let a ∈ X and C = [B :< a >]. It is clear that
C 6= M . Let Ω denote the collection of all semi-prime ideals P in M
containing C. Suppose that there exists P ∈ Ω such that J 6= PΓJ
and x ∈ J \ PΓJ . Since J is a multiplication ideal in the Γ-ring M , we
conclude that there the exists an ideal D in M such that < x >= JΓD
and D * P . Thus cΓJ ⊆< x > for some c ∈ D \ P . Now we have
cΓaΓJ ⊆ BΓ < x >. It is easily to show that for any γ ∈ Γ, there
exist γ1 ∈ Γ and b ∈ B such that (cγa − 1γ1b)γ0x = 0, it follows that
(cγa − 1γ1b)ΓcΓJ = 0. Hence cγc ∈ [B :< a >] = C. Since P is a
semi-prime ideal containing C, we conclude that c ∈ P , a contradiction.
Therefore for every P ∈ Ω, J = PΓJ and, by Propositions 2.2 and 3.6,
J = P (C)ΓJ . Let j ∈ J . It is easily to show that < j >= P (C)Γ < j >.
Then there exists s ∈ P (C) such that for every n ∈ N, j = (sγ0)nj. By
Proposition 3.7, there exists t ∈ N∪{0} such that (sγ0)ts ∈ C, it follows
that j = (sγ0)tsγ0j ∈ CΓJ , i.e., J ⊆ CΓJ . Hence CΓJ = J . The
converse is evident. �

Let M be a Γ-ring and let Matn×n(M) be the set of all n×n matrices
over M .

Definition 3.9. Let M be a Γ-ring and A = (aij) ∈ Matn×n(M). If σ
is a permutation on {1, 2, . . . , n}, let sign(σ) = 1 if σ is an even permu-
tation, and sign(σ) = −1 if σ is an odd permutation. The determinant
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is defined by

detΓ(A) =
∑
all σ

sign(σ)a
1,σ(1)

γ0a2,σ(2)
γ0 · · · γ0an,σ(n) .

Let Mi,j be the determinant of the (n− 1)× (n− 1) matrix obtained
by removing row i and column j from A. Let Ci,j = (−1)i+jMi,j . Mi,j

and Ci,j are called the (i, j) minor and cofactor of A.

Proposition 3.10. For any 1 ≤ i ≤ n, detΓ(A) = ai1γ0Ci,1+ai2γ0Ci,2+
· · · + ainγ0Ci,n. For any 1 ≤ j ≤ n, detΓ(A) = a1jγ0C1,j + a2jγ0C2,j +
· · ·+ anjγ0Cn,j.

Let M be a Γ-ring and {ai|i ∈ Nn} ⊆M . It is clear that

< a1, . . . , an >= {
n∑
i=1

miγ0ai|∀i ∈ Nn(mi ∈M}.

Also, if I is an ideal of the Γ-ring M and J =< a1, . . . , an >, then

IΓJ = {x1γ0a1 + . . .+ xnγ0an|xi ∈ I, for all 1 ≤ i ≤ n}.

Proposition 3.11. Let M be a Γ-ring, I an ideal in M , J an ideal
generated by n elements, and x an element of M satisfying xΓJ ⊆ IΓJ .
Then there exists y ∈ I such that ((xγ0)n−1x+ y)γ0J = 0.

Proof. If J =< a1, . . . , an >, then there exist yi1, . . . , yin ∈ I such that

xγ0ai =
∑
j∈Nn

yijγ0aj .

Now we put

B =

x− y11 −y12 · · · −y1n
...

...
...

...
−yn1 −yn2 · · · x− ynn

 .
It is clear that there exists y ∈ I such that det(B) = ((xγ0)n−1x) + y)
and also, for every 1 ≤ i ≤ n, (detB)γ0ai = 0. Therefore ((xγ0)n−1x +
y)γ0J = 0. �

We denote by SΓ, the set of all finitely generated faithful multiplica-
tion ideals in the Γ-ring M .

Proposition 3.12. Let I be an ideal of the Γ-ring M . If IΓJ = J for
some J ∈ SΓ, then there exists i ∈ I such that (1− i)γ0J = 0.
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Proof. We know that 1ΓJ = J . Now for x = 1 in Proposition 3.11, there
exists n ∈ N such that ((1γ0)n1 + y)γ0J = 0 and by setting i = −y the
proof will be completed. �

Corollary 3.13. Let A,B be two ideals of the Γ-ring M and J ∈ SΓ.
Then A ⊆ B if and only if AΓJ ⊆ BΓJ .

Proof. Assume that AΓJ ⊆ BΓJ , then by Proposition 3.8, A ⊆ B or
J = [B : A]ΓJ . Suppose that J = [B : A]ΓJ . By Proposition 3.12, there
exists r ∈ [B : A] such that (1− r)γ0J = 0. Since J ∈ SΓ, we conclude
that r = 1 and so A = 1ΓA ⊆ B. The converse is evident. �

Lemma 3.14. Let I be a multiplication ideal of the Γ-ring M and I ⊆ J .
Then
J = IΓ[J : I].

Proof. Since I is a multiplication ideal of M , then J = IΓG for some
ideal G of M , and G ⊆ [J : I]. Therefore J ⊆ IΓ[J : I]. On the other
hand we can see easily that IΓ[J : I] ⊆ J . So J = IΓ[J : I]. �

Definition 3.15. Let M be a Γ-ring. A left MΓ-module is an additive
abelian group A together with a mapping · : M × Γ × A −→ A ( the
image of (m, γ, a) is denoted by mγa), such that for all a, a1, a2 ∈ A,
γ, γ1, γ2 ∈ Γ , and m,m1,m2 ∈M the following hold:

(1) mγ(a1 + a2) = mγa1 +mγa2 and (m1 +m2)γa = m1γa+m2γa,
(2) m1γ1(m2γ2a) = (m1γ1m2)γ2a,
(3) 1γ0a = a.

A right MΓ-module is defined in a similar way.

Definition 3.16. If A is a left MΓ-module and S is the set of all MΓ-
submodules B of A such that B 6= A, then S is partially ordered by
set-theoretic inclusion. B is a maximal MΓ-submodule if and only if B
is a maximal element in the partially ordered set S.

Proposition 3.17. If A is a non-zero finitely generated left MΓ-module,
then the following statements hold.

(1) If K is a proper MΓ-submodule of A, then there exists a maximal
MΓ-submodule of A which contains K.

(2) A has a maximal MΓ-submodule.

Proof. (1) Let A = 〈a1, . . . , an| and

S = {L : K ⊆ L and L is a proper MΓ-submodule of A}.
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S is partially ordered by inclusion and note that S 6= ∅, since K ∈ S.
If {Lλ}λ∈Λ is a chain in S, then L =

⋃
λ∈Λ Lλ is a MΓ-submodule of A.

We show that L 6= A. If L = A, then for every 1 ≤ i ≤ n, there exists
λi ∈ Λ such that ai ∈ Lλi . Since {Lλ}λ∈Λ is a chain in S, we conclude
that there exists 1 ≤ j ≤ n such that a1, . . . , an ∈ Lλj . Therefore
A = Lλj ∈ S which contradicts the fact that A 6∈ S. It follows easily
that L is an upper bound for {Lλ}λ∈Λ in S. By Zorn’s Lemma, there
exists a proper MΓ-submodule B of A that is maximal in S. It is a clear
that B a maximal MΓ-submodule of A containing K.

(2) By part (1), it suffices to we put K = (0). �

Proposition 3.18. Let J be a finitely generated ideal of the Γ-ring M

contained in multiplication ideal I. If A = ann(J), then
I

AΓI
is finitely

generated.

Proof. Suppse that B = A +
∑

x∈I [< x >: I]. If B 6= M then, by
Proposition 3.17, there exists a maximal ideal P of the Γ-ring M such
that B ⊆ P . By Lemma 3.14, < x >= [< x >: I]ΓI ⊆ PΓI for
any x ∈ I, it follows that I ⊆ PΓI. Since PΓI ⊆ I, we conclude
that I = PΓI. By hypothesis, there exists m1, . . . ,mk ∈ J such that
J =< m1, . . . ,mk >. Since I is a multiplication ideal, we can then
conclude from Lemma 3.14 that for each 1 ≤ i ≤ k, < mi >= [<
mi >: I]ΓI = [< mi >: I]ΓPΓI =< mi > ΓP. Therefore, there exists
pi ∈ P such that (1 − pi)γ0mi = 0, for each 1 ≤ i ∈≤ k. If we put
p = 1− (1− p1)γ0 . . . γ0(1− pk), then p ∈ P and (1− p)ΓJ = 0. Hence
(1 − p) ∈ Ann(J) ⊆ B ⊆ P , it follows that 1 ∈ P , a contradiction.
Thus B = M and there exists x1, x2, . . . xn ∈ I such that 1 ∈ [< x1 >:
I] + · · ·+ [< xn >: I] +A. Therefore I =< x1 > + · · ·+ < xn > +AΓI.

On the other hand,
I

AΓI
=< x1 + AΓI, . . . , xn + AΓI >, then

I

AΓI
is

finitely generated. �

Proposition 3.19. Let I be a multiplication ideal of the Γ-ring M . I
is finitely generated if and only if ann(I) = ann(J) for some finitely
generated ideal J contained in I.

Proof. Suppose that ann(I) = ann(J) for some finitely generated ideal

J contained in I. By Proposition 3.18,
I

ann(J)ΓI
is finitely generated.

On the other hand
I

ann(J)ΓI
=

I

ann(I)ΓI
∼= I. Hence I is a finitely

generated ideal of M . For the converse it’s enough to we put J = I. �
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