Journal of Hyperstructures 2 (1) (2013), 30-39. ISSN: 2251-8436 print/2322-1666 online

MULTIPLICATION IDEALS IN Γ-RINGS

ALI AKBAR ESTAJI, ALI SAGHAFI KHORASANI AND SAMANEH BAGHDARI

ABSTRACT. In this paper we introduce the notion of multiplication ideals in Γ -rings and we obtain some characterizations for multiplication ideals in Γ -rings.

Key Words: Γ-ring, multiplication ideal, prime ideal, semi-prime ideal, faithful ideal.
2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 16D25, 16N60.

1. INTRODUCTION

We shall call an R-module M a multiplication module if every submodule of M is of the form IM, for some ideal I of R. Multiplication modules and ideals have been investigated in A. Barnard (1981), El-Bast and Smith (1988), P. F. Smith (1988) and others. For results on multiplication modules, the reader is referred to [1, 2, 5, 8, 12].

Nobusawa [9] developed the notion of a Γ -ring which is more general than a ring. After his research, Barnes studied Γ -rings in more details in [3]. But Barnes approached to Γ -rings in a different way than that of Nobusawa and he defined the concept of Γ -ring and related definitions. After these two papers were published, many mathematicians made good works on Γ -ring in the sense of Barnes and Nobusawa, which are parallel to the results in the ring theory (for example [1, 4, 10, 12]). In this paper, we introduce the concepts of multiplication ideals in Γ -rings.

Received: 1 October 2012, Accepted: 30 May 2013. Communicated by A. Yousefian Darani *Address correspondence to Ali Saghafi Khorasani; E-mail: saghafiali21@yahoo.com.

^{© 2013} University of Mohaghegh Ardabili.

³⁰

2. Preliminaries of Γ -rings

In the remainder of the paper we use some notation and results from the theory of Γ -rings. We present a few basic definitions here.

Let M and Γ be additive abelian groups. If we have a map from $M \times \Gamma \times M$ to M such that for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$

- (1) $(x+y)\alpha z = x\alpha z + y\alpha z, \ x(\alpha+\beta)z = x\alpha z + x\beta z, \ x\alpha(y+z) = x\alpha y + x\alpha z,$
- (2) $(x\alpha y)\beta z = x\alpha(y\beta z),$

then M is called a Γ -ring in the sense of Barnes [3]. Note that any ring R, can be regarded as an R-ring. A Γ -ring M is called commutative, if for any $x, y \in M$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$. M is called a Γ -ring with unit, if there exist elements $1 \in M$ and $\gamma_0 \in \Gamma$ such that for any $m \in M$, $1\gamma_0 m = m = m\gamma_0 1$. Throughout this paper, M stands for a nonempty commutative Γ -ring with unit. If A and B are subsets of the Γ -ring M and $\Theta \subseteq \Gamma$, we denote by $A\Theta B$ the subset of M consisting of all finite sums of the form $\sum a_i\gamma_ib_i$ where $(a_i, \gamma_i, b_i) \in A \times \Theta \times B$. For singletone subsets we abbreviate this notation for example, $\{a\}\Theta B = a\Theta B$. An ideal of a Γ -ring M is an additive subgroup I of M such that $I\Gamma M = M\Gamma I \subseteq I$. We denote an ideal I in M by $I \subseteq M$. An ideal $I \subseteq M$ is called a proper ideal, if $I \subsetneq M$. For each subset S of the Γ -ring M, the smallest ideal containing S is denoted by $\langle S \rangle$ and is called the ideal generated by S. If S is finite, $\langle S \rangle$ is called finitely generated.

A proper ideal P in the Γ -ring M is called a prime ideal, if for any ideals $A, B \leq M, A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A proper ideal N in the Γ -ring M is called maximal ideal, if for any ideals J in M such that $N \subseteq J \subseteq M$, we have N = J or J = M. It is easy to show that any maximal ideal is prime. We denote by Max(M), the set of all maximal ideals in the Γ -ring M.

A subset S of the Γ -ring M is an m-system in M, if $S = \emptyset$ or if $a, b \in S$ implies that $\langle a \rangle \Gamma \langle b \rangle \cap S \neq \emptyset$. An ideal P in M is prime if and only if its complement P^c is an m-system, see [3]. The prime radical P(A) of the ideal A in the Γ -ring M, is the set consisting of those elements r of M with the property that every m-system in M which contains r meet A (that is, has nonempty intersection with A). An ideal Q in the Γ -ring M is said to be semi-prime ideal if and only if it has the following property: if A is an ideal in M such that $A\Gamma A \subseteq Q$, then $A \subseteq Q$. It is clear that a prime ideal is semi-prime.

intersection of any set of semi-prime ideals is a semi-prime ideal, see [6]. It follows easy by induction that if Q is a semi-prime ideal, A is an ideal and $(A\Gamma)^n A \subseteq Q$ for an arbitrary positive integer n, then $A \subseteq Q$, see [6].

Theorem 2.1. If Q is an ideal in the Γ -ring M, the following conditions are equivalent.

- (1) Q is a semi-prime ideal.
- (2) if $a \in M$ such that $\langle a \rangle \Gamma \langle a \rangle \subseteq Q$, then $a \in Q$.

Proof. See Theorem 3.2 in [7].

Proposition 2.2. If Q is an ideal in the Γ -ring M, then P(Q) is the smallest semi-prime ideal in M which contains Q, i.e.

$$P(Q) = \bigcap P$$

where P runs over all semi-prime ideals of M such that $Q \subseteq P$.

Proof. See Corollary 3.5 in [7].

The reader is referred to [6, 7, 8] for undefined terms and notations.

3. Multiplication ideals

In this section we give some important properties of multiplication ideals, starting with the following definition.

Definition 3.1. An ideal I in the Γ -ring M is called multiplication ideal, if for every ideal J contained in I, there exists ideal G in M such that $J = G\Gamma I$.

Let I and J be ideals in the Γ -ring M. [I : J] is the set of all $m \in M$ such that $m\Gamma J \subseteq I$. [I : J] is called the residual of I by J. The annihilator of I is denoted by ann(I) and equals to [0 : I]. An ideal Iin M is called faithful if ann(I) = 0. We say that I divides J, denoted by I|J, if there exists an ideal G in M such that $I\Gamma G = J$.

Proposition 3.2. Let I be a multiplication ideal in the Γ -ring M and J be an arbitrary ideal in M. I|J if and only if $J \subseteq I$.

Proof. The proof is evident.

Definition 3.3. Let M be a Γ -ring and N an ideal in M and $P \in Max(M)$. N is called P-cyclic if there exist $p \in P$ and $n \in N$ such that $(1-p)\gamma_0 N \subseteq M\Gamma n$ and also, it is clear that $(1-p)\gamma_0 N = (1-p)\Gamma N$. Define T_PN as the set of all $n \in N$ such that $(1-p)\gamma_0 n = 0$ for some $p \in P$.

Lemma 3.4. Let M be a Γ -ring and N an ideal in M and $P \in Max(M)$. Then T_PN is an ideal in M.

Proof. It is straightforward.

Proposition 3.5. Let N be an ideal in the Γ -ring M. N is multiplication ideal if and only if for any ideal $P \in Max(M)$, either $N = T_PN$ or N is P-cyclic.

Proof. Let N be a multiplication ideal and $P \in Max(M)$. First suppose that $N = P\Gamma N$. Since N is multiplication ideal, we conclude that for every $n \in N$, there exists an ideal A in M such that $\langle n \rangle = A\Gamma N$. Hence $\langle n \rangle = P\Gamma \langle n \rangle$. So there exists $p \in P$ such that $(1-p)\gamma_0 n = 0$, it follows that $n \in T_P N$ and then $N = T_P N$.

Now suppose that $N \neq P\Gamma N$ and $x \in N \setminus P\Gamma N$. Then there exists an ideal B in M such that $\langle x \rangle = B\Gamma N$ and P + B = M. Obviously, if we assume that $p \in P$, then $(1 - p)\gamma_0 N \subseteq M\Gamma x$. Therefore N is P-cyclic.

Conversely, suppose that J is an ideal in M and $J \subseteq N$. Define I as the set of all $m \in M$, where $m\gamma_0 n \in J$ for any $n \in N$. Clearly I is an ideal in M and $I\Gamma N \subseteq J$. Let $y \in J$. Define K as the set of all $m \in M$, where $m\gamma_0 y \in I\Gamma N$. We claim K = M. Assume that $K \subsetneq M$. Then, by Zorn's Lemma, there exists $Q \in Max(M)$ such that $K \subseteq Q \subset M$. By hypothesis $N = T_Q N$ or N is Q-cyclic. If $N = T_Q N$, then there exists $s \in Q$ such that $(1-s)\gamma_0 y = 0$. Hence $(1-s) \in K \subseteq Q$, it follows that $1 \in Q$, a contradiction. If N is Q-cyclic then there exist $t \in Q$ and $z \in N$ such that $(1-t)\gamma_0 N \subseteq M\Gamma z = \langle z \rangle$. Define L as the set of all $m \in M$ such that $m\gamma_0 z \in (1-t)\gamma_0 J$. Clearly L is an ideal in M and $L\gamma_0 z \subseteq (1-t)\gamma_0 J$. Since $J \subseteq N$, we conclude that $(1-t)\gamma_0 J \subseteq \langle z \rangle$. Hence $(1-t)\gamma_0 J \subseteq L\gamma_0 z$. So $(1-t)\gamma_0 J = L\gamma_0 z$, it follows that $(1-t)\gamma_0 L\gamma_0 N \subseteq (1-t)\gamma_0 J \subseteq J$ and $(1-t)\gamma_0 L \subseteq I$. Therefore $(1-t)\gamma_0(1-t)\gamma_0 J \subseteq I\Gamma M$. Hence $(1-t)\gamma_0(1-t) \in K \subseteq Q$. Thus $(1-t) \in Q$, it follows that $1 \in Q$, a contradiction. Hence K = Mand $y \in I\Gamma N$. Thus N is a multiplication ideal.

Proposition 3.6. Let N be a faithful ideal in the Γ -ring M. N is multiplication ideal if and only if

(1) For any nonempty collection $\{I_{\lambda}\}_{\lambda \in \Lambda}$ of ideals in M,

$$\bigcap_{\lambda \in \Lambda} (I_{\lambda} \Gamma N) = (\bigcap_{\lambda \in \Lambda} I_{\lambda}) \Gamma N$$

(2) For any ideal K in M which $K \subseteq N$ and any ideal A in M with $K \subset A\Gamma N$, there exists ideal B in M such that $B \subset A$ and $K \subseteq B\Gamma N$.

Proof. Suppose (1) and (2) hold. Let K be an ideal in M contained in N and

 $\mathcal{S} = \{I : I \text{ is an ideal of } M \text{ and } K \subseteq I \Gamma N \}.$

Clearly $M \in S$. Since the statement (1) is correct, by Zorn's Lemma, S has a minimal member, A say. Since $K \subseteq A\Gamma N$ and A is minimal element of S, we can then conclude from (2) that $K = A\Gamma N$. It follows that N is a multiplication ideal.

Conversely, suppose that N is a multiplication ideal in M. Let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be a nonempty collection of ideals in M and $I = (\bigcap_{\lambda \in \Lambda} I_{\lambda})$. Clearly $I\Gamma N \subseteq \bigcap_{\lambda \in \Lambda} (I_{\lambda}\Gamma N)$. Let $x \in \bigcap_{\lambda \in \Lambda} (I_{\lambda}\Gamma N) \subseteq N$ and we put $L = \{m \in I\}$ $M: m\gamma_0 x \in I\Gamma N$. We claim L = M. Assume that $L \subsetneq M$. By Zorn's Lemma, there exists $P \in Max(M)$ such that $L \subseteq P$. It is clear that $x \notin T_P N$. Hence $T_P N \neq N$ and by Proposition 3.5, N is P-cyclic. Hence there exist $n \in N$ and $p \in P$ such that $(1-p)\gamma_0 N \subseteq M\Gamma n = \langle n \rangle$. Thus $(1-p)\gamma_0 x \in \bigcap_{\lambda \in \Lambda} (I_\lambda \gamma_0 n)$ and so for any $\lambda \in \Lambda$, $(1-p)\gamma_0 x \in I_\lambda \gamma_0 n$. It is clear that $(1-p)\gamma_0(1-p) \in L \subseteq P$, in view of the fact that N is faithful. Hence $1 \in P$, a contradiction. Therefore L = M, it follows that $x = 1\gamma_0 x \in I\Gamma N$ and (1) holds. Now suppose K is an ideal in M with $K \subseteq N$ and A is an ideal in M with $K \subset A\Gamma N$. Since N is multiplication ideal, there exists an ideal C in M such that $K = C\Gamma N$. Let $B = A \cap C$. Clearly, $B \subset A$ and by the statement (1), $K \subseteq B\Gamma N$. This proves the statement (2).

Let P be a proper ideal in the Γ -ring M. It is clear that the following conditions are equivalent.

- (1) P is semi-prime.
- (2) For any $a \in M$, if $a\gamma_0 a \in P$ then $a \in P$.
- (3) For any $a \in M$ and $n \in \mathbb{N}$, if $(a\gamma_0)^n a \in P$ then $a \in P$.

Proposition 3.7. Let C be an ideal in Γ -ring M and A be the set of all $x \in M$ such that $(x\gamma_0)^n x \in C$ for some $n \in \mathbb{N} \cup \{0\}$, where $(x\gamma_0)^0 x = x$. Then A = P(C).

Proof. Suppose that $x \in A$. So $(x\gamma_0)^n x \in C$ for some $n \in \mathbb{N} \cup \{0\}$. Let P be a semi-prime ideal in M containing C. So $x \in P$. It follows from Proposition 2.2 that $x \in P(C)$. Thus $A \subseteq P(C)$. Now suppose $x \notin A$. Let Σ be the set of all ideals I in M such that $C \subseteq I$ and

 $(x\gamma_0)^n x \notin I$ for any $n \in \mathbb{N} \cup \{0\}$. By Zorn's Lemma, Σ has maximal element P. Suppose that $z, y \notin P$. Then there exists $m \in \mathbb{N} \cup \{0\}$ such that $(x\gamma_0)^m x \in P+ \langle z\gamma_0 y \rangle$. Hence $P+ \langle z\gamma_0 y \rangle \notin \Sigma$ and so $z\gamma_0 y \notin P$. Now if z = y, by the above argument $z \notin P$ implies that $z\gamma_0 z \notin P$. So P is semi-prime and $x \notin P$. Hence, by Proposition 2.2, $x \notin P(C)$. Thus $x \notin A$ implies that $x \notin P(C)$, whence $P(C) \subseteq A$. \Box

Proposition 3.8. Let J be a faithful multiplication ideal in the Γ -ring M and A, B be two ideals in M. Then, $A\Gamma J \subseteq B\Gamma J$ if and only if either $A \subseteq B$ or $J = [B : A]\Gamma J$.

Proof. Let $A \nsubseteq B$. Note that $[B : A] = \bigcap_{a \in X} [B : \langle a \rangle]$ where X is the set of all elements $a \in A$ with $a \notin B$. By Proposition 3.6,

$$[B:A]\Gamma J = \bigcap_{a \in X} ([B:\]\Gamma J\)$$

If for every $a \in X$, $J = [B : \langle a \rangle] \Gamma J$, then $J = [B : A] \Gamma J$, which finishes the proof. Let $a \in X$ and $C = [B : \langle a \rangle]$. It is clear that $C \neq M$. Let Ω denote the collection of all semi-prime ideals P in M containing C. Suppose that there exists $P \in \Omega$ such that $J \neq P\Gamma J$ and $x \in J \setminus P\Gamma J$. Since J is a multiplication ideal in the Γ -ring M, we conclude that there the exists an ideal D in M such that $\langle x \rangle = J\Gamma D$ and $D \nsubseteq P$. Thus $c\Gamma J \subseteq \langle x \rangle$ for some $c \in D \setminus P$. Now we have $c\Gamma a\Gamma J \subseteq B\Gamma < x >$. It is easily to show that for any $\gamma \in \Gamma$, there exist $\gamma_1 \in \Gamma$ and $b \in B$ such that $(c\gamma a - 1\gamma_1 b)\gamma_0 x = 0$, it follows that $(c\gamma a - 1\gamma_1 b)\Gamma c\Gamma J = 0$. Hence $c\gamma c \in [B : \langle a \rangle] = C$. Since P is a semi-prime ideal containing C, we conclude that $c \in P$, a contradiction. Therefore for every $P \in \Omega$, $J = P\Gamma J$ and, by Propositions 2.2 and 3.6, $J = P(C)\Gamma J$. Let $j \in J$. It is easily to show that $\langle j \rangle = P(C)\Gamma \langle j \rangle$. Then there exists $s \in P(C)$ such that for every $n \in \mathbb{N}$, $j = (s\gamma_0)^n j$. By Proposition 3.7, there exists $t \in \mathbb{N} \cup \{0\}$ such that $(s\gamma_0)^t s \in C$, it follows that $j = (s\gamma_0)^t s\gamma_0 j \in C\Gamma J$, i.e., $J \subseteq C\Gamma J$. Hence $C\Gamma J = J$. The converse is evident.

Let M be a Γ -ring and let $Mat_{n \times n}(M)$ be the set of all $n \times n$ matrices over M.

Definition 3.9. Let M be a Γ -ring and $A = (a_{ij}) \in Mat_{n \times n}(M)$. If σ is a permutation on $\{1, 2, \ldots, n\}$, let $sign(\sigma) = 1$ if σ is an even permutation, and $sign(\sigma) = -1$ if σ is an odd permutation. The determinant

is defined by

$$det_{\Gamma}(A) = \sum_{\text{all } \sigma} sign(\sigma) a_{1,\sigma(1)} \gamma_0 a_{2,\sigma(2)} \gamma_0 \cdots \gamma_0 a_{n,\sigma(n)}.$$

Let $M_{i,j}$ be the determinant of the $(n-1) \times (n-1)$ matrix obtained by removing row *i* and column *j* from *A*. Let $C_{i,j} = (-1)^{i+j} M_{i,j}$. $M_{i,j}$ and $C_{i,j}$ are called the (i, j) minor and cofactor of *A*.

Proposition 3.10. For any $1 \le i \le n$, $det_{\Gamma}(A) = a_{i1}\gamma_0C_{i,1} + a_{i2}\gamma_0C_{i,2} + \cdots + a_{in}\gamma_0C_{i,n}$. For any $1 \le j \le n$, $det_{\Gamma}(A) = a_{1j}\gamma_0C_{1,j} + a_{2j}\gamma_0C_{2,j} + \cdots + a_{nj}\gamma_0C_{n,j}$.

Let M be a Γ -ring and $\{a_i | i \in \mathbb{N}_n\} \subseteq M$. It is clear that

$$\langle a_1, \ldots, a_n \rangle = \{\sum_{i=1}^n m_i \gamma_0 a_i | \forall i \in \mathbb{N}_n (m_i \in M)\}$$

Also, if I is an ideal of the Γ -ring M and $J = \langle a_1, \ldots, a_n \rangle$, then

$$I\Gamma J = \{x_1\gamma_0a_1 + \ldots + x_n\gamma_0a_n | x_i \in I, \text{ for all } 1 \le i \le n\}.$$

Proposition 3.11. Let M be a Γ -ring, I an ideal in M, J an ideal generated by n elements, and x an element of M satisfying $x\Gamma J \subseteq I\Gamma J$. Then there exists $y \in I$ such that $((x\gamma_0)^{n-1}x + y)\gamma_0 J = 0$.

Proof. If $J = \langle a_1, \ldots, a_n \rangle$, then there exist $y_{i1}, \ldots, y_{in} \in I$ such that

$$x\gamma_0 a_i = \sum_{j \in \mathbb{N}_n} y_{ij}\gamma_0 a_j.$$

Now we put

$$B = \begin{vmatrix} x - y_{11} & -y_{12} & \cdots & -y_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ -y_{n1} & -y_{n2} & \cdots & x - y_{nn} \end{vmatrix}$$

-

It is clear that there exists $y \in I$ such that $det(B) = ((x\gamma_0)^{n-1}x) + y)$ and also, for every $1 \le i \le n$, $(detB)\gamma_0a_i = 0$. Therefore $((x\gamma_0)^{n-1}x + y)\gamma_0J = 0$.

We denote by S_{Γ} , the set of all finitely generated faithful multiplication ideals in the Γ -ring M.

Proposition 3.12. Let I be an ideal of the Γ -ring M. If $I\Gamma J = J$ for some $J \in S_{\Gamma}$, then there exists $i \in I$ such that $(1 - i)\gamma_0 J = 0$.

Proof. We know that $1\Gamma J = J$. Now for x = 1 in Proposition 3.11, there exists $n \in \mathbb{N}$ such that $((1\gamma_0)^n 1 + y)\gamma_0 J = 0$ and by setting i = -y the proof will be completed.

Corollary 3.13. Let A, B be two ideals of the Γ -ring M and $J \in S_{\Gamma}$. Then $A \subseteq B$ if and only if $A\Gamma J \subseteq B\Gamma J$.

Proof. Assume that $A\Gamma J \subseteq B\Gamma J$, then by Proposition 3.8, $A \subseteq B$ or $J = [B:A]\Gamma J$. Suppose that $J = [B:A]\Gamma J$. By Proposition 3.12, there exists $r \in [B:A]$ such that $(1-r)\gamma_0 J = 0$. Since $J \in S_{\Gamma}$, we conclude that r = 1 and so $A = 1\Gamma A \subseteq B$. The converse is evident. \Box

Lemma 3.14. Let I be a multiplication ideal of the Γ -ring M and $I \subseteq J$. Then

 $J = I\Gamma[J:I].$

Proof. Since I is a multiplication ideal of M, then $J = I\Gamma G$ for some ideal G of M, and $G \subseteq [J:I]$. Therefore $J \subseteq I\Gamma[J:I]$. On the other hand we can see easily that $I\Gamma[J:I] \subseteq J$. So $J = I\Gamma[J:I]$. \Box

Definition 3.15. Let M be a Γ -ring. A left M_{Γ} -module is an additive abelian group A together with a mapping $\cdot : M \times \Gamma \times A \longrightarrow A$ (the image of (m, γ, a) is denoted by $m\gamma a$), such that for all $a, a_1, a_2 \in A$, $\gamma, \gamma_1, \gamma_2 \in \Gamma$, and $m, m_1, m_2 \in M$ the following hold:

- (1) $m\gamma(a_1 + a_2) = m\gamma a_1 + m\gamma a_2$ and $(m_1 + m_2)\gamma a = m_1\gamma a + m_2\gamma a$, (2) $m_1\gamma_1(m_2\gamma_2 a) = (m_1\gamma_1m_2)\gamma_2 a$,
- (3) $1\gamma_0 a = a$.

A right M_{Γ} -module is defined in a similar way.

Definition 3.16. If A is a left M_{Γ} -module and S is the set of all M_{Γ} submodules B of A such that $B \neq A$, then S is partially ordered by set-theoretic inclusion. B is a maximal M_{Γ} -submodule if and only if B is a maximal element in the partially ordered set S.

Proposition 3.17. If A is a non-zero finitely generated left M_{Γ} -module, then the following statements hold.

- (1) If K is a proper M_{Γ} -submodule of A, then there exists a maximal M_{Γ} -submodule of A which contains K.
- (2) A has a maximal M_{Γ} -submodule.

Proof. (1) Let $A = \langle a_1, \ldots, a_n |$ and

 $\mathcal{S} = \{L : K \subseteq L \text{ and } L \text{ is a proper } M_{\Gamma}\text{-submodule of } A\}.$

S is partially ordered by inclusion and note that $S \neq \emptyset$, since $K \in S$. If $\{L_{\lambda}\}_{\lambda \in \Lambda}$ is a chain in S, then $L = \bigcup_{\lambda \in \Lambda} L_{\lambda}$ is a M_{Γ} -submodule of A. We show that $L \neq A$. If L = A, then for every $1 \leq i \leq n$, there exists $\lambda_i \in \Lambda$ such that $a_i \in L_{\lambda_i}$. Since $\{L_{\lambda}\}_{\lambda \in \Lambda}$ is a chain in S, we conclude that there exists $1 \leq j \leq n$ such that $a_1, \ldots, a_n \in L_{\lambda_j}$. Therefore $A = L_{\lambda_j} \in S$ which contradicts the fact that $A \notin S$. It follows easily that L is an upper bound for $\{L_{\lambda}\}_{\lambda \in \Lambda}$ in S. By Zorn's Lemma, there exists a proper M_{Γ} -submodule B of A that is maximal in S. It is a clear that B a maximal M_{Γ} -submodule of A containing K.

(2) By part (1), it suffices to we put K = (0).

Proposition 3.18. Let J be a finitely generated ideal of the Γ -ring M contained in multiplication ideal I. If A = ann(J), then $\frac{I}{A\Gamma I}$ is finitely generated.

Proof. Suppose that $B = A + \sum_{x \in I} [\langle x \rangle : I]$. If $B \neq M$ then, by Proposition 3.17, there exists a maximal ideal *P* of the Γ-ring *M* such that $B \subseteq P$. By Lemma 3.14, $\langle x \rangle = [\langle x \rangle : I]\Gamma I \subseteq P\Gamma I$ for any $x \in I$, it follows that $I \subseteq P\Gamma I$. Since $P\Gamma I \subseteq I$, we conclude that $I = P\Gamma I$. By hypothesis, there exists $m_1, \ldots, m_k \in J$ such that $J = \langle m_1, \ldots, m_k \rangle$. Since *I* is a multiplication ideal, we can then conclude from Lemma 3.14 that for each $1 \leq i \leq k$, $\langle m_i \rangle = [\langle m_i \rangle : I]\Gamma I = [\langle m_i \rangle : I]\Gamma P\Gamma I = \langle m_i \rangle \Gamma P$. Therefore, there exists $p_i \in P$ such that $(1 - p_i)\gamma_0 m_i = 0$, for each $1 \leq i \in k$. If we put $p = 1 - (1 - p_1)\gamma_0 \ldots \gamma_0(1 - p_k)$, then $p \in P$ and $(1 - p)\Gamma J = 0$. Hence $(1 - p) \in Ann(J) \subseteq B \subseteq P$, it follows that $1 \in P$, a contradiction. Thus B = M and there exists $x_1, x_2, \ldots x_n \in I$ such that $1 \in [\langle x_1 \rangle :$ $I] + \cdots + [\langle x_n \rangle : I] + A$. Therefore $I = \langle x_1 \rangle + \cdots + \langle x_n \rangle + A\Gamma I$. On the other hand, $\frac{I}{A\Gamma I} = \langle x_1 + A\Gamma I, \ldots, x_n + A\Gamma I \rangle$, then $\frac{I}{A\Gamma I}$ is finitely generated.

Proposition 3.19. Let I be a multiplication ideal of the Γ -ring M. I is finitely generated if and only if ann(I) = ann(J) for some finitely generated ideal J contained in I.

Proof. Suppose that ann(I) = ann(J) for some finitely generated ideal J contained in I. By Proposition 3.18, $\frac{I}{ann(J)\Gamma I}$ is finitely generated. On the other hand $\frac{I}{ann(J)\Gamma I} = \frac{I}{ann(I)\Gamma I} \cong I$. Hence I is a finitely generated ideal of M. For the converse it's enough to we put J = I. \Box

References

- D. D. Anderson, Some remarks on multiplication ideals, Math Japon, 25 (1980), 463-469.
- [2] A. Barnard, *Multiplication modules*, J. Algebra, **71** (1981), 174-178.
- [3] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., Vol. 18, no. 3 (1966), 411-422.
- [4] M. Dumitru, Gamma-ring: some interpretations used in the study of their radicals, U.P.B. Sci. Bull., Series A, Vol. 71, Iss. 3 (2009), 9-22.
- [5] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755-779.
- [6] S. Kyuno, On the radicals of Γ -rings, Osaka J. Math., **12** (1975), 639-645.
- [7] S. Kyuno, On prime gamma rings, Pacific J. Math., Vol. 75, No, 1 (1978), 185-190.
- [8] G. H. Low and P. F. Smith, *Multification modules and ideals*, Comm. Algebra, 18 (1990), 4353-4375.
- [9] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
- [10] A.C. Paul and Md. Sabur, *Decomposition in neotherian Gamma rings*, International Archive of Applied Sciences and Technology, Vol. 2 [2] December 2011, 38-42.
- [11] Md. S. Uddin and P. Ahmed, Gamma vector spaces and their generalization, International Archive of Applied Sciences and Technology, Vol. 2 [2] December 2011, 77-83.
- [12] P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel) 50 (1988), 223-235.
- [13] N. N. Suliman and A.-R. H. Majeed, Orthogonal derivations on an ideal of semiprime Γ-rings, International Mathematical Forum, Vol. 7, no. 28 (2012), 1405-1412.

Ali Akbar Estaji

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O.Box 397, Sabzevar, Iran

Email: aa_estaji@yahoo.com

Ali Saghafi Khorasani

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O.Box 397, Sabzevar, Iran Email: saghafiali21@yahoo.com

Samaneh Baghdari

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O.Box 397, Sabzevar, Iran

Email: m.baghdari@yahoo.com