*Lw***wc* AND *Rw***wc* AND WEAK AMENABILITY OF BANACH ALGEBRAS

K. HAGHNEJAD AZAR* AND Z. RANJBAR

ABSTRACT. We introduce some new concepts as $left - weak^* - weak$ convergence property $[Lw^*wc-property]$ and $right - weak^* - weak$ convergence property $[Rw^*wc-property]$ for Banach algebra A. Suppose that A^* and A^{**} , respectively, have $Rw^*wc-property$ and $Lw^*wc-property$, then if A^{**} is weakly amenable, it follows that A is weakly amenable. Let $D: A \to A^*$ be a surjective derivation. If D'' is a derivation, then A is Arens regular.

Key Words: Amenability, weak amenability, Derivation, Arens regularity, Topological centers, Module actions, Left - weak* - to - weak convergence.
2010 Mathematics Subject Classification: Primary: 46L06; Secondary: 47L25.

1. INTRODUCTION

Let A be a Banach algebra and let B be a Banach A - bimodule. A derivation from A into B is a bounded linear mapping $D: A \to B$ such that

$$D(xy) = xD(y) + D(x)y$$
 for all $x, y \in A$.

The space of all continuous derivations from A into B is denoted by $Z^1(A, B)$.

Easy examples of derivations are the inner derivations, which are given for each $b \in B$ by

$$\delta_b(a) = ab - ba \text{ for all } a \in A.$$

Received: 3 April 2012, Accepted: 22 December 2012. Communicated by A. Najati *Address correspondence to K. Haghnejad Azar; E-mail: haghnejad@uma.ac.ir

^{© 2012} University of Mohaghegh Ardabili.

The space of inner derivations from A into B is denoted by $N^1(A, B)$. The Banach algebra A is amenable, when for every Banach A-bimoduleB, the only derivation from A into B^* is inner. It is clear that A is amenable if and only if $H^{1}(A, B^{*}) = Z^{1}(A, B^{*})/N^{1}(A, B^{*}) = \{0\}$. The concept of amenability for a Banach algebra A, introduced by Johnson in 1972, has proved to be of enormous importance in Banach algebra theory, see [13]. A Banach algebra A is said weakly amenable, if every derivation from A into A^* is inner. Equivalently, A is weakly amenable if and only if $H^1(A, A^*) = Z^1(A, A^*)/N^1(A, A^*) = \{0\}$. The concept of weak amenability was first introduced by Bade, Curtis and Dales in [2] for commutative Banach algebras, and was extended to the noncommutative case by Johnson in [14]. In this paper, for Banach A - module B, we introduce new concepts as $left - weak^* - weak$ convergence property $[Lw^*wc-property]$ and $right - weak^* - weak$ convergence property [Rw^*wc -property] with respect to A and we show that if A^* and A^{**} , respectively, have Rw^*wc -property and Lw^*wc -property and A^{**} is weakly amenable, then A is weakly amenable. We have also some conclusions regarding Arens regularity of Banach algebras. We introduce some notations and definitions that we used throughout this paper.

Let A be a Banach algebra and A^* , A^{**} , respectively, be the first and second dual of A. For $a \in A$ and $a' \in A^*$, we denote by a'a and aa'respectively, the functionals in A^* defined by $\langle a'a, b \rangle = \langle a', ab \rangle = a'(ab)$ and $\langle aa', b \rangle = \langle a', ba \rangle = a'(ba)$ for all $b \in A$. The Banach algebra A is embedded in its second dual via the identification $\langle a, a' \rangle - \langle a', a \rangle$ for every $a \in A$ and $a' \in A^*$. We say that a bounded net $(e_{\alpha})_{\alpha \in I}$ in A is a left bounded approximate identity (= LBAI) [resp. right bounded approximate identity (= RBAI) if, for each $a \in A$, $e_{\alpha}a \longrightarrow a$ [resp. $ae_{\alpha} \longrightarrow a].$

Let X, Y, Z be normed spaces and $m: X \times Y \to Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions m^{***} and m^{t***t} of m from $X^{**} \times Y^{**}$ into Z^{**} as follows

- 1. $m^*: Z^* \times X \to Y^*$, given by $\langle m^*(z', x), y \rangle = \langle z', m(x, y) \rangle$ where $x \in X, y \in Y, z' \in Z^*,$
- 2. $m^{**}: Y^{**} \times Z^* \to X^*$, given by $\langle m^{**}(y'', z'), x \rangle = \langle y'', m^*(z', x) \rangle$
- where $x \in X$, $y'' \in Y^{**}$, $z' \in Z^*$, 3. $m^{***} : X^{**} \times Y^{**} \to Z^{**}$, given by $\langle m^{***}(x'', y''), z' \rangle = \langle x'', m^{**}(y'', z') \rangle$ where $x'' \in X^{**}$, $y'' \in Y^{**}$, $z' \in Z^*$.

The mapping m^{***} is the unique extension of m such that $x'' \to x''$ $m^{***}(x'', y'')$ from X^{**} into Z^{**} is $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $y'' \to m^{***}(x'', y'')$ is not in general $weak^* - to - weak^*$ continuous from Y^{**} into Z^{**} unless $x'' \in X$. Hence the first topological center of m may be defined as following

$$Z_1(m) = \{x'' \in X^{**} : y'' \to m^{***}(x'', y'') \text{ is weak}^* - to - weak^* - continuous\}.$$

Let now $m^t: Y \times X \to Z$ be the transpose of m defined by $m^t(y, x) = m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^t is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t***}: Y^{**} \times X^{**} \to Z^{**}$. The mapping $m^{t***t}: X^{**} \times Y^{**} \to Z^{**}$ in general is not equal to m^{***} , see [1], if $m^{***} = m^{t**t}$, then m is called Arens regular. The mapping $y'' \to m^{t***t}(x'', y'')$ is $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $x'' \to m^{t***t}(x'', y'')$ from X^{**} into Z^{**} is not in general $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$. So we define the second topological center of m as

$$Z_2(m) = \{y'' \in Y^{**}: x'' \to m^{t^{***t}}(x'', y'') \text{ is weak}^* - to - weak^*$$

$$-continuous\}.$$

It is clear that m is Arens regular if and only if $Z_1(m) = X^{**}$ or $Z_2(m) = Y^{**}$. Arens regularity of m is equivalent to the following

$$\lim_{i} \lim_{j} \langle z', m(x_i, y_j) \rangle = \lim_{j} \lim_{i} \langle z', m(x_i, y_j) \rangle,$$

whenever both limits exist for all bounded sequences $(x_i)_i \subseteq X$, $(y_i)_i \subseteq Y$ and $z' \in Z^*$, see [5, 20].

The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let a'' and b'' be elements of A^{**} , the second dual of A. By *Goldstin's* Theorem [4, P.424-425], there are nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in A such that $a'' = weak^* - \lim_{\alpha} a_{\alpha}$ and $b'' = weak^* - \lim_{\beta} b_{\beta}$. So it is easy to see that for all $a' \in A^*$,

$$\lim_{\alpha} \lim_{\beta} \langle a', m(a_{\alpha}, b_{\beta}) \rangle = \langle a''b'', a' \rangle$$

and

$$\lim_{\beta} \lim_{\alpha} \langle a', m(a_{\alpha}, b_{\beta}) \rangle = \langle a'' o b'', a' \rangle,$$

where a''.b'' and a''ob'' are the first and second Arens products of A^{**} , respectively, see [6, 17, 20].

The mapping m is left strongly Arens irregular if $Z_1(m) = X$ and m is right strongly Arens irregular if $Z_2(m) = Y$.

Regarding A as a Banach A - bimodule, the operation $\pi : A \times A \rightarrow A$ extends to π^{***} and π^{t***t} defined on $A^{**} \times A^{**}$. These extensions are known, respectively, as the first (left) and the second (right) Arens products, and with each of them, the second dual space A^{**} becomes a Banach algebra. In this situation, we shall also simplify our notations. So the first (left) Arens product of $a'', b'' \in A^{**}$ shall be simply indicated by a''b'' and defined by the three steps:

for every $a, b \in A$ and $a' \in A^*$. Similarly, the second (right) Arens product of $a'', b'' \in A^{**}$ shall be indicated by a''ob'' and defined by :

. .

$$\langle aoa', b \rangle = \langle a', ba \rangle, \langle a'oa'', a \rangle = \langle a'', aoa' \rangle, \langle a''ob'', a' \rangle = \langle b'', a'ob'' \rangle.$$

for all $a, b \in A$ and $a' \in A^*$.

2. Weak Amenability of Banach Algebras

In this section, for a Banach A - module B, we introduce some new concepts as $left-weak^*-weak$ convergence property $[Lw^*wc-property]$ and $right - weak^* - weak$ convergence property $[Rw^*wc-property]$ with respect to A and we show that if A^* and A^{**} , respectively, have $Rw^*wc-property$ and $Lw^*wc-property$ and A^{**} is weakly amenable, then A is weakly amenable. We obtain some conclusions in the Arens regularity of Banach algebras.

Definition 2.1. Assume that *B* is a left Banach A - module. Let $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subset A$ such that $a_{\alpha} \xrightarrow{w^*} a''$ in A^{**} . We say that $b' \in B^*$ has $left - weak^* - weak$ convergence property Lw^*wc -property with respect to A, if $b'a_{\alpha} \xrightarrow{w} b'a''$ in B^* .

When every $b' \in B^*$ has Lw^*wc -property with respect to A, we say that B^* has Lw^*wc -property. The definition of $right - weak^* - weak$ convergence property $[= Rw^*wc$ -property] with respect to A is similar and if $b' \in B^*$ has $left - weak^* - weak$ convergence property and $right - weak^* - weak$ convergence property, then we say that $b' \in B^*$ has $weak^* - weak$ convergence property $[= w^*wc$ -property].

 $Lw^{\ast}wc$ and $Rw^{\ast}wc$ and weak amenability of Banach algebras

By using [17, Lemma 3.1], it is clear that if A^* has Lw^*wc -property, then A is Arens regular.

Assume that B is a left Banach A - module. We say that $b' \in B^*$ has $left - weak^* - weak$ convergence property to zero Lw^*wc -property to zero with respect to A, if for every $(a_{\alpha})_{\alpha} \subset A$, $b'a_{\alpha} \xrightarrow{w^*} 0$ in B^* implies that $b'a_{\alpha} \xrightarrow{w} 0$ in B^* .

Example 2.2. (1) Every reflexive Banach A – module has w^*wc -property.

(2) Let Ω be a compact group and suppose that $A = C(\Omega)$ and $B = M(\Omega)$ (the measure algebra on σ -algebra of Ω). We know that $A^* = B$ and $\mu a_{\alpha} \in B$ whenever $(a_{\alpha})_{\alpha} \subseteq A$ and $\mu \in B$. Suppose that $\mu a_{\alpha} \stackrel{w^*}{\to} 0$, then for each $a \in A$, we have

$$\langle \mu a_{\alpha}, a \rangle = \langle \mu, a_{\alpha} * a \rangle = \int_{\Omega} (a_{\alpha} * a) d\mu \to 0.$$

We set $a = 1_{\Omega}$. Then $\mu(a_{\alpha}) \to 0$. Now let $b' \in B^*$. Then

$$\langle b', \mu a_{\alpha} \rangle = \langle a_{\alpha} b', \mu \rangle = \int_{\Omega} a_{\alpha} b' d\mu \leq \parallel b' \parallel \mid \int_{\Omega} a_{\alpha} d\mu \mid = \parallel b' \parallel \mid \mu(a_{\alpha}) \mid \to 0.$$

It follows that $\mu a_{\alpha} \xrightarrow{w} 0$, and so that μ has Rw^*wc -property to zero with respect to A.

Let now B be a Banach A - bimodule, and let

$$\pi_{\ell}: A \times B \to B \text{ and } \pi_r: B \times A \to B.$$

be the left and right module actions of A on B, respectively. Then B^{**} is a Banach $A^{**} - bimodule$ with module actions

$$\pi_{\ell}^{***}: \ A^{**} \times B^{**} \to B^{**} \ and \ \pi_{r}^{***}: \ B^{**} \times A^{**} \to B^{**}.$$

Similarly, B^{**} is a Banach $A^{**} - bimodule$ with module actions

$$\pi_{\ell}^{t***t}: A^{**} \times B^{**} \to B^{**} \text{ and } \pi_{r}^{t***t}: B^{**} \times A^{**} \to B^{**}.$$

For a Banach A - bimodule B, we define the topological centers of the left and right module actions of A on B as follows:

$$Z^{\ell}_{A^{**}}(B^{**}) = Z(\pi_r) = \{ b'' \in B^{**} : \text{ the map } a'' \to \pi_r^{***}(b'', a'') : A^{**} \to B^{**}is \text{ weak}^* - weak^* \text{ continuous} \}$$

$$Z^{\ell}_{B^{**}}(A^{**}) = Z(\pi_{\ell}) = \{ a'' \in A^{**} : \text{ the map } b'' \to \pi^{***}_{\ell}(a'', b'') : B^{**} \to B^{**} \text{ is weak}^* - \text{weak}^* \text{ continuous} \}$$

$$Z^{r}_{A^{**}}(B^{**}) = Z(\pi^{t}_{\ell}) = \{b'' \in B^{**} : \text{ the map } a'' \to \pi^{t***}_{\ell}(b'', a'') : A^{**} \to B^{**} \text{ is weak}^{*} - weak^{*} \text{ continuous}\}$$

$$Z^{r}_{B^{**}}(A^{**}) = Z(\pi^{t}_{r}) = \{a'' \in A^{**} : \text{ the map } b'' \to \pi^{t^{***}}_{r}(a'',b'') : B^{**} \to B^{**} \text{ is weak}^{*} - weak^{*} \text{ continuous}\}.$$

Theorem 2.3. i) Assume that B is a left Banach A – module. If $B^*A^{**} \subseteq B^*$, then B^* has Lw^*wc -property. ii) Assume that B is a right Banach A – module. If $A^{**}B^* \subseteq B^*$ and $Z^r(\pi_r) = Z^r_{A^{**}}(B^{**}) = B^{**}$, then B^* has Rw^*wc -property.

Proof. i) Assume that $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$. Then for every $b'' \in B^{**}$, since $b'a'' \in B^*$, we have

$$< b'', b'a'' > = < a''b'', b' > = \lim_{\alpha} < a_{\alpha}b'', b' > = \lim_{\alpha} < b'', b'a_{\alpha} > .$$

It follows that $b'a_{\alpha} \xrightarrow{w} b'a''$.

ii) The proof is similar to (i).

Theorem 2.4. Let A be a Banach algebra and suppose that A^* and A^{**} , respectively, have Rw^*wc -property and Lw^*wc -property. If A^{**} is weakly amenable, then A is weakly amenable.

Proof. Assume that $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$. Then for each $a' \in A^*$, we have $a_{\alpha}a' \xrightarrow{w^*} a''a'$ in A^* . Since A^* has Rw^*wc -property, $a_{\alpha}a' \xrightarrow{w} a''a'$ in A^* . Then for every $x'' \in A^{**}$, we have

$$\langle x''a_{\alpha}, a' \rangle = \langle x'', a_{\alpha}a' \rangle \to \langle x'', a''a' \rangle = \langle x''a'', a' \rangle.$$

It follows that $x''a_{\alpha} \xrightarrow{w^*} x''a''$. Since A^{**} has Lw^*wc -property with respect to A, $x''a_{\alpha} \xrightarrow{w} x''a''$. If $D: A \to A^*$ is a bounded derivation, we

extend it to a bounded linear mapping D'' from A^{**} into A^{***} . Suppose that $a'', b'' \in A^{**}$ and $(a_{\alpha})_{\alpha}, (b_{\beta})_{\beta} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$ and $b_{\beta} \xrightarrow{w^*} b''$. Since $x''a_{\alpha} \xrightarrow{w} x''a''$ for every $x'' \in A^{**}$, we have

$$\lim_{\alpha} \langle D''(b''), x''a_{\alpha} \rangle = \langle D''(b''), x''a'' \rangle.$$

In the following we take limit on the $weak^*$ topologies. Thus we have

$$\lim_{\alpha} \lim_{\beta} D(a_{\alpha})b_{\beta} = D''(a'')b''$$

Consequently, we have

$$D''(a''b'') = \lim_{\alpha} \lim_{\beta} D(a_{\alpha}b_{\beta}) = \lim_{\alpha} \lim_{\beta} D(a_{\alpha})b_{\beta} + \lim_{\alpha} \lim_{\beta} a_{\alpha}D(b_{\beta})$$
$$= D''(a'')b'' + a''D''(b'').$$

Since A^{**} is weakly amenable, there is $a''' \in A^{***}$ such that $D'' = \delta_{a'''}$. We conclude that $D = D'' |_A = \delta_{a'''} |_A$. Hence for each $x' \in A^*$, we have $D = x'a''' |_A - a''' |_A x'$. Take $a' = a''' |_A$. It follows that $H^1(A, A^*) = 0$.

Theorem 2.5. Let A be a Banach algebra and suppose that $D : A \rightarrow A^*$ is a surjective derivation. If D'' is a derivation, then we have the following assertions.

- (1) A^* and A^{**} , respectively, have w^*wc -property and Lw^*wc -property with respect to A.
- (2) For every $a'' \in A^{**}$, the mapping $x'' \to a''x''$ from A^{**} into A^{**} is weak^{*} weak continuous.
- (3) A is Arens regular.
- (4) If A has LBAI, then A is reflexive.
- Proof. (1) Since D is surjective, D'' is surjective, and so by using [19, Theorem 2.2], we have $A^{***}A^{**} \subseteq D''(A^{**})A^{**} \subseteq A^*$. Suppose that $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \stackrel{w^*}{\to} a''$. Then for each $x' \in A^*$, we have $x'a_{\alpha} \stackrel{w^*}{\to} x'a''$. Since $A^{***}A^{**} \subseteq A^*$, $x'a'' \in A^*$. Then for every $x'' \in A^{**}$, we have

$$\langle x'', x'a_{\alpha} \rangle = \langle x''x', a_{\alpha} \rangle \to \langle a'', x''x' \rangle = \langle x'a'', x'' \rangle = \langle x'', x'a'' \rangle.$$

It follows that $x'a_{\alpha} \xrightarrow{w} x'a''$ in A^* . Thus x' has Lw^*wc -property with respect to A. The proof that x' has Rw^*wc -property with respect to A is similar, and so A^* has w^*wc -property. Suppose that $x'' \in A^{***}$. Since $A^{***}A^{**} \subseteq A^*$, $x''a_{\alpha} \xrightarrow{w^*} x''a''$ for each $x'' \in A^{**}$. Then

$$\langle x''', x''a_{\alpha} \rangle = \langle x'''x'', a_{\alpha} \rangle \to \langle x'''x'', a'' \rangle = \langle x''', x''a'' \rangle.$$

It follows that $x''a_{\alpha} \xrightarrow{w} x''a''$. Thus x'' has Lw^*wc -property with respect to A.

(2) Suppose that $(a''_{\alpha})_{\alpha} \subseteq A^{**}$ and $a''_{\alpha} \xrightarrow{w^*} a''$. Let $x'' \in A^{**}$. Then for every $x''' \in A^{***}$, since $A^{***}A^{**} \subseteq A^*$, we have

$$\langle x''', x''a_{\alpha}'' \rangle = \langle x'''x'', a_{\alpha}'' \rangle \to \langle x'''x'', a'' \rangle = \langle x''', x''a'' \rangle.$$

is follows from (2).

(3) It follows from (2).
(4) Let (e_α)_α ⊆ A be a BLAI for A. Without loss generality, by using [4, page 146], there is a left unit e" for A** such that e_α ^{w*}→ e". Suppose that (a"_α)_α ⊆ A** and a"_α ^{w*}→ a". Then for every a"' ∈ A***, since A***A** ⊆ A*, we have

$$\langle a^{\prime\prime\prime},a^{\prime\prime}_{\alpha}\rangle = \langle a^{\prime\prime\prime},e^{\prime\prime}a^{\prime\prime}_{\alpha}\rangle = \langle a^{\prime\prime\prime}e^{\prime\prime},a^{\prime\prime}_{\alpha}\rangle \rightarrow \langle a^{\prime\prime\prime}e^{\prime\prime},a^{\prime\prime}\rangle = \langle a^{\prime\prime\prime},a^{\prime\prime}\rangle.$$

It follows that $a''_{\alpha} \xrightarrow{w} a''$. Consequently A is reflexive.

Corollary 2.6. Let A be a Banach algebra and suppose that $D : A \to A^*$ is a surjective derivation. Then the following statements are equivalent.

- (1) A^* and A^{**} , respectively, have Rw^*wc -property and Lw^*wc -property.
- (2) For every $a'' \in A^{**}$, the mapping $x'' \to a''x''$ from A^{**} into A^{**} is weak^{*} weak continuous.

Problem. Suppose that S is a compact semigroup. Dose $L^1(S)^*$ and $M(S)^*$ have Lw^*wc -property or Rw^*wc -property?

Acknowledgments

We would like to thank the referee for his/her careful reading of our paper and many valuable suggestions.

References

- R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), 839-848.
- [2] W. G. Bade, P.C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. Lodon Math. Soc., 137(656) (1999), 46-59.
- [3] J. Baker, A. T. Lau, J. S. Pym Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras, J. Funct. Anal., 158 (1998), 186-208.
- [4] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin 1973.
- [5] H. G. Dales, Banach Algebra and Automatic Continuity, Oxford 2000.
- [6] H. G. Dales, F. Ghahramani, N. Grønbæk Derivation into iterated duals of Banach algebras Studia Math., 128(1) (1998), 19-53.
- [7] H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, The second transpose of a derivation, J. London. Math. Soc., 2(64) (2001) 707-721.
- [8] N. Dunford, J. T. Schwartz, *Linear Operators I*, Wiley, New york 1958.
- M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Math., 181(3) (2007), 237-254.
- [10] M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math., 182(3) (2007), 205-213.
- [11] F. Gourdeau, Amenability of Lipschits algebra, Math. Proc. Cambridge. Philos. Soc., 112 (1992), 581-588.
- [12] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, Springer, Berlin, 1963.
- [13] B.E. Johoson, Cohomology in Banach algebra, Mem. Amer. Math. Soc., 127, 1972.
- [14] B. E. Johoson, Derivation from L¹(G) into L¹(G) and L[∞](G), Harmonic Analysis. Luxembourg 1987, 191-198 Lecture Notes in Math., 1359, Springer, Berlin, 1988.
- [15] B. E. Johoson, Weak amenability of group algebra, Bull. Lodon. Math. Soc., 23(1991), 281-284.
- [16] A. T. Lau, V. Losert, On the second Conjugate Algebra of locally compact groups, J. London Math. Soc., 37(2)(1988), 464-480.
- [17] A. T. Lau, A. Ulger, Topological center of certain dual algebras, Trans. Amer. Math. Soc., 348 (1996), 1191-1212.
- [18] V. Losert, The derivation problem for group algebra, Annals of Mathematics, 168 (2008), 221-246.
- [19] S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Aust. Math. Soc., 77 (2008), 465-476.
- [20] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math Soc., 15 (1965), 84-104.
- [21] V. Runde, *Lectures on the Amenability*, springer-verlag Berlin Heideberg NewYork.
- [22] A. Ulger, Some stability properties of Arens regular bilinear operators, Proc. Amer. Math. Soc., (1991) 34, 443-454.

- [23] A. Ülger, Arens regularity of weakly sequentialy compact Banach algebras, Proc. Amer. Math. Soc., 127(11) (1999), 3221-3227.
- [24] P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci., 17(1) (1994), 15-18.
- [25] Y. Zhang, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc., 354(10) (2002), 4131-4151.
- [26] Y. Zhang, Weak amenability of a class of Banach algebra, Cand. Math. Bull., 44(4) (2001) 504-508.

K. Haghnejad Azar

Department of Mathematics and Applications, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran. Email: haghnejad@uma.ac.ir

Z. Ranjbar

Department of Mathematics and Applications, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran. Email: ranjbar.raha@gmail.com